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Abstract We study the stress wave propagation in curved
chains of particles (granular crystals) confined by bent elastic
guides. We report the frequency- and amplitude-dependent
filtering of transmitted waves in relation to various impact
conditions and geometrical configurations. The granular crys-
tals studied consist of alternating cylindrical and spherical
particles pre-compressed with variable static loads. First, we
excite the granular crystals with small-amplitude, broadband
perturbations using a piezoelectric actuator to generate oscil-
latory elastic waves. We find that the linear frequency spec-
trum of the transmitted waves creates pass- and stop-bands in
agreement with the theoretical dispersion relation, demon-
strating the frequency-dependent filtering of input excitations
through the diatomic granular crystals. Next, we excite high-
amplitude nonlinear pulses in the crystals using striker
impacts. Experimental tests verify the formation and propa-
gation of highly nonlinear solitary waves that exhibit
amplitude-dependent attenuation. We show that the wave
propagation can be easily tuned by manipulating the pre-
compression imposed to the chain or by varying the initial
curvature of the granular chains. We use a combined discrete
element (DE) and finite element (FE) numerical model to
simulate the propagation of both dispersive linear waves and
compactly-supported highly nonlinear waves.We find that the
tunable, frequency- and amplitude-dependent filtering of the
incoming signals results from the close interplay between the
granular particles and the soft elastic media. The findings in

this study suggest that hybrid structures composed of granular
particles and linear elastic media can be employed as new
passive acoustic filtering materials that selectively transmit or
mitigate excitations in a desired range of frequencies and
amplitudes.
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Introduction

Granular particles in contacts, arranged in ordered lattices (i.e.,
granular crystals), are efficient media for the transmission of
nonlinear stress waves [1, 2]. One-dimensional (1D) chains of
elastic spheresunderzeroorweakstaticcompressionhavebeen
shown to support the formation and propagation of compact
nonlinear waves in the form of solitary waves [1–6]. These
solitary waves derive from the nonlinear (Hertzian) contact

interaction between particles (i.e., F / d3=2 , where F is the
compressive force and δ is the approach between the particles)
and a zero tensile response [1, 2]. Such formation of stable
nonlinear waves in ordered 1D systems is in contrast to the
highlydispersiveanddissipative stresspropagationobservedin
disordered granular media [7].

Highly nonlinear solitary waves in granular crystals exhibit
unique physical properties compared to the conventional
stress waves in linear elastic media. First, solitary waves have
constant spatial wavelength, confined to approximately five
particle diameters [2, 8]. Second, solitary waves have ex-
tremely slow propagation speed, typically an order of magni-
tude slower than that of dilatational waves within particles [2,
6]. Furthermore, the propagation speed of solitary waves is
amplitude-dependent. For a homogeneous granular chain, the
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wave speed can be expressed as Vs / F1=6
m (Vs and Fm are the

speed of solitary waves and their maximum force amplitude,
respectively) [2]. Lastly, solitary waves have unique interac-
tion properties, allowing the formation of single solitary
pulses, trains, and shock-like signals [8–13]. By leveraging
these characteristics, granular crystals have been proposed for
several engineering applications, such as nonlinear lenses for
acoustic imaging [14, 15], impact mitigation devices [16–20],
and actuators and sensors for nondestructive evaluations
[21–23].

Previous studies have shown that granular crystals can
also propagate linear elastic waves when they are excited by
small-magnitude dynamic forces, relative to the static pre-
compression applied to the system [2, 24, 25]. In this case,
diatomic granular crystals (i.e., periodic chains with two
particles per unit cell) support the formation of a frequency
band structure with allowable and forbidden frequency
bands of signal propagation (i.e., pass- and stop-bands)
[24]. Since stress waves in forbidden frequency bands are
prohibited to transmit, such granular crystals can function as
passive acoustic filter structures. The selection of material
properties, geometry, and boundary conditions of the gran-
ular crystals allows controlling the number and location of
frequency pass-/stop-bands. Herbold et al. investigated the
tunable frequency band-gaps in diatomic granular crystals in
various combinations of dynamic and static forces applied
to the chain [24]. Boechler et al. controlled the frequency
band structures of a granular crystal composed of three-
particle unit cells by simply manipulating the particle geometry
and pre-compression [25].

This study investigates the comprehensive mechanism
of wave formation and transmission in a diatomic gran-
ular crystal under various geometrical configurations and
impact conditions, encompassing linear to highly nonlin-
ear dynamical regimes. While previous studies focused
mainly on a straight, 1D chain of particles, here we
consider a curved granular system guided by soft elastic
media to account for the coupling mechanism between
the granular particles and their surrounding elastic media.
By using such a hybrid structure, we demonstrate exper-
imentally the amplitude- and frequency-dependent filter-
ing of compressive waves. First, we report the formation
of acoustic band structures in the coupled granular and
elastic media in the linear regime. We show that the
acoustic band structure can be tuned in situ by manipu-
lating the applied static pre-compression or the initial
curvature imposed on the elastic guides. Then, we in-
crease the amplitude of the excited dynamic disturbances
relative to the static pre-compression. As the dynamic
amplitude increases, we observe the disappearance of the
linear acoustic band structure and the generation and
propagation of highly nonlinear solitary waves. We show
experimentally that the suppression of frequency band

structures is critically dependent on the level of nonlin-
earity in the system, represented by the ratio of dynamic
force magnitudes to the static pre-compression. We also
demonstrate that the transmission efficiency of solitary
waves can be controlled by the curvature initially im-
posed to the diatomic granular system. The frequency-
and amplitude-dependent behavior of the granular system
is verified by numerical simulations. We use a numerical
model that integrates discrete element (DE) and finite
element (FE) methods to simulate the propagation of
both dispersive linear waves and compactly-supported
highly nonlinear waves [26]. The experimental and numerical
results in this study demonstrate that the studied systems can
be excellent candidates for creating a new class of engineered
materials, which can transmit selected ranges of amplitudes
and frequencies from external excitations.

The rest of the manuscript is structured as follows: We
describe the experimental setup in Section II. We discuss the
formation of frequency band structures and the propagation
of highly nonlinear solitary waves in Section III. In Section
III, we also describe the numerical approach based on a
combined DE and FE model. Section IV compares analyt-
ical, numerical, and experimental results, focusing on the
effect of pre-compression, chain curvature, and striker
masses on the propagation of stress waves through the
granular system. Lastly, in Section V, we conclude the
manuscript with a summary.

Experimental Setup

The overall configuration of the experimental setup is
shown in Fig. 1. The test setup consists of two parts: a
granular crystal composed of diatomic unit cells and an
apparatus for applying external excitations to the top
particle of the granular crystal. The granular crystal consists
of an array of alternating spheres and cylinders made from
stainless steel (type 440 C, McMaster-Carr). The spherical
elements have a radius Rs09.53 mm, mass ms028.2 g, elastic
modulus Es0200 GPa, and Poisson’s ratio vs00.28. The
cylindrical elements have a radius Rc09.53 mm, a
height hc019.1 mm, and mass mc042.4 g, with material
properties identical to those of the spherical elements.
The granular crystal tested is 21 particles long with 10
repeating unit cells (N010) and one additional spherical
particle (i021) positioned at the bottom of the chain
(see Fig. 1).

In this study, we consider two different configurations
of the granular crystal: a straight chain (Figs. 1(a)) and a
curved chain (Figs. 1(b)), to investigate the effect of
chain curvature on stress transmission. The straight chain
serves as a reference system by restricting the lateral
motions of granular particles using rigid guides made
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of hardened precision steel shafts. In this straight system,
the propagation of stress waves is governed primarily by
the axial interactions between the granular particles ex-
cited by an impact. In the curved diatomic chain, the
particles are guided by four polytetrafluoroethylene
(PTFE) rods, which can flex upon the vertical impact
applied to the granular chains. As a result, the transmis-
sion of waves along the granular crystals becomes
affected by the coupling mechanism between the gran-
ules and the soft PTFE guides in the lateral direction. In
this study the PTFE material is chosen for its flexibility
and effectiveness in reducing friction during these inter-
actions. The PTFE rods have an outer radius RG06.35 mm,
density ρG04,302 kg/m3, elastic modulus EG00.46 GPa,
and Poisson’s ratio vG00.46. The initial curvature of the
chain is determined by the bent PTFE rods, which are
held by the upper and lower stainless steel plates
(Fig. 1(b)). We represent the curvature of the chain by
Δ, which measures the offset of the chain from its
centerline. In this study, we test six different configurations
of curved chains (Δ0[22.4, 35.2, 58.9, 66.2, 73.3, 85.2] mm).
A customized linkage structure provides vertical and
rotational degrees of freedom of the upper plate upon
the external impact.

To vary the profiles and magnitudes of external exci-
tations applied to the granular chains, we use two differ-
ent apparatuses: a piezoelectric actuator (Fig. 1(c)) and
impact strikers (Fig. 1 (d)). The piezoelectric actuator is
used to apply small-amplitude disturbances to the granu-
lar chain over a wide range of frequencies. In this study,
we use a commercial piezoelectric actuator (Physik
Instrumente P-212) powered by an external voltage am-
plifier (Piezo Systems Linear Amplifier EPA-104). We
condition its output with white-noise signals (1-second
duration) generated by MATLAB. The piezoelectric ac-
tuator is mounted to a guided support plate to make a
direct contact with the top sphere of the chain. To im-
pose pre-compression to the granular crystal, we place a
ring-shaped weight on top of this support plate. In this
study, we vary the amount of pre-compression by two
orders of magnitude from 4.7 N (weight of the support
plate) to 306.9 N.

Using a piezoelectric actuator, the maximum amplitude
of the excitation forces is limited by the stroke length of the
transducer and by the power available from the external
amplifier. To investigate the nonlinear responses of the
granular chain using large disturbances beyond the limits
of the piezoelectric transducer, we excite dynamic impacts
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Fig. 1 Schematic of experimental setup. (a) A straight chain constrained by stainless steel guides. (b) A curved chain guided by bent PTFE guides.
Inset shows a magnified view of particles under the interaction with linear guides. (c) A piezoelectric actuator to apply broadband excitations to the
granular chain. (d) Striker impacts using cylindrical masses. A solenoid is used to release the striker from a designated drop height
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via striker drop (Fig. 1(d)). We use two different types of
strikers: a spherical striker made of aluminum 2017-T4
(19.05-mm diameter) and a group of cylindrical strikers
(440 C stainless steel) in various lengths. Using these striker
impacts, we can achieve a wide range of compressive forces
from ~50 N (aluminum sphere drop from 3.2 mm) to ap-
proximately 1,000 N (679 g cylinder drop from 10 mm). To
control the amplitude of dynamic forces, we employ 13
different cylindrical strikers with a 9.53-mm radius and
length L0[6.35, 9.53, 12.7, 15.9, 19.1, 22.2, 25.4, 50.8,
102, 152, 203, 254, 305] mm. This corresponds to different
strikers’ mass M0[14.1, 21.2, 28.2, 35.3, 42.3, 49.4, 56.5,
113, 226, 339, 452, 565, 678] g. To impact the top sphere of
the chain, we release spherical and cylindrical strikers from
3.2-mm and 10-mm drop heights respectively using a DC-
powered solenoid [27]. We apply pre-compression to the
chain by resting a weight on the top of a guided support
plate, which has a central hole to expose partially the top
sphere for striker impacts. The ring-shaped weight is cut
open to allow the access of the solenoid in the lateral
direction.

We measure the transmitted waves through the gran-
ular chain using a commercial force sensor (Piezo-
tronics, PCB-C04) positioned at the bottom of the
granular crystal. We mount the force sensor on a mas-
sive block that simulates a rigid wall. The physical
stiffness of the force sensor is 1.05×109 N/m, which
is much higher than the contact stiffness between the
diatomic particles over the range of pre-compression
forces considered in this study (the maximum contact
stiffness calculated is 5.96×107 N/m under static pre-
compression 306.9 N for the straight chain). The sen-
sor’s cap is made of hardened 17-4 PH (H900) stainless
steel, which is assumed to have identical density, elastic
modulus, and Poisson’s ratio to those of the beads
composing the chain. The sensor is connected to a data
acquisition board (National Instrument PCI-6115) to
collect signals at a sampling frequency up to 10 MHz.
For the statistical treatment of signals, we average the
measurements over five acquisitions, and the acquired
signals are processed in MATLAB.

Theoretical Background and Numerical Approach

Previous studies have shown that a 1D granular crystal
can be modeled as a chain of point masses connected
by nonlinear springs based on Hertzian law [2, 5]. The
numerical approach using this discrete element (DE)
model is valid if the particles’ interactions are restricted
to small displacements and if the transit times of the
stress waves in the granular crystal are much longer
than the oscillation period of elastic waves within the

particles [2]. Using this DE model, we can express the
equations of motion for the diatomic particles in a
curved chain as:

ms
�u�n ¼ F2n�1;2n þ F2n;2nþ1 þ Pl

2n þ Pr
2n þ msg

mc
�w�n ¼ F2n;2nþ1 þ F2nþ1;2ðnþ1Þ þ Pl

2nþ1 þ PR
2nþ1þmcg;

ð1Þ
where ms and mc are the masses of a sphere and a
cylinder, un and wn are the position vectors to their
centers in the n-th unit cell, and g is the gravitational
constant (see the inset in Fig. 1(b)). The axial force
F2n,2n+1 exerted on the 2n-th particle by the neighboring
(2n+1)-th particle can be expressed as:

F2n;2nþ1 ¼ A D� un � wnj j½ �kþbn2n;2nþ1; ð2Þ
according to theHertziancontact law.Here theunit cell length is
D, and thebracket [x]+ takesonlypositivevaluesand returns0 if
x<0, implying no tensile strength between particles. The unit
normal vector bn2n;2nþ1 is defined as bn2n;2nþ1 ¼ un � wnð Þ=
un � wnj j . Given the configurations of the sphere-cylinder
contact, the Hertzian factor is k03/2 and the coefficient A can

be derived as A ¼ 4
ffiffiffiffi
Rs

p
3

1�v2s
Es

þ 1�v2c
Ec

� ��1

. Here, R, E, and v

represent the radius, elastic modulus, and Poisson’s ratio
of particles with the subscript s and c denoting spherical
and cylindrical elements [28]. Note that the particle dis-
tance D and the Hertzian coefficient A in (equation (2))
need to be modified at the end of the granular chain, such
as the interface with the elastic half space and the striker,
to account for the bounding medium’s material and geo-
metrical condition [27]. The lateral interactions with the

right- and left-hand guiding media, Pr
2n and P

l
2n can be also

expressed using the modified Hertzian contact law. For
the sake of brevity, we do not include the expressions of
the lateral contact forces in this manuscript. The complete
descriptions of the axial and lateral forces including dis-
sipative terms can be found in [26].

We simplify the equations of particles’motion into a one-
dimensional form for theoretical considerations, while we
tackle the two-dimensional (equation (1)) for numerical
integrations. After neglecting the lateral forces and the grav-
itational effect, (equation (1)) becomes:

ms
�u�n ¼ A wn�1 � unð Þkþ�A un � wnð Þkþ

mc
�w�n ¼ A un � wnð Þkþ�A wn � unþ1ð Þkþ:

ð3Þ

Here, w and u are the displacements of cylindrical and
spherical particles from their equilibrium positions (Fig. 2
(a)), which should not be confused with the location vectors
of particles in (equation (1)). Depending on the level of
nonlinearity in the granular system, (equation (3)) can be
approximated into different mathematical forms, thereby
producing distinctive sets of mathematical solutions. Phys-
ically, these solutions correspond to different types of stress
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waves ranging from linear elastic waves to highly nonlinear
solitary waves that can be generated and propagated in a
diatomic chain.

Highly Nonlinear Regime

In a highly nonlinear regime, the interactions of granu-
lar particles are governed by a full range of Hertzian
nonlinear contact (Fig. 2(b)). In this configuration, the
amplitude of dynamic disturbances (Fd) applied to the
granular chain is much larger than that of the static pre-
compression (F0). Given such a high-level nonlinearity,
Porter et al. derived a closed-form solution of (equation
(3)) using the long-wave approximation to describe
wave dynamics in a general one-dimensional diatomic
chain [29]. We briefly introduce the analytical process
of the closed-form solution derivation, while details can
be found in [29, 30].

Under the assumption of acoustic-mode excitations
(i.e., in-phase oscillations of diatomic particles in a unit
cell), the displacement of a cylindrical particle can be
approximated in terms of the neighboring spherical par-
ticle’s motion by a Taylor expansion up to the fourth
order [29, 30]:

w ffi uþ b1Dux þ b2D
2 uxx þ b3D

3 uxxx þ b4D
4 uxxxx: ð4Þ

Here, D denotes the distance between two particles in a
unit cell, and the coefficients are found to be b101,
b20ms/(ms+mc), b30(2ms – mc)/3(ms+mc), and b40ms

(2ms
2 – msmc+mc

2)/3(ms+mc)
3 [30]. After plugging this

into (equation (3)) and incorporating terms, it is possi-
ble to obtain a differential equation in the following
form [29, 30]:

utt ¼ uk�1
x utt þ Guk�3

x u3xx þ Huk�2
x uxxuxxc þ Iuk�1

x uxxxx;

ð5Þ
where t ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kDkþ1=ðms þ mcÞ

p
is a rescaled time. The

constants in (equation (5)) are G0D2(2–3k+k2)ms
2/6

(ms+mc)
2, H0D2(k–1)(2ms–mc)/3(ms+mc), and I0D2

(ms
2 – msmc+mc

2)/3(ms+mc)
2 [29, 30]. This equation

is fundamentally similar to the differential equation that
Nesterenko derived to describe the dynamics of a uniform
spherical chain [2].

After several algebraic steps, an exact solution of
(equation (5)) can be obtained in the highly nonlinear
regime, i.e., when the pre-compression applied to the
granular chain is significantly smaller than the dynamic
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Fig. 2 (a) Schematic of a one-
dimensional granular chain
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disturbances (Fd >> F0). The trigonometric solution can
be expressed as [29, 30]:

ux ¼ Bcos2=ðk�1ÞðaxÞ; � p
2
� ax � p

2
; ð6Þ

where ξ is a rescaled strain in the homogenized granular
system, B is a parameter dependent on the wave speed
and material properties, and α is a coefficient deter-
mined by mass-ratios (ms/mc) of the diatomic granular
system. The solution of the nonlinear equation (3) is a
single arch of the periodic profile as represented in
(equation (6)), implying a finite-width wavelength of
the nonlinear waves formed in the granular system
[30]. For a monodispersed chain composed of spherical
particles, Nesterenko found that the spatial width of the
propagating waves is equivalent to approximately five-
particle diameters [2]. For a diatomic granular chain, the
shape and propagating properties of nonlinear waves
depend on the combination of the materials and mass-
ratios of particles that compose the chain [29, 30]. New
families of solitary waves in dimer chains have also
been presented in [31].

Linear Regime

Now we examine the propagation of acoustic waves when a
granular chain is strongly compressed relative to the ampli-
tude of the dynamic disturbances (Fd << F0) (Fig. 2(c)). In
this case, we can separate the displacements of particles into
static and dynamic components as un ¼ un;sta þ un;dyn and
wn ¼ wn;sta þ wn;dyn , where subscript ‘sta’ and ‘dyn’ denote
static and dynamic elements. We can plug these into (equation
(3)) and expand it using the Taylor series under the assump-
tion that the static displacement is much larger than the
dynamic one. Neglecting the dynamic displacement terms of
the second and higher order, we obtain a linearized equation of
motion as [24]:

ms
�u�n;dyn ¼ b wn�1;dyn � un;dyn

� �� b un;dyn � wn;dyn

� �
mc

�w�n;dyn ¼ b un;dyn � wn;dyn

� �� b wn;dyn � unþ1;dyn

� �� ð7Þ

Here, the static displacement components are cancelled
out due to the force equilibrium and thus, the equation
of motion is described solely in terms of dynamic
disturbances. However, it should be noted that a line-
arized stiffness β is determined by the static compres-
sion as:

b ¼ 3

2
A2=3F1=3

0 ; ð8Þ

where F0 denotes the static pre-compression force ini-
tially applied to the granular crystal. This implies that
larger pre-compression yields higher stiffness between
the adjoined particles.

We analytically solve (equation (7)) under the as-
sumption that there is no dissipation in the system
and that the chain is infinitely long (i.e., there is no
loss of energy and no boundary effects). We use the
Floquet’s principle in which the particle dynamics in a
given cell is assumed to be fundamentally identical to
that of its neighboring cell based on the periodicity of
the system [32, 33]. Mathematically, this implies that
the particles’ motion in the (n+1)-th cell is expressed

as unþ1;dynðtÞ ¼ un;dynðtÞ e�ið4pD=lÞ and wnþ1;dynðtÞ ¼ wn;dyn

ðtÞe�ið4pD=lÞ , where λ is the wavelength of the propa-
gating waves and un;dynðtÞ and wn;dynðtÞ are the dynamic
displacements of particles in a reference (i.e., n-th) cell.
After substituting these periodic expressions into (equa-
tion (7)) and imposing the condition of non-trivial
solution, we obtain the following characteristic equation
defining the dispersive relation [24]:

msmcw
4 � 2bðms þ mcÞw4 þ 2b2 1� cosð4pD=lÞð Þ ¼ 0;

ð9Þ
where ω is the angular frequency. By solving (equation
(9)), we obtain the dispersion curve that defines the
angular frequencies of the propagating waves as a
function of their wavelengths (see Fig. 3 for F00
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10 N). In this dispersion curve, the cutoff frequencies
of this dispersion relationship are found at l ¼ 2D and
l ¼ 1:

f1 ¼ 0; f2 ¼ 1

2p

ffiffiffiffiffiffi
2b
mc

r
; f3 ¼ 1

2p

ffiffiffiffiffiffi
2b
ms

r
;

f4 ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bðms þ mcÞ

msmc

s
:

ð10Þ

It is evident that a 1D granular crystal in the linear
regime allows the propagation of waves only in certain
frequency ranges [24]. The allowable frequency bands in
[f1, f2] and [f3, f4] are called acoustic and optical bands,
respectively. The stress waves whose frequencies belong
to the frequency band in [f2, f3] cannot propagate in the granular
system. These forbidden frequency bands are referred to as
band-gaps or stop bands. The cutoff frequencies in (equation
(10)) are functions of the particle masses and of the linearized
stiffness β. As described in (equation (8)), β can be altered by
simple manipulation of the pre-compression applied to the
granular system. This means that the acoustic structure of
diatomic granular crystals can be tuned in situ without chang-
ing materials or geometry of unit cell particles [24, 25].

The theoretical aspects of wave propagation in curved
granular crystals are not as simple as those in a straight chain,
due to the complex coupling mechanism between the granular
and elastic media. To calculate the particles’ dynamics in a
curved chain and their interactions with soft elastic guides, we
employ a numerical method that combines a discrete element
(DE) and a finite element (FE) model. The DE model simu-
lates the two-dimensional interactions of granular particles
based on the Cundall [34] and Tsuji [35] models, which are
built on the classical Hertz-Mindlin theory [28]. The dynamics
of linear elastic guides are calculated by the FE model that
discretizes the linear elastic guides into the Bernoulli-Euler
beam elements [36]. The combined DE and FE model takes
into account the axial and tangential interactions among par-
ticles, including dissipative terms. In this study, we suppress
the dissipative terms among particles to assess the wave
attenuation solely contributed by the structural coupling be-
tween granules and the linear elastic guides. The details of the
combined DE and FE model can be found in [26].

Results and Discussion

In this section, we present the experimental and numerical
results obtained by varying the static pre-compression, the
chain curvatures, and the impact amplitude via different
striker masses. We compare these results with the theoretical
predictions and discuss the findings.

Pre-Compression Effect

We begin investigating the effect of pre-compression on the
propagation of stress waves in granular crystals. We excite
the straight granular chain (Fig. 1(a)) using a spherical
aluminum striker and measure the transmitted waves arriv-
ing in the force sensor under various pre-compressions
applied to the chain. Figure 4(a) reports selected force
profiles that are experimentally measured all under the iden-
tical striker impact conditions. To ease graphical illustration,
the results are plotted with a vertical shift of 50 N. Here, the
positive components in the y-axis denote compressive force,
while the negative components represent tensile forces. The
time in the x-axis is measured with respect to the trigger of
the sensor at t00.4 ms, when the force amplitude reaches a
threshold level. In Fig. 4(a), the lowest curve shows a force-
time history obtained from a straight chain under no pre-
compression, in which the dynamic disturbances are domi-
nant in comparison to the pre-compression. In this configu-
ration, we expect the propagation of highly nonlinear
solitary waves, as evident in the experimental measurement
by the presence of a single pulse appearing around a time t~
0.5 ms. We also observe small-amplitude fluctuations fol-
lowing this impulse, which are likely caused by the oscil-
lations of the particles within a unit cell. This differs from a
clean, single hump of compressive waves witnessed in a
monodispersed granular chain [2].

The nonlinear waves under zero-precompression are attrib-
uted to the highly nonlinear interactions between the particles as
discussed in Section III. As the pre-compression increases
relative to the dynamic disturbances, the interfacial stiffness
between the particles transits from nonlinear to linear relation-
ship, which yields an approximately uniform interfacial stiff-
ness value between particles. In other words, the granular
architecture becomes similar to a linear lattice structure, which
supports the propagation of linear elastic waves. As a result,
under the large values of pre-compression, we find that the
transmitted waves are highly oscillatory, showing the propaga-
tion of not only compressive forces but also tensile components
among the particles (Fig. 4(a)). Note that these tensile forces in
the compressed chain do not imply the separation of particles,
since the magnitude of pre-compression is much larger than the
dynamic forces (Fd=F0 � 0:1for F00307 N) and all particles
remain compressed in contact with each other. The oscillatory
waves observed in the strongly pre-compressed chains are
caused by the propagation of particles’ vibration (also called
phonon) in linear lattices. This is fundamentally different from
highly nonlinear solitary waves deriving from the unidirectional
compressive motions of particles under zero pre-compression
and no tensile strength. This is why uncompressed granular
crystals are sometimes referred to as “sonic vacuum” due to
their incapability of transmitting linear elastic waves [2].
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The numerical results are reported in Fig. 4(b), in which a
time t00 ms denotes the moment that the striker collides
with the top particle in the chain. We find that they corrobo-
rate the experimental results. However, the amplitude of the
numerical force profiles is larger than that of the experimental
measurements. Such a discrepancy stems from the absence of
dissipative effects in the numerical simulations. Dissipative
mechanisms in granular crystals have been studied previously,
including the authors’workbasedonempiricalLaplacianmod-
el [37] and quasi-static model using a Hertz-Mindlin theory
[26]. However, these models are primarily focused on
the attenuation of solitary waves in a 1D granular chain,
while they are not properly applicable to the strongly
compressed chain. Despite the negligence of the dissi-
pative effects, however, we find that the DE-FE model
successfully predicts the transition of wave characteristics
from nonlinear to linear modes. From the numerical
simulation results in Fig. 4(b), it is evident that the
speed of the transmitted waves is faster as the amplitude
of the static pre-compression increases. Such amplitude-
dependence of wave speed is a unique property of general
types of nonlinear waves observed in a variety of physical
systems [2, 38–41].

It is also worth discussing the effect of gravity, given the
chain’s vertical configuration in this study. To investigate
the gravitational effect, we calculate the transmitted wave
profiles with and without the inclusion of gravity, when
there is no external pre-compression (F000). Comparing

the thick (gravity) and thin (no gravity) curves at the bottom
of Fig. 4(b), we find that the gravitational effect is noticeable
in terms of wave form and speed. Particularly, the force
profile under the gravitational effect contains more oscilla-
tory components of stress waves compared to that without
gravity. The offset between the two curves at the beginning
of the signals corresponds to the weight of the granular
chain that amounts to 7.7 N. However, the amount of
compressive force induced by the chain weight is yet an
order of magnitude smaller than the dynamic disturbances
caused by the striker drop (Fd=F0 � 11:0). Therefore, the
qualitative nature of the propagating waves remains the
same, exhibiting highly nonlinear solitary wave shapes.
Figure 4(b) also includes a simulated result of the gravita-
tional effect under the maximum pre-compression (F00307).
In this strongly compressed granular chain, the effect of
gravity is even more insignificant as comparing the two
curves in the top of Fig. 4(b). This is because the gravity-
induced force is very small relative to the externally imposed
compression. Therefore, the oscillatory shapes of the propa-
gating waves are similar, and the change of cutoff frequency
of the propagating waves is expected to be negligible, consid-

ering fc / F1=6
0 deduced from (equations (8) and (10)) (cutoff

frequency shift is ~0.4 % due to gravity when F00307).
To investigate the frequency spectrum of the transmitted

waves, we perform a fast Fourier transform (FFT) of the mea-
sured time-domain signals. As a result, Figure 5(a) shows an
experimental plot of the power spectral density (PSD) in a
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logarithmic scale, as a function of the static preload and fre-
quency. Here, the light color regions represent the high ampli-
tude ratios of transmitted waves to the input excitations (also
called transfer functiongain) (see the color bar inFig. 5(a)).The
dashed lines correspond to the theoretical cutoff frequencies in
the dispersion relation, obtained from (equation (10)). The
abscissa of the figure denotes the level of system nonlinearity
quantified by the ratio of the dynamic disturbances to the static
pre-compression (Fd/F0). Since the dynamic disturbances are
identical throughout theexperiments, thevariationsofFd/F0are
solely determined by the pre-compression effect. The ordinate
represents the frequency components of the transmittedwaves.

We note that frequency band structures are formed with
distinctive pass- and stop-bands, whose frequency ranges vary
sensitively with the amount of static pre-compression. This is
consistentwith theanalyticalpredictionthatadiatomicgranular
crystal forms acoustic and optical pass-bands and that their
cutoff frequencies are governed by the linearized stiffness β,
which in turn is a functionof the chain pre-compression [24]. In
Fig. 5(a), the acoustic and optical frequency bands are denoted
as ‘pass-1’ and ‘pass-2’. The stopbandpositionedbetween two
pass-bands is denoted as ‘stop-1’, and we conventionally refer
to the forbidden band located above the optical band as the
‘stop-2’ band. We find that our experimental results are in
agreement with the theoretical prediction.

Another interesting point is the dependence of transmission
gains (i.e., PSD values) on Fd/F0. In Fig. 5(a), the differences
of PSD values between pass- and stop-bands are obvious in
the lower Fd/F0, while such distinction become less evident in
the higher Fd/F0. This translates into the fact that the classical
frequency band structure is a characteristic of the linear re-
gime, with small-amplitude dynamic disturbances relative to
the pre-compression (i.e., small Fd/F0). In the case of zero or
weak pre-compression (rightmost data sets in Fig. 5(a)), we
observe the concentration of PSD values in the low frequency

regime, but it is hard to distinguish pass- and stop-bands
within this region. Figure 5(b) shows the corresponding nu-
merical results based on the DE model.

To analyze the evolution of the frequency band struc-
tures, we calculate the average PSD values in the pass- and
stop-bands over a range of Fd/F0 tested in this study. Math-
ematically, the average PSD can be quantified by:

PSD ¼ 1

fu � fl

Z fu

fl

PSD2df

� �1=2
; ð11Þ

where fl and fu are the cutoff frequencies corresponding to
the lower and the upper boundaries of the frequency band.
This value represents the amount of energy transmitted in
the given frequency band normalized by the width of the
frequency bands. Figures 6(a) and (b) show the experimen-
tal and numerical results of the average PSD values as a
function of the nonlinearity level (Fd/F0). We find that the
average PSD values in pass-bands are significantly higher
than those in the stop-bands in the linear regime (i.e., low
Fd/F0). However, the discrepancies between pass- and stop-
bands are reduced as the nonlinearity level is increased (i.e.,
high Fd/F0). In particular, the average PSD values of the
stop-bands become equivalent to those of the pass-bands at
the maximum nonlinearity level. The experimental and nu-
merical results are qualitatively in agreement.

We quantify the prominence of frequency band structures
by calculating the ratios of pass-band PSD values to those of
the neighboring stop-bands (Fig. 7). Here, the blue curve
with circular marks represents the PSD ratios of the first
pass- and stop-bands (Pass-1/Stop-1), while the green curve
with rectangular marks denotes the PSD ratios of the second
pass- and stop-bands (Pass-2/Stop-2). We find that at a low
Fd/F0, the PSD ratio is as high as 103~104 due to the
obvious dispersion of propagating waves and the resulting

(a) (b)
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STOP-1

PASS-2

STOP-2

PASS-1

STOP-1

PASS-2

STOP-2

Fig. 5 (a) Experimental and (b) numerical results of PSD in a diatomic band structure as a function of Fd/F0. The highlighted zones represent pass
bands, while dark zones correspond to band gaps. The color bars denote transmission gains in a logarithmic scale. Yellow dotted lines denote cutoff
frequencies based on theoretical dispersion relationship
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formation of frequency band structures. However, as the degree
of nonlinearity increases, the PSD ratios decrease to the level of
10-1~101, which suggests the disappearance of the frequency
band structures. The experimental and numerical results are in
agreement. The observed trend proves that the frequency band
structure becomes dominant only if the granular system
supports the propagation of linear elastic waves with intrinsic
dispersive characteristics. As a granular chain is excited by
strong excitations and starts to form nonlinear waves, the
transmitted waves no longer contain frequency components
that correspond to the acoustic and optical pass bands.

Chain Curvature Effect

In this section, we discuss the effects of the chain’s curva-
ture on the formation of frequency band structures. We
excite the granular crystals using a piezoelectric actuator to
consistently apply small-amplitude, wide-band signals in a
controllable manner. The maximum amplitude of the dy-
namic disturbances is limited to 0.5 N, which is orders of

magnitude smaller than the static pre-compression used in
this study [F0056.4 N, Order(Fd/F0)≈10-2]. For numerical
simulations, we use the same order of Fd/F0 to allow the
formation of a full-fledged frequency band structure.

Figure 8 reports the frequency spectra of stress waves
transmitted through diatomic chains with four different cur-
vatures. The y-axis is in a logarithmic scale, and the signals
are shifted by 102 to ease visualization. The black vertical
dashed lines represent analytic predictions of cutoff frequen-
cies from (equation (10)) for an equivalent straight chain
(Δ00). Given the amplitude of the pre-compression used in
experiments, we obtain cutoff frequencies at f100 kHz, f20
6.46 kHz, f307.91 kHz, and f4010.2 kHz. From the exper-
imental results in Fig. 8(a), we observe the presence of both
acoustic and optical bands depicted by the shaded regions in
the left- and right-hand sides (i.e., ‘pass-1’ and ‘pass-2’).
These pass-bands are characterized by the sharp spikes
representing the resonant frequencies supported by the finite
diatomic chains. In the straight chain, the measured pass
bands agree well with the theoretically predicted cutoff
frequencies (top blue curve and vertical dashed lines in
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Fig. 8(a)). In curved chains, however, we find frequency
bands gradually down-shifting as the chain curvature
increases. In particular, when the chain’s curvature becomes
85.2 mm (bottom cyan curve in Fig. 8(a)), the optical pass
band shifts to the middle of band-gap predicted for a straight
chain. The numerical results in Fig. 8(b) corroborate the
experimental results.

To show the evolution of frequency bands as a function
of the chain curvature, we report in Fig. 9 the surface maps
corresponding to the experimental and numerical results
shown in Fig. 8. We plot the experimental results from seven
different curvatures (Δ0[0, 22.4, 35.2, 58.9, 66.2, 73.3,
85.2] mm) in Fig. 9(a), and we present the shift of frequency
bands obtained numerically for every 5-mm offset from Δ0
0 mm to 100 mm in Fig. 9(b). Here, the horizontal dashed
yellow lines denote the analytic cutoff frequencies of acous-
tic and optical pass bands for the straight chain. In Fig. 9(a)

and (b), the upper bright band corresponds to the optical
pass band, while the lower bright band denotes the acoustic
pass band. The presence of a stop band between the optical
and acoustic bands is evident in both experimental and
numerical results. We can also verify that the frequency
bands shift towards a lower frequency zone as the curved
chain exhibits a larger curvature. In particular, the shift of
the optical pass band is more drastic than that of the acoustic
band.

We can qualitatively explain the dependence of frequen-
cy band structures on the chain’s curvature by assessing the
static compression between granules in a curved chain:
From the force equilibrium when an identical static load is
applied to the granular chains, the compressive force be-
tween granules is decreased as the chain’s curvature is
increased. This is because a curved chain dispenses a por-
tion of compressive force to the guides through lateral
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contact, while all compressive loading is imposed on the
granular particles in the case of a straight chain. Thus, despite
the identical pre-compression applied to the chain, the gran-
ules in a curved chain are less compressed than those in a
straight chain. According to the calculation of the linearized
stiffness in (equation (8)), a reduced amount of compression
between the particles produces a smaller stiffness value, which
leads to the decreased cutoff frequencies. Consequently, we
observe a down-shifting of frequency bands as we apply a
larger offset to a curved granular chain. This means that
compared to the straight chain, it is possible to obtain an
additional parameter to control the frequency response of a
curved chain by leveraging the coupling mechanism between
the granules and the guided structures.

Striker Mass Effect

In this section, we study the combined effects of both
nonlinearity and geometry by impacting curved granular
chains with cylindrical strikers. We control the level of
nonlinearity in the system, not by changing the pre-
compression (F0), but by generating different dynamic force
amplitudes (Fd) varying the striker masses. The pre-
compression in these tests is kept constant at F0056.4 N.
Using various combinations of strikers and chain’s curva-
tures, we characterize the dynamic responses of the bent
granular crystals focusing on the amplitude-dependent be-
havior of the combined granular and linear elastic media.

We first investigate the propagation of stress waves ex-
cited by a light mass striker (M014.1 g) with a velocity of
0.443 m/s. The temporal force profiles recorded by the force
sensor are reported in Fig. 10(a) for the straight chain (solid
blue line) and the curved chain with Δ058.9 mm (dashed
red line). For this light striker with a mass smaller than that
of a bead (m028.2 g), we find that both the straight and the
curved chains result in the formation of stress waves con-
taining both compressive (positive) and tensile (negative)
components. We also observe that the initial pulses are
followed by small amplitude oscillatory waves. The maxi-
mum amplitude of the leading compressive wave is approx-
imately 100 N, which is in the same order of the static pre-
compression applied to the structure. This corresponds to a
weakly-nonlinear regime, characterized by the presence of
leading solitary wave-like pulses followed by oscillatory
waves. Comparing the responses from the straight and
curved chains, we observe that the waves triggered by the
light striker in the curved chain are very similar to those in
the straight chain. This implies the wave transmission
behaviors of the straight and curved chains are qualitatively
similar in the weakly nonlinear regime. However, the max-
imum force measured in the curved chain is reduced by
22.9 % as compared to the straight chain (from 104 N in
the straight chain to 80.2 N in the curved one). This is due to
the loss of axial force components among the granules by
interacting with the linear elastic guides in lateral direction.

We then characterize the wave propagation through the
straight and curved chains excited by a larger mass striker
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Fig. 10 Experimental results of
the force-time profiles for (a)
light-mass (14.1 g) and (b)
heavy-mass (678 g) impacts,
measured by the force sensor
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vature Δ058.9 mm. Numerical
results are plotted for (c) light-
mass and (d) heavy-mass
impacts

480 Exp Mech (2013) 53:469–483



(M0678 g). In Fig. 10(b), we observe that the maximum
force induced by the striker is in the range of Fd≈1,000 N.
Note that according to [28], the maximum contact pressure
developed in the system remains below plastic limit even
under the heaviest striker impact. Therefore, the measured
force profiles are not significantly affected by plastic effects.
The maximum dynamic force is much larger than the static
pre-compression applied to the chain (F0056.4 N). This
implies that the chain is now under the highly-nonlinear
regime. In particular, we find that the shape of the nonlinear
waves propagating in the chain is totally different from that
of the weakly-nonlinear waves observed in the case of the
light mass impact. For the straight chain, we now observe
the generation of solitary wave trains characterized by a
leading pulse in large amplitude and the trailing waves
decaying exponentially. The mechanism behind the forma-
tion of the solitary wave trains can be explained by the
multiple collisions between the heavy-mass striker and the
granular chain during the impact [8, 16, 42].

It is notable in Fig. 10(b) that the transmitted waves in the
straight and curved chains present a remarkably different
behavior. We find that the transmitted waves in the
curved chain results in faster decay than that in the
straight chain, such that no significant waves are ob-
served after the initial impulse around 0.5 ms. The max-
imum amplitude of this initial pulse is also reduced by
40.3 %, from 1,027 N in the straight chain to 613 N in
the curved one (see Fig. 10(b)). Considering that the area
under the force-time curve corresponds to the amount of
impulse transferred, we find that the transferred impulse
in the curved chain is a mere 20.2 % compared to that in
the straight chain. This means that the curved systems
can attenuate large-amplitude impacts more effectively
relative to the straight chains. Furthermore, we can ob-
serve an amplitude-dependent behavior of the curved
granular chains, in which the energy absorption by the
elastic guides is facilitated under stronger impacts com-
pared to the small-amplitude disturbances. Figures 10(c)
and (d) show the numerical results of the transmitted
waves under the small- and large-amplitude impact. We
find that the numerical results agree well with the exper-
imental findings.

The amplitude-dependent behavior of the curved granular
system can be explained by the coupling mechanism be-
tween the granules and the surrounding elastic media. While
a straight chain transmits impact energy without significant
losses, a curved chain dispenses the kinetic energy carried
by the granular particles to the elastic guides through their
lateral interactions. If we apply a small-amplitude impact to
a curved granular chain, the amount of energy absorbed by
the elastic guides is relatively small due to the weak pertur-
bations experienced by the elastic guides. However, if a
large-amplitude impact is applied to the curved granular

chain, the elastic guides deform significantly during the
short impact event, and a large portion of the kinetic energy
is dispensed to the elastic guides due to the structural defor-
mation of the elastic guides. This means that the elastic
guides present an improved efficiency of energy absorption
under large dynamic disturbances relative to that of small
excitations. In [26], such amplitude-dependent behavior in a
monodispersed granular chain has been experimentally and
numerically verified using high-speed photography, and the
feasibility of tuning the efficiency of the energy absorption
was demonstrated by manipulating the initial curvature of
the granular system.

The frequency spectra of transmitted waves under vari-
ous impactors are shown in Fig. 11 as a function of striker
masses and frequency components. Both numerical and
experimental results are based on the FFT of time-domain
signals, which are normalized with respect to their maxi-
mum PSD values. For the straight chain, we observe the
presence of the optical and acoustic pass-bands in the low
range of striker masses (see Fig. 11(a)). Here the yellow
dotted lines represent the cutoff frequencies predicted ana-
lytically. As the striker mass increases, however, the distinc-
tion between pass- and stop-bands becomes less evident.
This is consistent with the results observed in the previous
section that discussed the effect of system nonlinearity on
frequency band structures by altering pre-compression. We
also find that most energy is concentrated in the near-zero
frequency domain when the system is excited by large-
amplitude impacts, while the transmitted energy is distributed
in the pass-bands when the system is excited by small-
amplitude impacts. This means that the transmitted waves
exhibit distinctive energy distribution in the frequency
domain, which is highly dependent on the impact amplitude
simulated by various striker masses. Figure 11(b) shows the
frequency responses of the curved chain (Δ058.9 mm) under
various impacts. We again confirm the presence of frequency
band structures resulted from the dispersive effect of propa-
gating waves under the light-striker impacts. In comparison to
the straight chain, the band structure is down-shifted, which is
in agreement with the findings in the previous section. We
perform numerical simulations using the combined DE and
FE model, and the results are shown in Figs. 11(c) and (d). We
find that the numerical results corroborate the experimental
results satisfactorily both in the straight and curved chains.

The experimental and numerical results in this section
confirm the amplitude- and frequency-dependent behavior
of a curved granular chain. We observe an evident frequency
band structure in the linear regime, which can be tuned by
manipulating the initial curvature of the bent chains. We also
witness the formation of highly nonlinear solitary waves in
the nonlinear regime, whose transmission efficiency is crit-
ically determined by the amplitude of external impacts. This
study establishes a foundation for utilizing the combined
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granular and elastic system as a novel structural material for
engineering applications.

Conclusions

In this work, we demonstrated the frequency- and
amplitude-dependent filtering properties of compressive
stress waves transmitted through one-dimensional curved
granular crystals composed of diatomic particles. The
granular crystals studied consist of periodic arrays of
alternating spherical and cylindrical particles, which are
constrained by bent elastic guides. When external exci-
tations are applied to the chains, the elastic guides can
flex and absorb impact energy by converting the par-
ticles’ kinetic energy to potential energy via structural
deformation. Under small-amplitude disturbances rela-
tive to the static pre-compression, the combined granu-
lar and linear elastic system can transmit and support
linear elastic waves, leading to the formation of acoustic
band structures with allowable and forbidden frequency
bands. These band structures can be tuned by manipulating
the amount of the static pre-compression or the chain

curvature initially imposed to the diatomic granular system.
Hence, the combined granular and linear elastic media are
capable of filtering a selected range of frequencies contained
in external impacts. Upon the excitation by large-amplitude
impacts, this hybrid system can generate and propagate
compactly-supported nonlinear waves in the form of soli-
tary waves. In this case, the amount of energy transmitted
through the granular system is critically dependent on the
wave amplitude, and the combined granular and linear
elastic structure performs as an amplitude-dependent filter.
We show that the efficiency of the energy transmission can
be tuned via simple manipulation of the curvature of the
granular system.

The findings of this work suggest the use of hybrid
granular and soft elastic media in engineering applications,
such as tunable protective devices and impact mitigating
structures that can selectively allow or reject the transmis-
sion of external impacts. The characteristics of these new
structures can be tailored by varying material types, geom-
etry, and boundary conditions. In particular, by including
materials of contrasting properties (e.g., soft vs. rigid ele-
ments), these structures can present unique combinations of
mechanical properties unprecedented in other mechanical

(a) (b)

(c) (d)

Fig. 11 Experimental (top row) and numerical (bottom row) surface plots of PSD for straight (left column) and curved (right column) chains. Each
surface plot depicts the force profiles of all 13 striker impacts after being normalized with respect to their maximum PSD values. The dashed yellow
lines denote the band edges of acoustic and optical pass bands predicted by analysis
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systems. This study is limited to the construction of a one-
dimensional granular crystal, but the mechanism developed
in this study can be extended to a three-dimensional archi-
tecture, for example by arraying the granular crystals in
elastic matrices. This can lead to the development of tunable
and lightweight materials system that can form innovative
structures used in space, civil infrastructure, and biomedical
applications.
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