
Extreme Mechanics Letters 49 (2021) 101499

m
t
d
r
i
(
8
t
a
a
i
e
o
t
g
a
w

r
u
i
o
a

h
2

Contents lists available at ScienceDirect

ExtremeMechanics Letters

journal homepage: www.elsevier.com/locate/eml

Poroelasticmicrolattices for underwaterwave focusing
Gunho Kim a, Carlos M. Portela b, Paolo Celli c, Antonio Palermo d, Chiara Daraio a,∗

a Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
b Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
c Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA
d Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy

a r t i c l e i n f o

Article history:
Received 3 June 2021
Received in revised form21 September 2021
Accepted 1 October 2021
Available online 14 October 2021

Keywords:
Microlattices
Acoustic metamaterials
Poroelasticity
Ultrasound
Wave focusing

a b s t r a c t

Metamaterials with microscale architectures, e.g., microlattices, can exhibit extreme quasi-static
mechanical response and tailorable acoustic properties. When coupled with pressure waves in sur-
rounding fluid, the dynamic behavior of microlattices in the long wavelength limit can be explained
in the context of Biot’s theory of poroelasticity. In this work, we exploit the elastoacoustic wave
propagation within 3D-printed polymeric microlattices to incorporate a gradient of refractive index
for underwater ultrasonic lensing. Experimentally and numerically derived dispersion curves allow
the characterization of acoustic properties of a fluid-saturated elastic lattice. A modified Luneburg lens
index profile adapted for underwater wave focusing is demonstrated via the finite element method
and immersion testing, showcasing a computationally efficient poroelasticity-based design approach
that enables accelerated design of acoustic wave manipulation devices. Our approach can be applied
to the design of acoustic metamaterials for biomedical applications featuring focused ultrasound.

© 2021 Published by Elsevier Ltd.
Architected materials consisting of open cell structures with
icroscale beam elements, i.e., microlattices, can be designed

o present desired quasi-static mechanical properties, like low
ensity [1], ultra-low shear modulus [2], or negative Poisson’s
atio [3]. In the dynamic regime, the microscopic features found
n these materials enable unique responses in the ultrasonic range
above 20 kHz), including wave tunability [4,5], wave focusing [6–
], or amplitude mitigation [9]. When immersed in a viscous fluid,
heir constitutive properties combined with their porosity lead to
n interplay between elastic waves traveling in the microlattices
nd pressure waves in the surrounding fluid medium [10]. Such
nterplay leads to complex hybridization phenomena that support
xotic responses such as the formation of acoustic band gaps [11]
r the strong elasto-acoustic coupling that dominates the fluid’s
ransport properties [12,13]. As such, the selection of specific
eometries and structural features allows engineering the prop-
gation of waves in ways that would typically be unachievable
ith homogeneous or naturally existing materials.
Among various applications of microlattices in the ultrasonic

egime, acoustic lensing is of practical importance for its potential
se in medical imaging and treatment [14,15]. In particular, by
ntroducing a gradient of refractive index, one can enable focusing
f waves with simple manipulation of geometries or materials
nd without complicated resonant structures [16–19]. Recently,
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acoustic gradient-index (GRIN) ultrasonic lenses composed of
microlattices have been shown to be capable of focusing plane
waves in air [6,7]. This is achieved by controlling the speed of
sound by varying the beam thicknesses across the lattice struc-
ture. However, this mechanism should be adapted to account for
the presence of the fluid and the distortion in the refractive index
to work in water. Underwater focusing of ultrasonic waves with
microlattice geometry has so far been proposed only with air
as a filling agent [8]. However, this approach requires a closed
lattice design, which suffers from high impedance mismatch at
the lens surface and unwanted hydrostatic pressure differences.
A more desirable approach for the design of ultrasonic lenses in
underwater conditions relies on fluid-saturated microlattices that
account for fluid–structure interaction.

Numerical tools for the design of complex, finite microlattices
can be computationally intensive, especially when the lattices are
immersed in a fluid. To simplify this process, finite-element rep-
resentations of fluid-permeated elastic lattices can be replaced by
numerical homogenization schemes, which provide an approxi-
mation for the expected response. In the low or moderate fre-
quency range, where wavelengths are much larger than the char-
acteristic lengths of the porous medium, the wave propagation
characteristics can be effectively estimated via Biot theory [12,
13]. In this long wavelength regime, fluid-filled cellular media can
be considered as a homogenized medium characterized by a few
effective physical properties, e.g., porosity, tortuosity, etc. [20–23]

In this work, we investigate the characteristics of water-

saturated polymeric microlattices in the context of Biot theory
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Fig. 1. (a) Fast pressure wave speed (cp1 , solid lines) and slow pressure wave speed (cp2 , dotted lines), and (b) effective refractive index (n = cw/cp1) of water-saturated
olymeric lattices with respect to porosity for different types of lattices: octet (yellow), isotropic (blue), diamond (red), and Kelvin (green) trusses. The speed of
ound in water (1481 m/s) is shown for reference in (a) as the horizontal black dashed line. The excitation frequency of the acoustic wave is fixed at 300 kHz, which
s below the estimated viscous Biot frequencies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
nd leverage our findings to realize a fluid-filled GRIN lens. We
xplore the range of effective refractive index of different types
f fluid-saturated microlattices based on continuum theory. We
how that the traditional Luneburg lens can be effectively config-
red as a discretized GRIN lens with modified index profile for
nderwater wave focusing. We verify our design numerically us-
ng a computationally efficient poroelastic model combined with
pressure acoustics study. We validate this design experimen-

ally, by 3D printing a microlattice lens consisting of octet trusses
ith a spatially varying effective refractive index based on the
imulated results. The pressure distribution on the output plane
s measured and compared to the numerically estimated pressure
ntensity field. Both results show good agreement, validating the
roposed design approach.
Biot’s theory of poroelasticity has been used for the predic-

ion of the macroscopic behavior of acoustic waves traveling
hrough fluid-saturated porous media at low or moderate fre-
uencies [12,13]. According to Biot, the speed and modes of
he propagating elastoacoustic waves, which are the products
f the coupling between elastic waves in solid and pressure
aves in fluid, can be accurately identified. It was analytically
redicted [12] and experimentally confirmed [24,25] that the
oupled compressional waves split into fast and slow pressure
odes in the long wavelength regime. The balance between the
oundary layer of Poiseuille flow and the characteristic size of the
orous media plays a key role in determining the mode of wave
ropagation. For a steady, axisymmetric, viscous Poiseuille flow
o be established, the boundary layer, also known as the viscous
kin depth, tvis =

√
2η/ωρ, must be greater than the radius of the

pores of the solid skeleton, r . Below the ’critical Biot frequency’,
crit = 2η/ρr2, the Poiseuille flow condition holds and the solid
nd fluid move in phase by viscous locking, which causes the fast
ompression wave to propagate [12]. Slow pressure waves are
ot supported, since the relative motion of fluid and solid cannot
e sustained. If the forcing frequency exceeds ωcrit , the Poiseuille
low assumption is no longer valid and the viscous coupling is
aken over by inertial coupling, resulting in the occurrence of
oth fast and slow pressure waves. Slow pressure waves are
haracterized by the large relative motion between solid and
luid, which makes the waves highly dissipative and difficult to
easure experimentally [26]. The inertial coupling is valid below

he ’viscous Biot frequency’, ωvis =
ωcrit
ζ2 , where ζ is a non-

dimensional scaling constant of the order of 0.01 [27]. For the
polymeric microlattices considered in this work, the viscous Biot
frequency lies above 317 kHz.
2

We use finite element models (FEM) (COMSOL R⃝ Multiphysics)
to calculate Biot pressure wave speeds within fluid-saturated mi-
crolattices. The homogenized physical parameters for each struc-
ture are computed as in Krödel et al. [10]. The characteristic
equation of oscillating elastic lattices is numerically solved to
obtain the speed of compressional and shear waves, cp and cs, in
the long wavelength limit. The kinetics and kinematics of fluid
through the open pores of the microlattices are investigated to
calculate the tortuosity, α∞, and permeability, κo. These param-
eters are used as inputs for the coupled characteristic equations
of fluid-saturated porous media to derive physical values, such as
fast pressure wave speed cp1, slow pressure wave speed cp2, and
critical Biot frequencies.

Fig. 1 shows the variation of cp1 and cp2, as well as the corre-
sponding acoustic refractive indices n, as a function of porosity for
four different truss structures, e.g., octet, isotropic, diamond, and
Kelvin trusses. The range of porosity is chosen so that the lattice
structures are in a manufacturable regime and their topology
remains open-celled. The cp1 curves for the four different ge-
ometries almost overlap (Fig. 1(a)), whereas the cp2 curves show
variations. The speed of the solid-borne waves, cp1, generally
depends on the effective elasticity of the porous media, which
is a function of geometry [28]. However, at the manufacturable
relative densities for these microlattices, the density-stiffness re-
lation is very similar across architectures [29,30]. Especially when
porosity is higher, cp1 is less sensitive to the moduli of the solid
and the effect of the bulk modulus of the fluid becomes domi-
nant [31]. Therefore, it is not surprising to observe that cp1 does
not vary with the lattice geometry, especially at higher porosity
range. On the other hand, the speed of fluid-borne waves, cp2,
depends on the fluid path and on the viscous coupling. Both
quantities depend on the tortuosity and the permeability, which
are linked to the lattice geometry [31].

The effective acoustic refractive index of a microlattice unit
cell is defined as n = cw/cp1, where cw is the speed of sound
in water and cp1 is the speed of fast pressure wave through the
porous media. A water-saturated polymeric foam only allows fast
compressional waves to propagate due to attenuation of the slow
pressure waves [10,32]. In other words, the effective refractive
index for different types of polymeric lattices is only a function
of cp1. As such, we expect that variations of refractive index
among the different geometries can only be ascribed to their
different porosities (Fig. 1(b)). Interestingly, the two bending-
dominated lattices reach higher refractive index values, due to
their smaller truss connectivity. With higher connectivity, how-
ever, the stretch-dominated lattices can achieve larger ranges
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Fig. 2. (a) Experimental setup with (b) the picture (scale bar: 5 cm) and (c) the 3D model of the measurement system. The model represents the cut plane (yellow)
and the drill hole (red) of the test sample. (d) Experimentally reconstructed dispersion curve (gray-scale colormap, normalized between 0 and 1) with the prediction
from Biot theory (solid blue line) extrapolated above the viscous critical frequency (dashed blue line). The linear dispersion curve of water wave (black line) is plotted
as a reference. (Inset) The microscope image of the unit cell (scale bar: 1 mm). (e) Numerically calculated dispersion relation with longitudinally polarized in-phase
modes highlighted in red, others in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. (a) Discretized Luneburg lens with continuous (red curve) and discrete
(yellow circles) refractive index profiles. Pressure acoustics simulations of Luneb-
urg lens with (b) the continuous profile, and with (c) the discrete layers, with
poroelastic properties corresponding to the effective refractive indices selected
(scale bar: 5 cm). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

of refractive index variation. We can exploit these properties as
design features for our acoustic lenses. We choose the octet truss
as the fundamental building block for its large refractive index
variability (Fig. 1(b)) and the ease of fabrication.

To determine the acoustic characteristics of our samples, we
experimentally measure the dispersion relation of water-saturated
microlattices and compare the results to a numerically calculated
dispersion relation. We fabricate microlattices composed of octet
structures using a high-resolution digital light processing (DLP)
3D printing technique (Autodesk R⃝ Ember) using PR48TM acrylic
photoresist, whose constituent properties are taken to be E =
.3 GPa, ν = 0.39, and ρ = 1190 kg/m3 [10]. The size of the

unit cell is 2 mm along each side with the radius of the truss
r = 0.16 mm. To ensure that the wave characteristics are well
developed, we allow more than 5 wavelengths along the travel
distance, as a rule of thumb. To accommodate 10 wavelengths at
300 kHz, the lowest center frequency of interest, we print 25 cells
along the wave propagation direction. To measure the acoustic
wave propagation in the fluid saturated lattices, we immerse our
structure in water and remove the air trapped in the sample
with a vacuum pump. All the measurements are done in a 1.2
m × 0.75 m × 0.75 m water tank surrounded by 2 cm-thick
acrylic walls (Precision Acoustics), see Fig. 2(a). The tank is filled
with deionized water at room temperature, with negligible vari-
ance between measurements. The lattice is positioned between
 l

3

a broadband ultrasonic transducer (V391-SU, 500 kHz) and a
needle hydrophone (Precision Acoustics, 0.2 mm) (Fig. 2(b)). We
drill a hole (2 mm wide and 2 cm deep) in the center of the
lattice (Fig. 2(c)), to accommodate the insertion of a hydrophone
to measure pressure gradients within the sample. Signals are
generated by an arbitrary function generator (Keysight Technolo-
gies, 33522B) connected to a radio-frequency amplifier (Amplifier
Research, 75A220). Hann-windowed 1-cycle sinusoidal pulses are
used to excite the lattices, at a central frequency f = 300 kHz.
hree single-axis motorized stages (Velmex, BiSlide) are installed
bove the water tank to control the position of the hydrophone.
e measure the transmitted pulse along the drilled hole with

onstant step increment (0.3 mm), allowing the characterization
f the lattice dispersive properties. A pre-amplifier (Precision
coustics) connected to the hydrophone relays the measured
ressure signal to an oscilloscope (Tektronix, DPO 3014). The
unction generator, the oscilloscope, and the motorized stages are
onnected to a PC, which enables the integration of signal genera-
ion, data acquisition, and positioning functionalities into a single
ATLAB code. To reconstruct the dispersion characteristics of our
amples, the measured pressure signal is 2D Fourier-transformed
nto the wavenumber-frequency domain (Fig. 2(d)).

We also investigate the elastoacoustic characteristics via nu-
erical simulations. Finite element models of the fluid-filled
icrolattices are implemented to derive their dispersion relation.
e study the coupled acoustic and stress wave propagation in

he [001]-direction under pressure equilibrium and Bloch-Floquet
eriodic boundary conditions. The acoustic behavior of octet mi-
rolattices under an incident plane wave is shown in Fig. 2(e). The
trong coupling between structural and acoustic modes results
n various hybridized branches. The four main modes are two
ompressional waves, corresponding to one solid-borne and one
luid-borne pressure waves, and two degenerate shear modes of
he elastic frame. We focus on the occurrence of the solid-borne
ongitudinal modes of the water-saturated polymeric lattices (red
ots in Fig. 2(e)), as this mode dominates energy propagation of
he ultrasonic waves [32].

The experimental dispersion curve shows a linear, nondisper-
ive response in the frequency range between the critical Biot
requency (61.2 Hz) and the viscous Biot frequency (611.8 kHz),
arked by several regions of reduced transmission (Fig. 2(d)).
hese results agree well with finite-element simulations
Fig. 2(e)), which also show a dispersionless branch (red dotted

ine in Fig. 2(e)) crossed by localized modes with near zero group



G. Kim, C.M. Portela, P. Celli et al. Extreme Mechanics Letters 49 (2021) 101499
Fig. 4. (a) Top-view photograph of the 3D printed Luneburg lens. The insets show optical microscopy images and corresponding models of unit cells from two
different regions (scale bar: 0.5 mm). (b) Normalized pressure intensity in the output plane, (c) along the centerline, and (d) across the focal point. Experimental
data were measured from four different scan planes along the lens.
velocity. The slope of these branches corresponds to the sound
speeds, which are 1641 m/s in the experiments and 1603 m/s
in the simulations. A solid-dashed line (blue) overlaid on the
experimental dispersion curve corresponds to the fast pressure
wave solution of the Biot theory model. The analytical model
shows dispersionless mode within a inertia-dominated regime at
a constant wave speed of 1611 m/s. We extrapolate the prediction
to the frequency region above the viscous critical frequency for
a reference. We plot the dispersionless curve of water waves
(black) as a reference.

The presence of localized modes, evident in the numerical
dispersion curve (e.g., around 300 kHz in Fig. 2(e)), suggests
an increased attenuation due to resonances within the micro-
lattices [33]. The localized modes’ frequency in the numerical
simulations correspond to the region of reduced transmission
in the experiments (Fig. 2(d)). However, the regions of reduced
transmission are narrow band and do not significantly affect the
overall signal transmission. This is evident in Fig. S1, which shows
the transmission amplitude as a function of frequency.

At higher frequencies, around 600 kHz, the numerical disper-
sion curve shows veering of the two fast pressure modes, mixed
with multiple localized modes, suggesting the presence of multi-
ple hybridized modes. This manifests as a significant drop in the
transmitted amplitude through the lattice at similar frequencies
(Fig. 2(d)). A Bragg bandgap is observed in both of the disper-
sion curves around 800 kHz, which leads to the bending of the
branches near the forbidden band. At higher frequencies (above
850 kHz), the dispersion curve shows decreasing group velocity.
The dynamic characteristics of the dispersion curve reconstructed
 c

4

from experiments agree well with the numerical simulations. We
exploit these propagation properties to design an acoustic lens.

Based on the dispersion characterization of our water-filled
polymeric microlattices, we design a 2D Luneburg lens with a
spatially discretized refractive index profile (Fig. 3(a)). In a con-
ventional, continuous GRIN lens, the focal point resides on the
lens’ surface [34]. However, for most applications, it is useful
to place the location of the focal point in a region at a finite
distance from the lens surface. To spatially vary the focal distance
in water, it is necessary to design an appropriate distribution of
the refractive index profile within the lens [35,36]. Moving the
focal point outside the lens induces undesirable aberration in
the focal region [37]. We minimize these aberrations by further
modifying the refractive index distribution within our lens (see
Supplementary Material). The original refractive index profile for
the Luneburg lens is n =

√
2 − r2/R2, where r is the distance

from the center of the lens, and R is the radius of the spherical
lens [34]. However, for fluid-saturated polymeric lattices under-
water, the refractive index must be smaller than 1 since cp1
is always greater than cw (Fig. 2(d)). We introduce a modified
Luneburg lens profile, n =

√
1+f 2−(r/R)a

bf , with three nondimen-
sional parameters, a = 3.08, b = 1.40, and f = 1.2 with R = 2 cm.
The refractive index distribution of the modified Luneburg lens
is shown as a continuous line in Fig. 3(a). The refractive index
gradually varies from n = 0.93 at the core of the lens to 0.71 on the
outer surface. This profile ensures that the speed of the acoustic
waves is larger on the perimeter of the lens than at its center.

To verify our design scheme, we use COMSOL R⃝ simulations to
ompare the pressure acoustic profile of a continuous GRIN lens
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Fig. 3(b)) with our discretized lens (Fig. 3(c)). First, we investi-
ate a continuous Luneburg lens with modified refractive index
istribution under incident plane waves at 300 kHz. We model
n acoustic domain with ρw = 1000 kg/m3 and cw = 1481 m/s

for underwater environment. We define perfectly matched layers
(PMLs) around the external boundary of the acoustic domain to
minimize unwanted reflections. We plot the sound pressure level
of the region of interest with ambient pressure as a reference. The
continuous GRIN lens focuses plane waves in a localized region
behind the lens (3.15 cm away from the surface).

To validate our discrete lens design, we perform the same
finite-element simulation on a lens assembled with different
layers of poroelastic media with finite thickness (Fig. 3(c)). A
circular Luneburg lens, 4 cm in diameter, consists of total 7 layers
of unit cells of 2 mm × 2 mm size. We determine the refractive
indices of the discretized layers by taking the mean value of the
index along the radial direction. Within each layer, we derive the
beam thickness of each unit cell from the poroelastic parameters
corresponding to the desired refractive index value (Fig. 3(a)).

Both simulations result in similar pressure distributions along
the output plane, indicating that the poroelastic model captures
effectively the acoustic characteristics of the GRIN lens. The ho-
mogenized models of the fluid-saturated lattices are significantly
more computationally efficient than the fully discretized simula-
tion with several hundreds octet lattice unit cells and solid–fluid
interfaces (see Supplementary Material). The pressure distribu-
tion in both simulations highlight the presence of scattering and
side lobes, resulting in signal transmission loss at the focus.

We 3D print a microlattice-based GRIN lens to validate the
lens design experimentally (Fig. 4(a)). The size of each unit cell
is 2 mm and the radius of the trusses ranges from 0.15 mm to
0.30 mm, with the thicker beams placed on the outer layers.
We excite the lens with Hann-enveloped bursts, consisting of
5 sinusoidal cycles, to achieve narrow bandwidth at the center
frequency (300 kHz). To evaluate the focusing, we map the pres-
sure field behind the lens with a 4 mm hydrophone (Fig. 2(a)).
We record voltage outputs and normalize them by their peak
amplitude. The typical scattered intensity field of the transmitted
acoustic waves (Fig. 4(b)) shows the formation of a focal peak
ca. 3 cm away from the lens’ surface. Side lobes are evident
just outside the lens, as predicted in simulations and reported in
earlier studies [38].

The results from 4 separate experiments (discrete points)
are compared to the numerical predictions (solid black lines),
along the directions parallel and perpendicular to the focal point
(Fig. 4(c), (d)). The results agree well, with only minor discrepan-
cies among the experimental data arising from the finite height of
the 3D printed lens. The focal length, measured from the back of
the lens, and the full width at half maximum (FWHM) are evalu-
ated from the results. The focal length of the poroelastic Luneburg
lens is observed to be 3 cm, which is in good agreement with the
numerical prediction (3.15 cm). We obtain 3.46 (± 0.3)λ for the
FWHM of the 3D printed lens whereas the prediction is 2.8 λ, due
o higher amplitudes around the outer edge. The overestimation
s caused by the diffraction of the incident wave traveling around
he Luneburg lens. In the experiments, the ultrasound emitter has
finite width (unlike the numerical simulations, which assume an
ncident planar wave front). In addition, the 3D printed lens has a
inite height, which increases the diffraction from the top plane.
e also ascribe this discrepancy to the limited prediction of the

ransmission property due to the use of a simplified poroelastic
odel and due to fabrication errors.
In summary, this work takes advantage of the theory of poroe-

asticity for the design of underwater Luneburg lenses featuring
eterogeneous arrangement of polymeric microlattices filled with
5

water. We have demonstrated that using poroelastic theory al-
lows for the computationally cheaper and faster design of acous-
tic wave manipulation devices. This approach could be used for
biomedical applications that require focused ultrasound including
ultrasonography [39] and sonochemistry [40,41].
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