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MULTISCALE MASS-SPRING MODELS OF CARBON NANOTUBE
ARRAYS ACCOUNTING FOR MULLINS-LIKE BEHAVIOR AND

PERMANENT DEFORMATION∗

T. BLESGEN† , F. FRATERNALI‡ , J. R. RANEY§ , AND C. DARAIO§

Abstract. Based on a one-dimensional discrete system of bistable springs, a mechanical model
is introduced to describe plasticity and damage in carbon nanotube (CNT) arrays. The energetics
of the mechanical system are investigated analytically, the stress-strain law is derived, and the
mechanical dissipation is computed, both for the discrete case as well as for the continuum limit. An
information-passing approach is developed that permits the investigation of macroscopic portions
of the material. As an application, the simulation of a cyclic compression experiment on real CNT
foam is performed, considering both the material response during the primary loading path from the
virgin state and the damaged response after preconditioning.

Key words. carbon nanotube arrays, bistable springs, multiscale behavior, Mullins effect,
permanent deformation
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1. Introduction. Carbon nanotubes (CNTs) have been of great interest for a
variety of applications due to their combination of excellent mechanical, electrical,
and thermal properties combined with a low density [2]. Nominally aligned arrays
of CNTs can be synthesized to form low-density, foam-like materials with dissipative
behavior in compression [6]. Structures based on these materials have been shown to
dissipate more than two orders of magnitude more energy in compression than typical
polymeric foams of comparable density [22].

Arrays of CNTs exhibit a stress-strain hysteresis in compression, which in the
past has been related to the behavior of open cell foams [6, 16]. In addition to the
hysteretic stress-strain relationship, the mechanical response includes several note-
worthy features, the physical basis of which is only understood in part. These include
strain localization during compression; strain recovery after compression; a diminish-
ing hysteresis area (i.e., diminishing energy dissipation) and peak stress for the first
few compressive cycles; and an abrupt shift in stress-strain behavior to that of the
pristine material when a previous value of maximum strain is exceeded.

Strain localization has long been noted during the compression of CNT arrays,
with uniaxial compression typically resulting in the imposed strain being entirely
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accommodated by the formation of buckles at the base of the structure, with base
being defined as the side that was nearest to the growth substrate during synthesis.
This behavior is observed whether the CNTs remain bound to the substrate [33,
18] or are removed from it to create a freestanding structure [6], and is therefore
generally thought to be a result of a gradient in physical properties that originate with
the growth process. The result of this is that the CNT arrays undergo coordinated
buckling of many individual CNTs [37], leading to the formation of buckles, which
form sequentially from the base upward [18].

A variety of behaviors has been observed for strain recovery, with some groups
reporting that CNT arrays recover most of their original height after large compressive
deformation (e.g., [6, 21]), while others have reported an almost complete absence of
strain recovery (e.g., [37, 18]). In the past, the former category has consisted of
CNTs that were synthesized by a vapor phase catalyst technique by which catalyst is
continually deposited during the synthesis process, whereas the latter has consisted of
CNTs that were synthesized by a fixed catalyst approach in which CNTs grow from
the surface of a catalyst thin film that is deposited prior to the start of synthesis.
However, a process was recently reported that allows for either behavior to be obtained
for fixed catalyst synthesized CNTs, a fact that the authors attribute to changes in
CNT surface roughness [5]. The physical basis for the strain recovery or lack of
recovery remains an active area of investigation.

Even for the CNT arrays that are observed to recover well from compression,
repeated loading and unloading of the material results in a slight permanent residual
strain and also a hysteretic response of decreasing area (and therefore less dissipated
energy) and peak stress relative to earlier cycles. Most of this decrease occurs within
a few cycles, at which point the material behaves with a steady-state response that
is mostly unchanged for any number of later cycles [6, 32, 31]. This initial decrease
in energy dissipation for the first several cycles is often referred to as preconditioning,
and is observed in many rubbery (e.g., [23]) and biological materials (e.g., [25]).
We observe that the preconditioning effect in CNT arrays undergoing compression
is a local effect, which only occurs up to the maximum compressive strain that is
reached. When the maximum strain of all previous cycles is exceeded in a later cycle,
immediately the stress-strain response returns to the primary loading path of the
pristine material.

These observations in sum are analogous to the Mullins effect in certain rubbers
[23] and have been observed in indentation experiments on CNTs in the past [21].
Namely, the Mullins effect is defined to involve a stress-softening behavior that in-
cludes three observations (see, for example, [9, 12]): first, the stress measured at a
given fixed value of strain will be lower on unloading than it is on loading (defin-
ing a hysteresis); second, for repeated loading and unloading to a given maximum
strain, a decreasing maximum stress will be observed for the first several cycles until
a steady-state hysteresis is eventually reached; and finally, despite this hysteresis of
declining area, when a loading path reaches a higher strain than the maximum strain
of all previous cycles, an immediate return to the primary loading path is observed
(i.e., the stress-strain curve of the pristine material). All three of these elements are
present in a wide series of experiments that we performed on different samples and
varying architectures of CNT arrays, including single-layer and multilayer structures
[30, 31, 22]. For the sake of example, we show in Figure 1 the stress-strain response
that we recorded through quasistatic compression tests on a single-layer CNT foam,
which was compressed three times to a maximum overall strain of ε = 0.4 and then
three times to a maximum strain of ε = 0.8 (cf. section 3).
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Fig. 1. The stress-strain response of a single-layer CNT sample.

The local rearrangements and buckling associated with preconditioning and the
Mullins-like behavior of the CNTs give rise to an important mechanism for energy
dissipation during the first few compressive cycles. In some past efforts to model the
Mullins effect in reinforced rubber, this source of energy dissipation has been treated
as the exclusive source of dissipation (referred to as the idealized Mullins effect), with
the material behaving elastically after the preconditioning cycles (e.g., [7]). Yet the
material continues to exhibit a hysteretic response after preconditioning, as do rub-
bers, and therefore a model that accounts for both the initial preconditioning cycles
(and the Mullins-like strain dependence) as well as the latter hysteretic response of
the material is needed. The energy dissipation observed in compressed CNT arrays
is a result of the interplay of several distinct mechanisms, including friction and en-
tanglement between CNTs, and possibly viscous flow of air through the interstices
[6]. Additionally, individual CNTs have been observed in axial compression to un-
dergo elastic shell buckling, with an unstable kinking regime associated with negative
stiffness and resulting dissipation [35, 36]. This latter mechanism leads to a form
of rate-independent hysteresis (or “transformational plasticity”) at the macroscopic
scale, which is similar to that observed in metals, shape memory alloys, and open-cell
foams (refer, e.g., to [28, 24] and references therein).

Bistable spring models in the context of plasticity were introduced in [27]; see
also [28] for the investigation of a variety of material behaviors. Typical for such
systems is a large number of almost degenerate metastable configurations resulting
in a sequence of bifurcations during monotone loading. In magnetism, this kind of
mechanism is referred to as the Barkhausen effect [3]. A deeper understanding of how
the different length scales interact physically was obtained by the investigation of the
pinning and depinning patterns of inhomogeneous materials like superconductors, the
occurrence of Bloch walls in ferromagnets, or the formation of crack lines [11].

The approach of bistable springs is in particular appealing for systems undergoing
cyclic loading with hysteresis; see, e.g., the recent articles [17] and [26], among others.
In [8], bistable springs have also been applied to plastically deformed spider silks. But
unlike the model presented here, the stress-strain law is linked to the microstructure.
A homogenization of the discrete model is found in [13].D
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Multiscale mass-spring models of CNT structures have been recently proposed in
[14, 30], in order to account for the hysteretic response of single-layer and multilayer
structures within an effective one-dimensional framework. Such models are able to
capture some distinctive features of the microstructural rearrangements that have
been discussed so far, and namely

• strain localization due to local buckling of the tubes;
• rate-independent hysteresis induced by the succession of infinitesimal, negative-
stiffness events of viscous nature at the microscopic scale (refer also to [28]);

• multiscale response related to graded mechanical properties along the height
of the structure (e.g., [29, 30]).

We show in the present work that a suitable generalization of the above models
leads us to capture some other relevant phenomena, such as

• material damage induced by Mullins-like response to preconditioning;
• permanent deformation of the structure.

We start by describing the primary loading path of a CNT array under uni-
form compression through the multiscale mass-spring model presented in [14]. Sub-
sequently, we introduce some preconditioning-induced material damage by setting to
zero the stiffness of a suitable percentage of microscopic springs. Such a position also
allows us to model permanent axial deformation of the structure. The latter follows
from the irreversible “annihilation” of the springs with zero stiffness and coincides
with the “activation” strain of the mesoscopic response. As in [14], we introduce
an intermediate mesoscopic scale in between the microscopic scale of an infinitesimal
vertical portion of the structure and the scale of the entire structure. This allows
us to account for grading of material damage along the thickness of the structure.
The mesoscopic response is obtained through an analytic approach, by computing the
limiting response of the bistable spring model adopted at the microscopic scale.

An analytic approach to damage in CNT arrays is already given in [4], where
the passage from microscale to mesoscale is studied both numerically and analytically
in the framework of Γ-convergence for the elastic energy functional. We extend this
analysis here by studying the branching mechanism during the minimization process
and by computing the dissipated energy, also for the continuum limit of infinitely
many springs.

We use an information-passing technique in section 2.3 to formulate a mechani-
cal model of the macroscopic response of the structure. We address to future work
the modeling of the transient response of CNT arrays during preconditioning, which
might be rate-dependent and account for progressive deterioration of the mechanical
properties at the microscopic level.

The paper is organized as follows. First we summarize an earlier model by the
authors where bistable mass-spring models have been used to describe the plastic
behavior of CNT arrays. In section 2.2, we extend this model to incorporate damage,
i.e., the mechanical failure of certain springs. Therein we also study the energy land-
scape, derive the stress-strain law, and compute the dissipated energy, both for the
discrete system as well as for the idealized continuum limit of infinitely many springs.
In section 2.3, we develop an information-passing approach to deal with macroscopic
sections of a CNT material. These concepts are then combined in section 3 to do
simulations for experimental data on multicycle compression tests with very good
agreement. We end with an evaluation of the results and an outlook for the future.
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2. Multiscale mass-spring models of CNT arrays.

2.1. Bistable spring model at the microscopic scale. We model an in-
finitesimal portion of a CNT foam through the bistable spring model extensively
described in [14], which we hereafter briefly summarize. We assume that such a por-
tion of the foam can be described as a chain of N + 1 lumped masses m0, . . . ,mN ,
with mN clamped at the bottom of the chain. The adjacent masses are connected
with each other through bistable springs characterized by the following axial strains:

(2.1) εi = εi(uN ) =
ui−1
N − ui

N

hN
, i = 1, . . . , N,

where hN := L/N is the equal spacing between the masses, ui
N denotes the axial

displacement of the mass mi (positive upward), and we set uN := {u0
N , . . . , uN

N}. The
potential V i and stress σi versus strain εi laws of the generic spring are defined by

(2.2) V i(εi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V i
a (ε

i) := −ki0[ε
i + ln(1 − εi)], εi < εia,

V i
b (ε

i) := c1 + σi
aε

i + 1
2k

i
b(ε

i − εia)
2, εia ≤ εi ≤ ε̄ic,

V i
c (ε

i) := c2 − kic[ε
i − εi∗ + ln(1 − (εi − εi∗))], ε̄ic < εi,

σi(εi) = V i′(εi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ki0

εi

1−εi , εi < εia,

σi
a + kib(ε

i − εia), εia ≤ εi ≤ ε̄ic,

ki
c(ε

i−εi∗)
1−(εi−εi∗)

, ε̄ic < εi,

(2.3)

where ki0 > 0, kib < 0, kic > 0, εia > 0, and εic ≥ εia are constitutive parameters (five
independent parameters); the constants c1 < 0 and c2 > 0 are such that V i

a (ε
i
a) =

V i
b (ε

i
a), V

i
b (ε̄

i
c) = V i

c (ε̄
i
c). From the continuity of the stress it follows that

εi∗ = εic −
σi
a

kic + σi
a

,(2.4)

ε̄ic =
εic(k

i
c + σi

a)

kic + σi
c

+
(σi

c − σi
a)(k

i
c + εick

i
c + εicσ

i
a)

(kic + σi
a)(k

i
c + σi

c)
,(2.5)

with

(2.6) σi
a = ki0

εia
1− εia

, σi
c = σi

a + kib(ε̄
i
c − εia).

The stress-strain response (2.3) is graphically illustrated in Figure 2.
The introduction of bistable spring elements in situations where there is an un-

stable transition between the phases (a) and (c) enable us to capture the stress drops
observed in the experimental response of CNT foams and pillars which take place in
correspondence with the buckling snaps of the tubes; see, e.g., scanning electron mi-
croscopy (SEM)-assisted tests [18]. The bistable spring elements allow us to describe
the local buckling of the tubes similar to a phase transition from the unbuckled phase
to the densification phase.
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Fig. 2. Stress σi versus strain εi relationship in the generic microscopic spring.

2.2. Response at the mesoscopic scale. In the present section we study a
dynamic switching process at the microscopic scale between the phases (a) and (c)
described by branches 0ĀA and C̄C in Figure 2, respectively. This is in line with
the ideas in [27, 28]. Following [28], we name a response of the material plastic,
if the strain εi of a single spring exceeds the critical value εia. For a chain of N
springs, this can be characterized by the occurrence of loading and unloading stress
plateaux. However, we notice that our analysis excludes accumulation of permanent
deformation; therefore the end point of one hysteresis cycle coincides with the start
point of the next cycle. In this sense, the present hysteresis model is time-independent.

Within the current section, we rescale for simplicity L to unity; name (b) the
unstable phase described by branch AC̄ in Figure 2; and regard a mesoscopic element
of a CNT array as the limit for N → ∞ of a series of N microscopic springs.

Let us refer to the steady-state dissipation following preconditioning as the “hys-
teretic shakedown” of the material. We assume that the application of a given number
m of hysteretic shakedowns (up to different maximum strains) has severely weakened
the stiffness of (1 − β(m))N microscopic springs for a given number 0 < β(m) ≤ 1,
and that at the current time for all m ∈ N it holds that

(A1) kic = ki0 for all i ∈ N,

(A2) k10 = k20 = · · · = k
�βN�
0 = k0, k

�βN�+1
0 = · · · = kN0 = δ,

(A3) ε∗i = ε∗ for 1 ≤ i ≤ �βN�,
(A4) εia = εic for �βN�+ 1 ≤ i ≤ N.

Condition (A1) stipulates the symmetry of the microscopic springs. By (A2), we may
differentiate between the springs 1, . . . , �βN�, which we call from now on undamaged,
and the remaining springs �βN�+ 1, . . . , N , subsequently called damaged. The con-
stant k0 in (A2) is positive. The parameter δ is a small, positive constant and it will
become clear later why this parameter has been introduced.

While β captures the phenomenological “damage” associated with changes in the
stress-strain response (i.e., a decline in stress levels after the first compressive cycle,
residual strain, etc., as discussed earlier), it is important to note that these changing
features of the stress-strain response are a result of complex microstructural changes
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and not literal damage to the individual CNTs. SEM and transmission electron
microscopy (TEM) have shown no damage to the individual CNTs after quasistatic
compression of the sort we have performed on our systems, a result of the extreme
bendability known to exist in CNTs [10]. Rather, the phenomenological “damage”
that is observed at a structural level is a result of a reordering of the CNTs, which
is necessary for the formation of collective buckles under compression [37]. Though
the CNT arrays continue to recover much of their height in subsequent cycles, and
therefore in an important sense the formation of buckles is reversible, the reorientation
of the CNTs that is necessary for the formation of these collective buckles is permanent
[37, 6]. It is this latter effect that is being captured by β in our model. The twisting
and sliding of the individual CNTs relative to one another that occurs during this
permanent reordering results in higher observed stress and energy dissipation during
earlier compressive cycles (e.g., when the material is entirely “undamaged” with β =
1) relative to later cycles. The higher energy dissipation during the first cycle could be
explained by an increased frequency of the formation and breaking of van der Waals
interactions as a result of this twisting and sliding during reorientation of the CNTs,
similar to what was recently studied in [34].

The above model with the assumptions (A1)–(A4) has already been introduced
in [4], where also the Γ-limit of the energy has been computed. In this article, we
are going to extend the analysis and investigate the branch-switching during the
minimizing of the total mechanical energy, and in particular compute the dissipation
of an array with N masses and perform the dissipation limit when N → ∞.

For the later analysis we also require a certain smallness condition on εia and εic
relating to strong pinning that disappears in the limit N → ∞ [27].

We define the mechanical energy of the structure as

(2.7) EN (uN ) =
1

N

N∑
i=1

V i(εi(uN ))

with the effective potentials V i given by (2.2).
Let σ be the given total stress. The mesoscopic average strain is simply

ε(uN) :=
1

N

N∑
i=1

εi(uN ),

where εi is the strain associated with the ith spring.
We model plasticity by the gradient flow equations [28]

(2.8) ν ε̇i(uN ) = −∂ΦN

∂εi
(ε1(uN), . . . , εN (uN ))

with the total energy

ΦN (ε1, . . . , εN ) :=
1

N

N∑
i=1

[
V i(εi)− σεi

]
.

The evolution equation (2.8) lets εi evolve towards local minimizers of ΦN . We
are interested in the limit ν → 0 which amounts to infinitely fast evolution such that
ε(uN) attains a local minimizer of ΦN . First we construct the equilibrium points.
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Inside the ith spring element, the strain must satisfy the condition (V i)′(εi) = σ. For
given total stress σ, there are at most the three local minimizers (using (A3))

ε̆ia(m) =
σ

ki0 + σ
,(2.9a)

ε̆ib(m) =
σ − σa

kib
+ εia,(2.9b)

ε̆ic(m) =
σ(1 + ε∗) + ki0ε∗

ki0 + σ
= ε̆ia(m) + ε∗.(2.9c)

For the derivation of (2.9), it is necessary that δ be positive. In (2.9), the values of
ki0 depend on β and hence in turn on m.

In a loading or unloading experiment, the first spring located closer to the bottom
of the structure is the softest and yields first, changing its phase [30, 15]. Next, the
second spring yields, and so forth, until the �βN�th spring. (Note that in accordance
with (A2) and (A4), the springs �βN�+1, . . . , N with spring constant δ do not change
their state.) Therefore, similar to the case of N identical springs, the total state of
the series of springs is still completely specified by two scalar parameters p and q and
the additional parameter β. Here, p, q, 1 − p − q denote the phase fractions of the
minimizers a, b, and c, which corresponds to having βNp, βNq and βN(1 − p − q)
springs in phase (a), (b), and (c), respectively. We assumed here that βNp ∈ N.

As ε 	→ V i(ε) is concave in regime b for all i ∈ N, if the elongation of a spring
in the local minimum ε̆ib is altered by an arbitrarily small perturbation, it will move
(according to the sign of the perturbation) to either ε̆ia or ε̆ic. In consequence, any
system of N springs with q 
= 0 is unstable and we may in the following calculations
restrict to the case q = 0.

The average strain of a system with βN springs in equilibrium and the first βNp
springs in phase (a) fulfills the identity

ε(m) =
1

N

[
βNp∑
i=1

ε̆ia(m) +

�βN�∑
i=βNp+1

ε̆ic(m) +

N∑
i=�βN�+1

σ

ki0 + σ

]

=
1

N

�βN�∑
i=1

ε̆ia(m) +
1

N

�βN�∑
i=βNp+1

ε∗ +
1

N

N∑
i=�βN�+1

σ

δ + σ
.

Since (2.9) is defined for every δ > 0, it is valid to consider the limiting case δ ↘ 0,
where the artificial parameter δ disappears. In this case, we obtain

ε(m) =
βσ(m)

k0 + σ(m)
+ (1− β) + β(1 − p)ε∗

=
σ(m) + (1− β)k0

k0 + σ(m)
+ β(1 − p)ε∗,(2.10)

where we used (A1)–(A4), (2.3) and (2.9). In particular, ε̆ic = ε̆ia + ε∗ was used.
Additionally, when deriving (2.10), we implicitly assumed that limδ↘0(δ/σ) = 0.

Resolving (2.10), we obtain the stress-strain relationship for a system with N
springs:

(2.11) σ(ε,m) =
k0(ε− εp + β − 1)

1− (ε− εp)
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with

εp(m) := β(1 − p)ε∗.

This quantity can in a natural way be identified with the plastic strain. From (2.11)
we see that σ only depends on m and on the elastic strain εel := ε− εp.

For the energy of the equilibrium configuration with the first Np springs in phase
(a), we find

Êp(ε,m) =
1

N

[
βNp∑
i=1

V i(ε̆ia(m)) +

�βN�∑
i=βNp+1

V i(ε̆ic(m))

]

=
1

N

�βN�∑
i=1

(−ki0)
[ σ(ε,m)

ki0+σ(ε,m)
+ln

( ki0
ki0+σ(ε,m)

)]
+(1−p)c2.

Since

σ(ε,m)

k0 + σ(ε,m)
=

ε− εp(m) + β − 1

β
,

k0
k0 + σ(ε,m)

=
1− (ε− εp(m))

β
,

we end up with

Êp(ε,m) = (−k0)
[
ε− εp(m)+β−1+β ln

(1− (ε−εp(m))

β

)]
+ β(1−p)c2.

By straightforward computations, we find for the derivative

∂Êp(ε,m)

∂ε
= (k0)

ε− εp(m) + β − 1

1− (ε− εp(m))
.

For fixed m, the functionals Êp constitute a family of convex functionals with
a finite number of local minimizers (depending on the parameter p). The switching
takes place between branches that differ in exactly one element in phase space and
the succession of N such steps describes the transition from one homogeneous state
to the next. Each of these steps can be thought of as the combination of an elastic
part and a plastic part.

The stress-strain curve of the structure follows a sawtooth pattern as illustrated
in Figure 3. The symbols P i denote the final states of the elastic steps (Qi → P i+1)
where the system remains on the same metastable branch as long as possible. The
plastic steps (P i → Qi) are characterized by the fact that the total strain is fixed and
the system switches between metastable branches that are neighbors ([Np] = 1, and
[(·)] generically denotes the jump of a quantity (·)). It is worth observing that stress
is zero for ε ≤ 1 − β, and that, conversely, the system is able to bear stresses σ > 0
for ε > 1 − β, even in presence of (1 − β)N springs with stiffness ki0 tending to zero.
This is possible because the local strain εi in such springs remains constantly equal
to unity.

For the next step of the analysis, in addition to (A1)–(A4), we assume

(A5) εia ≡ εa, ε
i
c ≡ εc for all i ∈ N.(2.12)

The above considerations then lead for 1 ≤ i ≤ N to the representation

P i =
(
εPi ,

k0(εa+β−1)

1−εa

)
, Qi =

(
εPi ,

k0(εa−βε∗/N+β−1)

1−εa+βε∗/N
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P1

Q1

P2

Q2

Ε

Σ

Fig. 3. Overall stress-strain pattern of a finite series of microscopic springs.

in the (ε, σ)-diagram, where

(2.13) εPi := εa +
i− 1

N
βε∗.

So we can compute that a plastic step is characterized by

[ε] = 0, [Np] = 1, [σ] = −(β2k0)
ε∗

N(1− εa)(1 − εa + βε∗/N)
,

whereas an elastic step fulfills

[ε] = β
ε∗
N

, [Np] = 0, [σ] = (β2k0)
ε∗

N(1− εa)(1− εa + βε∗/N)
.

The evolution equation (2.8) lets εi evolve towards local minimizers of ΦN .
Now we want to look at the energetics of the plastic and the elastic regime. For

an elastic step we have the energy difference

ΔÊN = βk0

[
ln
(
1− εa + βε∗(1 −N)/N

)
− ln

(
1− εa + βε∗(2−N)/N

)]
+

k0β

N
ε∗.(2.14)

In the same spirit, we calculate that for a system with N ≥ 1 springs, the plastic
dissipation is

DN = βk0

[
ln
(
1− εa + βε∗(2−N)/N

)
− ln

(
1− εa + βε∗(1−N)/N

)]− β(c2 + k0ε∗)
N

= βk0
1

ξN

βε∗
N

− β(c2 + k0ε∗)
N

(2.15)

for a parameter

ξN ∈
(
1−εa+

1−N

N
βε∗, 1−εa+

2−N

N
βε∗

)
.
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Clearly, ξN → 1− εa − βε∗ for N → ∞.
In one hysteresis cycle, there are �βN� steps where the stress is increased and

�βN� steps where the material yields and energy is dissipated. Thus, the total dissi-
pated energy D in a cycle becomes in the limit N → ∞

(2.16) D = lim
N→∞

(
βNDN

)
= β2

( βk0ε∗
1− εa − βε∗

− c2 − k0ε∗
)
.

The limit stress-strain pattern for N → ∞ is shown in Figure 4 for different
values of the parameter β. It corresponds to a “perfectly plastic” behavior with stress
plateaux at σ = σa (loading plateau) and σ = σc = σa + Δσ (unloading plateau).
We emphasize again that this ansatz only works for rate-independent plasticity where
the energy only depends on the start point and end point of the evolution, but not
on the evolution path itself. The limit dissipation (2.16) equals the area enclosed by
the limit stress-strain response. As already observed, the behavior shown in Figure 4
refers to a mesoscopic spring element, which represents a finite portion of the array
thickness. It is worth observing that equation (2.11) is still valid in the limit N → ∞,
with εp = βε∗. This implies that the stress is zero for ε ≤ 1 − β in the limiting
behavior. We can therefore refer to the quantity 1 − β as the “activation strain” of
the mesoscopic response (or “damage” parameter). Conversely, the quantity β can be
regarded as an “integrity” parameter of the material at the mesoscopic scale.

Β�1 0.9 0.75

0 0.2 0.4 0.6 0.8 1
Ε0

0.1

0.2

0.3

0.4

0.5
Σ�k0

Fig. 4. Overall limiting stress-stain pattern (N → ∞) as predicted by the Γ-limit for different
values of β (fixed material constants: k0 = kc = 50.00 × 106 Pa; kb = −22.44 × 106 Pa; εa = 0.25;
ε∗ = 0.52; δ = 50.00 × 102 Pa).

2.3. Macroscopic response. We model the macroscopic mechanical response
of a CNT array through an information-passing approach (see [14] for an introduc-
tion of the method) adopting a mass-spring chain composed of a finite number of
mesoscopic springs, and a suitable modification of the analytical model derived in the
previous section for each spring.

We already noted that the assumption (A1) introduced in section 2.2 implies that
the phases (a) and (b) of the microscopic response (Figure 2) are “symmetric,” while
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Assumptions (A2)–(A3) imply that the microscopic springs have uniform mechanical
properties.

It is known, however, that real CNT foams exhibit a gradient in density along
the height of the tubes, which typically increases from the base to the top (e.g.,
[29, 18]); and Mullins-like behavior characterized by different stiffness during loading
and unloading [21]. In particular, the density gradient typically induces bottom-to-
top increasing local buckling loads and progressive tube collapse starting from the
bottom [6, 18]. We show in Figure 5 the overall stress-strain response that we nu-
merically determined for chains showing 9 undamaged and 1 damaged springs, and,
alternatively, constant material properties (“p.plastic” response), or linearly increas-
ing buckling loads along the thickness (“hardening” response). It is seen that the
“hardening” response actually features a sawtooth stress-strain diagram characterized
by a progressive increase of the stress σ during the plastic steps, while the “p.plastic”
response features a sawtooth stress-strain diagram showing constant average stress
(cf. the previous section about the second behavior).

0 0.2 0.4 0.6 0.8 1
Ε0

0.1

0.2

0.3

0.4

0.5

0.6
Σ�k0

9�1 p.plastic

9�1 hardening

Fig. 5. Overall stress-strain pattern of chains showing 9 undamaged and 1 damaged springs
(β = 0.9). The “p.plastic” response refers to constant εa (i.e., constant buckling load; cf. Figure 2)
in each spring, while the “hardening” response refers to εa linearly varying along the thickness of the
chain. Chosen spring constants: k0 = kc = 50.00×106 Pa; kb = −22.44×106 Pa; εa = const = 0.25
in the “p.plastic” chain; εa varying from 0.25 to 0.29 (step 0.05) in the “hardening” chain; ε∗ = 0.52;
δ = 50.00× 102 Pa.

In order to account for graded material properties and different stiffness during
loading and unloading, we slightly modify the limiting mesoscopic behavior illustrated
in Figure 4, describing the generic mesoscopic spring (say, the ith one) through the
following constitutive equation (Figure 6):
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AΒA
C

CA
A0O

�a'� �a� �c�

�d�

�e�

1�Βi
Εi

Σi

Fig. 6. Modified mesoscopic model account for material hardening during the “plastic” phase
transitions (d) and (e), and different rigidities of phases (a) and (c).

σi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for εi ≤ (1− βi);

σ(a,i) = ki0 (εi − (1− βi))/(1− εi)
for ((1 − βi) < εi < ε̄ia) or

((ε̄ia < εi < εiβ) and (flag(k−1) 
= c));

σ(c,i) = kic (εi − (1 − βi)− βiεi∗)/(1− (εi − βiεi∗))
for (εi > εic) or

((ε̄ic < εi < εic) and (flag(k−1) 
= a));

σ(d,i) = σi
a + kip+(ε

i−εia)

for (εia ≤ εi ≤ εic) and (flag(k−1) = a);

σ(e,i) = σ̄i
c + kip−(ε

i−ε̄ic)

for (ε̄ia ≤ εi ≤ ε̄ic) and (flag(k−1) = c);

(2.17)

where, at the generic step k of a quasistatic loading process, it results that

flag(k) = a if σi = σ(a,i); flag(k) = c if σi = σ(c,i); flag(k) = flag(k−1) otherwise.

The stress-strain equation (2.17) can be characterized in terms of the independent
parameters βi, ki0, kic, kip+, kip−, εai , εic, and Δσi = σi

a − σ̄i
c. The quantities ki0

and kic represent the slopes of the branches (a) and (c) at zero stress, respectively
(Figure 6). The quantities kip+ and kip− instead denote the slopes of the “plastic”
transition branches (d) and (e), respectively. As already discussed, we allow for
nonzero stiffness of such branches in order to account for graded mechanical properties
of the foam at the microscopic scale. Let (a′) denote the particularization of branch
(a) for βi = 1 (Figure 6), and set σ(a′,i) = ki0ε

i/(1 − εi). The parameters εia and εic
represent the transition strains from phase (a′) to phase (d) and from phase (d) to
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phase (c), respectively. Finally, βi ∈ (0, 1] represents the integrity parameter of the
current spring; the quantity 1 − βi ∈ [0, 1) denotes the activation strain (or damage
parameter), while Δσi represents the stress drop moving from point A to point C̄
(Figure 6).

The remaining quantities appearing in (2.17) can easily be derived from the above
independent parameters. In particular, one computes εiβ , ε

i
∗, ε̄

i
c and ε̄ia by solving the

equations

σ(a,i)(εi = εiβ) = σ(d,i)(εi = εiβ),

σ(b,i)(εi = εia) = σ(c,i)(εi = εia),

σ(c,i)(εi = ε̄ic) = σ(e,i)(εi = ε̄ic),

σ(e,i)(εi = ε̄ia) = σ(a,i)(εi = ε̄ia)

for such variables, respectively. It is seen from Figure 6 that the “damaged” stress-
strain response (β < 1) returns to the primary loading path (a′)–(d) for ε ≥ εiβ .

From now on, we use the symbol N to denote the number of mesoscopic springs
that form the macroscopic mass-spring model. At a given loading step k (that is, for a
given prescribed displacement ūk of the topmost mass), we compute the corresponding
(macroscopic) equilibrium configuration of the system through a dynamical relaxation
procedure. The latter is founded upon the integration with respect to a virtual (or
“internal”) time t of the equations of motion

(2.18) mi ¨̂ui
N + γi ˙̂ui

N = σi+1 − σi, i = 1, . . . , N,

under the initial boundary conditions

ûi
N(t = 0) = (ui

N)(k−1), i = 0, . . . , N − 1; ûN
N(t = 0) = ūk;

˙̂ui
N(t = 0) = 0, i = 0, . . . , N.(2.19)

Here, ûi
N = ûi

N (t) denote transient displacement histories of the masses m0, . . . ,mN

forming the macroscopic model; a superimposed dot denotes a derivative with respect
to t; and γ1, . . . , γN denote the (“critical”) damping coefficients

γi = 2
√
mi ki,

where ki = dσi/dεi indicates the stiffness of the ith spring at the beginning of the
current loading step. Equations (2.18) are numerically integrated through a fourth-
order Runge–Kutta integration scheme, up to an internal time t1 such that it results
[14] in

|σi+1 − σi| ≤ 10−6|σN | for all i ∈ {1, . . . , N − 1}.
3. Applications. We illustrate the macroscopic model formulated in the pre-

vious section by applying it to the simulation of the cyclic compression experiment
illustrated in Figure 1. Such an experiment was performed on a single-layer CNT ar-
ray with 0.847 mm thickness, which was synthesized using a vapor phase (or “floating
catalyst”) thermal chemical vapor deposition (CVD) system, as described elsewhere
[1, 31]. Following past work, the composition of the flow gas used during synthesis has
a large effect on the resulting structure and mechanical response of the CNT arrays
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[31]. An inert gas such as argon is typically used during CVD synthesis of CNTs, with
a reducing agent such as hydrogen sometimes included to prevent impurities. It has
been observed that increasing the H2/Ar ratio can result in CNTs of narrower diame-
ters and CNT arrays with a much more compliant response [31]. The compression test
in Figure 1 was performed on a sample synthesized in 50% Ar, 50% H2, with CNTs
of diameter ∼ 18 nm. The compression tests were performed quasistatically at strain
rates of ε̇ = 0.03s−1 using a commercial materials testing system (Instron E3000).
The sample was compressed three times to a maximum overall strain of ε = 0.4 and
then three times to a maximum strain of ε = 0.8.

We focus our attention on the first loading-unloading path to ε = 0.4 (1st cycle
to 0.4 in Figure 1, hereafter also denoted as np), and the first loading-unloading
path to ε = 0.8, which follows preconditioning at ε = 0.4 (1st cycle to 0.8 in Figure
1, hereafter also denoted as wp). We fit the mechanical properties of single-spring
and multispring models to the experimental stress-strain curves, making use of the
Genetic Algorithm procedure illustrated in [14] and the normalized root-mean-square
deviation (NRMSD)

(3.1) f =

√
∑Ndata

k=1 (σmod
k −σexp

k )2

Ndata

(σexp
max − σexp

min)

as fitting performance. In (3.1), Ndata denotes the number of experimental data
points, σexp

k the experimental value of the stress in correspondence with the loading
step ε = εk, and σmod

k denotes the predicted stress for ε = εk.
In Figures 7 and 8, comparisons between experimental and best-fit overall stress-

strain curves are shown, while the best-fit values of the mechanical properties of the
fitting models are provided in Tables 1 and 2, together with the corresponding fitting
performances.

We obtain rather good fitting performances already through single-spring models
(NRMSD equal to 4.3% and 4.8% for the cases np and wp, respectively). In such a
case, the behavior after preconditioning (wp-model) corresponds to β = 0.83 (Table 1),
which implies an activation strain ε = 0.17 (Figure 7). Snapshots of the deformation
history of the single-spring np and wp models are illustrated in Figure 9. One can
easily recognize that the first loaded (σ > 0) equilibrium configuration of the wp
model (first configuration in Figure 7, wp) features total height hwp = 0.83hnp, where
hnp denotes the undeformed height of the np model.

Appreciable improvements of the fitting performance are observed in the five
spring models, which indeed shows NRMSD equal to 3.2% and 4.4% in the np and
wp cases, respectively (cf. Figure 8 and Table 2). The fitting algorithm adopted for
such a model includes a grading-constraint which requires that the springs placed at
the bottom of the chain collapse before than those placed at the top (we number the
springs progressively from bottom to top, cf. section 2.1). This choice is based on the
physical gradients that are known to exist in these materials (see below). It is worth
noting that the examined models feature uniform stiffness parameters k0 = 4.27 MPa
and kc = 15.7k0 in each spring (Table 2). The results shown in Table 2 and Figure 10
highlight that the five spring model localizes in the bottommost spring (#1-wp) all the
preconditioning damage corresponding to the wp case. Such a spring exhibits a local
activation strain ε1 = 0.90 (the corresponding integrity parameter β1 is indeed equal
to 0.10; cf. Table 2), while the overall activation strain is approximately equal to 0.17
(Figure 8). The bottom-top collapse mechanisms of the five spring models (Figure 10)
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Fig. 7. Fitting of the experimental response illustrated in Figure 1 to single-spring models,
without preconditioning (np: black curves), and with preconditioning at ε = 0.4 (wp: red curves).
(Color available online.) Spring properties in Table 1.

follow from the increasing values of the transition strains εia of the different springs
(Table 2). In particular, Figure 10, np shows that the five spring np model features
sequential collapse of the springs #1, #2, #3, and #4 (Figure 10, np). The topmost
spring #5-np instead jumps from phase (a) to phase (c) without collapsing (cf. Table
2 and Figure 10, np). On the other hand, the five spring wp model first features the
complete collapse of the predamaged spring #1 (configuration #2 in Figure 10, wp)
and then the sequential collapse of springs #2, #3, and #4 (cf. configurations #3 to
#5 in Figure 10, wp). As in the np case, spring #5 jumps from phase (a) to phase
(c) without collapsing (Table 2 and Figure 10, wp).

This matches previous work with real CNT foams in which the same sequential
buckling from the base upward is observed. Clear images of this phenomenon can
be observed in the work [18], closely matched by the configuration of springs seen in
Figure 10. Physically, this strain localization arises due to known gradients in certain
physical properties along the height of the structures, such as in density [29] and
CNT diameter [20]. Because of the lateral interactions of CNTs, this localized strain
is accomodated by the formation of buckles, which result from the reorientation and
collective buckling of CNTs [37]. Additionally, these physical gradients are sufficiently
large—and therefore the mechanical properties vary significantly as a function of
height—that while a buckle is in the process of forming at the base of the structure,
the rest of the structure remains undeformed. Thus the strain localization observed
in Figure 10 is in agreement with experimental observations.

4. Concluding remarks. We have shown in this paper that a bistable-mass-
spring model is able to incorporate the effect of damage in the hysteretic response
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Fig. 8. Fitting of the experimental response illustrated in Figure 1 to five spring models, without
preconditioning (np: black curves), and with preconditioning at ε = 0.4 (wp: red curves). (Color
available online.) Spring properties in Table 2.

Table 1

Mechanical properties of single-spring models fitting results in Figure 1, without preconditioning
(np), and with preconditioning at ε = 0.4 (wp).

Spring # β k0 [MPa] Δσ/σa εa εc kp+/k0 kp−/k0 kc/k0 f
1− np 1.000 4.270 −0.338 0.157 0.791 1.069 0.159 15.700 0.043

1− wp 0.830 4.270 −0.338 0.157 0.791 1.069 0.159 15.700 0.048

Table 2

Mechanical properties of five spring models fitting results in Figure 1, without preconditioning
(np), and with preconditioning at ε = 0.4 (wp).

Spring # β k0 [MPa] Δσ/σa εa εc kp+/k0 kp−/k0 kc/k0 f
5− np 1.000 4.270 −0.228 0.317 0.317 0.851 0.046 15.700
4− np 1.000 4.270 −0.737 0.317 0.788 0.851 0.046 15.700
3− np 1.000 4.270 −0.749 0.317 0.939 0.851 0.046 15.700
2− np 1.000 4.270 −0.749 0.227 0.942 0.851 0.046 15.700
1− np 1.000 4.270 −0.749 0.227 0.942 0.310 0.046 15.700 0.031

5− wp 1.000 4.270 −0.228 0.317 0.317 0.851 0.046 15.700
4− wp 1.000 4.270 −0.737 0.317 0.788 0.851 0.046 15.700
3− wp 1.000 4.270 −0.749 0.317 0.939 0.851 0.046 15.700
2− wp 1.000 4.270 −0.749 0.227 0.941 0.851 0.046 15.700
1− wp 0.100 4.270 −0.749 0.227 0.941 0.310 0.046 15.700 0.044

of a CNT array. With respect to the model recently presented in [14], we have
allowed for the possible failure of material bondings, represented by the weakening of
certain springs in the one-dimensional network. We have demonstrated that such a
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np wp

Fig. 9. Snapshots of the deformation histories of the single-spring models. Spring properties
in Table 1.

generalization of the model presented in [14] is capable of handling preconditioning-
induced material damage, characterized by a nonzero activation strain; permanent
deformation; and a progressive reduction in the energy dissipation capacity of the
system. The change in the permanent deformation goes along with a change of the
activation strain. As one main benefit, we are now in the position to extend the
concept of “transformational plasticity” given in [28] from time-independent hysteretic
behavior to fatigue-type material damage. This opens a large class of new applications,
in particular the materials with Mullins-like behavior [23] that include, beside carbon
nanotube arrays, rubber-like and soft biological materials.

The bistable spring model presented here is an interesting generalization of the
fundamental mechanism developed in [28]. In contrast to the theory presented therein,
due to considering nonlinear kinematics, we can derive a stress-strain law of the stable
branches (a) and (c) permitting us to have in the limit δ ↘ 0 springs with zero stiffness
bearing nonzero stresses. The internal damage parameter is related to the number of
hysteretic shakedowns applied to the material during the previous loading history (up
to different maximum strains). As a result, we obtain a fatigue-type damage model
that is rate-independent and contemplates the return of the material to the primary
loading path for a suitable value of the overall strain, which is suitably larger than
the activation strain.

The present work represents a first step towards the formulation of a unified
damage model of CNT arrays, which includes the formulation of a suitable evolution
law of β. The latter might be formulated, e.g., on the basis of the pseudoelastic
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np wp

Fig. 10. Snapshots of the deformation histories of the five spring models. Spring properties in
Table 2.

approach given in [9], or the generalized damage model presented in [19].
The macroscopic model formulated in section 2.3 allowed us to generalize the

analytic mesoscopic model developed in section 2.2, in order to account for graded
material properties along the height of the CNT array [29, 18]. The numerical simula-
tion of a compression experiment on a real CNT foam has shown that such a model is
actually able to capture the experimental macroscopic stress-strain behavior, before
and after preconditioning; damage localization at the basis of the structure; and se-
quential buckling from the base upward. The latter phenomena are well recognized in
the literature dealing with the experimental behavior of CNT foams [29, 20, 37, 18].

We leave to future work the modeling of the transient mechanical response of
CNT structures during preconditioning, accounting for progressive deterioration of the
material stiffness at different scales, as well as the formulation and the experimental
validation of the evolution law of the integrity parameter β. Future research lines also
include an analytic study on the limiting dissipative behavior of bistable spring chains
featuring nonuniform material properties; the modeling of the mechanical response
of multilayer CNT structures; and the in situ identification of material properties, to
be carried out through high-resolution camera- and/or SEM-assisted laboratory tests,
[18, 30, 15].

Acknowledgments. The authors gratefully acknowledge the support received
from Ada Amendola (Department of Civil Engineering, University of Salerno) during
the course of the present work.
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