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Modulation instability and wavenumber bandgap breathers in a time layered phononic lattice
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We provide the first experimental realization of wavenumber bandgap (q-gap) breathers. Experiments are
obtained in the setting of a time-periodic phononic lattice where the model and experiment exhibit good
qualitative agreement. q-gap breathers are localized in time and periodic in space, and are the counterparts to
the classical breathers found in space-periodic systems. We derive an exact condition for modulation instability
that leads to the opening of wavenumber bandgaps in which the q-gap breathers can arise. The q-gap breathers
become more narrow and larger in amplitude as the wavenumber goes further into the bandgap. In the presence
of damping, these structures acquire a nonzero, oscillating tail. The controllable temporal localization that
q-gap breathers make possible has potential applications in the creation of phononic frequency combs, energy
harvesting or acoustic signal processing.
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I. INTRODUCTION

The classical discrete breather is a spatially localized,
time-periodic structure found in areas as diverse as photon-
ics, electrical circuits, condensed-matter physics, molecular
biology, chemistry, and phononics [1]. Breather spatial lo-
calization has been exploited for the purpose of information
storage and transfer in the context of photonic crystals [2]
and proposed for energy harvesting applications in phononic
lattices embedded with piezoelectric sensors [3]. Breathers
also find use in modeling the pairing and unpairing of the
DNA double strand [4], and in the targeted breaking of chem-
ical bonds [5]. These are just some of the applications that
were motivated by the discovery of breathers as an alternate
mechanism for localization. Comprehensive reviews such as
[1,6,7] summarize the rich history of discrete breathers. A key
defining feature of the discrete breather is that its temporal
frequency lies within a frequency gap [1]. Spatially periodic
media can have frequency gaps, and hence, discrete breathers
are possible in such systems, see Fig. 1(a) for an illustration.

Other types of localization have been studied since
the discovery of discrete breathers, including localization
in wavenumber (whose corresponding solutions have been
coined q-breathers) [8], and temporal localization via mech-
anisms such as zero-wavenumber gain modulation insta-
bility [9] and nonlinear resonances [10,11]. The so-called
Akhmediev breathers of the nonlinear Schrödinger (NLS)
equation [12], and its discrete integrable counter-part, the
Ablowtiz-Ladik lattice [13], are also localized in time. The
Peregrine soliton of the NLS equation is localized in both
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space and time. Peregrine solitons have been proposed in
explaining the formation of so-called rogue waves found in
the ocean, atmosphere and in a host of other settings [14].
The existence of Akhmediev breathers and Peregrine solitons
relies on the integrability of the underlying equations, and
hence are quite special. While the structures just listed also
feature localization, arguably, the most natural counterpart to
the classical discrete breather is the so-called wavenumber
bandgap (q-gap) breather. It has the same defining features
of the classic breather, but the role of space and time are
switched. In particular, a q-gap breather is localized in time,
periodic in space and, importantly, has a wavenumber that
lies in a q-gap, see Fig. 1(b). This latter feature distinguishes
q-gap breathers from other temporally localized structures
and better completes the analogy to the classical discrete
breather. Moreover, it specifies a robust mechanism for the
formation of q-gap breathers, namely, the opening of a q-gap.
Wavenumber bandgaps can be found in a wide class of tem-
porally periodic lattices (also called time-crystals). Indeed,
there have been many recent advances in experimental plat-
forms for time-varying systems, including photonic [15–18],
electric [19–21], and phononic examples [22–34]. Despite the
availability of time-varying platforms and the natural connec-
tion to the classical breather, q-gap breathers have received
little attention in the literature. Indeed, the existence of such
solutions was first established theoretically in a photonic
time crystal (PTC) only very recently [35] (where they were
called k-gap solitons). While [35] proposes an experimen-
tal approach for the detection of such solutions, there are
currently no reports on their experimental realization. q-gap
breathers represent a new class of solutions and are the focus
of the present paper. We detail how they can be robustly
generated and provide the first experimental realization of
q-gap breathers found in any system. This is done in the
context of a phononic lattice. Controllable temporal local-
ization has potential applications in the creation of phononic
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FIG. 1. (a) Illustration of a classical discrete breather, which is localized in space and periodic in time. The linear spectrum is shown
in the left inset, where the frequency f is plotted against the wavenumber q. The spectrum has a frequency gap, which is induced by the
spatial periodicity of the medium. A schematic of the underlying medium is shown in the right inset. The frequency of the breather lies in
the frequency gap (horizontal gray shaded region in the spectrum shown in the left inset). (b) Illustration of a wavenumber bandgap (q-gap)
breather (the focus of the present paper), which is localized in time and periodic in space. The linear spectrum is shown in the left inset, where
the frequency f is plotted against the wavenumber q. The spectrum has a wavenumber gap, which is induced by the temporal periodicity of the
medium (right inset). The wavenumber of the breather lies in the q-gap (vertical gray shaded region in the spectrum shown in the left inset).

frequency combs [10,11,36], energy harvesting [37,38], or
acoustic signal processing [39]. The alternate mechanism for
temporal localization that q-gap breathers afford and the wide
availability of platforms in which they may be implemented
suggest the potential utility of q-gap breathers in pho-
tonic, phononic, electrical, and even chemical or biological
applications.

The paper is organized as follows: In Sec. II, we introduce
the experimental platform and underlying model equations.
In Sec. III, we derive an exact condition for the opening
of wavenumber bandgaps and compare the analytical sta-
bility predictions against experimental results. Families of
q-gap breathers that emerge from the wavenumber bandgaps
are explored in Sec. IV numerically and experimentally.
Conclusions and avenues of future work are discussed in
Sec. V.

II. EXPERIMENTAL AND MODEL SETUP

We start by describing a time-periodic medium that cor-
responds to the schematic in the right inset of Fig. 1(b). In
particular, we consider a phononic lattice that consists of
repelling magnetic masses with grounding stiffness controlled
by electrical coils. The experimental setup is adapted from the
platform developed in Refs. [24,34]. The chain is composed
of N − 1 ring magnets (K&J Magnetic, Inc., P/N R848) lined
with sleeve bearings (McMaster-Carr P/N 6377K2) compris-
ing the uniform masses, arranged with alternating polarity
on a smooth rod (McMaster-Carr P/N 8543K28). Electro-
magnetic coils (APW Company SKU: FC-6489) are fixed
concentrically around the equilibrium positions of each of the
innermost eight masses, such that they may exert a restoring
force on each mass proportional to the current induced by
applied voltage step-function (Aglient 33220A, Accel Instru-
ments TS250-2). The velocity of each mass is measured using
laser Doppler vibrometer (Polytec CLV-2534), repeating ex-
periments to a construct full velocity field for the lattice.
Figure 2 shows a schematic of the experimental setup.

The system is modeled as Fermi-Pasta-Ulam-Tsingou–
type (FPUT-type) lattice [24,34,40]

Mün + k(t ) un + cu̇n = F (un − un−1) − F (un+1 − un), (1)

where un is the displacement of the nth ring magnet from
its equilibrium position, where the equilibrium distance be-
tween adjacent magnets is d = 0.0334 m. The indices run
from n = 1, . . . , N − 1 and we consider fixed boundary con-
ditions u0(t ) = uN (t ) = 0. All ring magnets have uniform
mass M = 0.0097 kg. Dissipative forces are modeled with
a phenomenological viscous damping term cdun/dt , where
the damping coefficient c = 0.15 N s/m is determined em-
pirically by matching the simulated and experimental spatial
decay of the velocity amplitude envelope of waves traveling
through the lattice [34]. The experimentally measured force-
distance relation between neighboring masses is fit with a
dipole-dipole approximation, as in Ref. [24], which is given
by F (x) = A(d + x)−α , where x is the center-to-center dis-
tance between masses with A = 9.044 × 10−7 N m4 and α =
4. The current resulting from a periodic step function voltage
applied to the electromagnetic coils induces a magnetic field

FIG. 2. Schematic of the modulated magnetic lattice. The masses
with north (N) and south (S) magnetic poles are arranged to be
repelling, which provides nonlinear intersite coupling. The rings
surrounding the magnets are the electromagnetic coils that induce
an onsite stiffness that can be controlled dynamically. This provides
the possibility of a time-varying lattice. The equilibrium distance
between adjacent magnets is d .
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that provides a grounding stiffness modulation of the form

k(t ) =
{

ka, 0 � t < τT

kb, τT � t < T,
k(t ) = k(t + T ). (2)

The step values ka, kb and duty-cycle 0 < τ < 1 are param-
eters. With this choice of stiffness, the medium is periodic in
time but constant in space [see the right inset of Fig. 1(b)]. A
medium of this type is a direct analogy of a spatially periodic
lattice in which classical discrete breathers are possible, see
the right inset of Fig. 1(a).

We use the modulation frequency fmod = 1/T Hz as the
main system parameter to be varied, but we also consider
various values of kb, τ , and c. The parameters M, d , A, α, and
ka = 0 will be fixed throughout the paper. With the exception
of one example in the Appendix, the lattice length parameter
is fixed to N = 11.

III. MODULATION INSTABILITY

To find breathers, we first need to determine the wavenum-
ber bandgap, an example of which is illustrated in the left inset
of Fig. 1(b). This is achieved by computing the stability of
plane waves (i.e., the modulation stability) of the linearized
model

Mün = K (un−1 − 2un + un+1) − k(t )un − cu̇n, (3)

where K = αAdα−1. The linearized equation is obtained by
keeping the linear terms in the Taylor expansion of the non-
linear coupling force A(d + y)−α , where it is assumed that
|un − un−1| � d for n = 1, . . . , N − 1. For time-independent
stiffness [k(t ) = 0], the undamped (c = 0) linear equation has
the dispersion relationship ω2

disp(q) = 4K/M sin2(q/2). In the
case of time-dependent stiffness [k(t ) �= 0], a gap in the
wavenumber axis q is possible [41]. For general time-periodic
stiffness k(t ), a wavenumber bandgap will open where the
dispersion curve ωdisp(q) intersects itself when translated by
an integer multiple of half the modulation frequency [41]. In
general, the modified dispersion relation must be computed
numerically or approximated analytically. Example approx-
imate approaches include a plane-wave expansion [41] or
reduction of the equations of motion to a system where the
dispersion relation can be computed explicitly, as in Ref. [35]
(where coupled-mode equations are derived). In the case of
sinusoidal modulation (leading to a Mathieu-type equation),
the dispersion relation can be approximated using perturba-
tion analysis [34,42]. The advantage of considering k(t ) to be
a periodic step function is that the modified dispersion relation
can be computed exactly, which we now demonstrate.

Making the ansatz un(t ) = Xm(n)�m(t ), one finds
upon substitution into Eq. (3) and enforcing Dirichlet
boundary conditions that the eigenfunctions are Xm(n) =
sin(qmn) where the wavenumber is qm = mπ/N with
m = 1, . . . , N − 1. In the infinite lattice, q ∈ [0, π ]. The
associated eigenvalues are λm = sin2(qm/2). The temporal
part �(t ) satisfies

M�̈m = −[λmK + k(t )]�m − c�̇m. (4)

The general solution of Eq. (4) will be a superposition of
functions of the form �m(t ) = Hm(t )eμmt where Hm(t ) has

period T and μm = σm + iωm is the Floquet exponent where
σm, ωm ∈ R. The Floquet multiplier is eμmT . The waveform
associated with the wavenumber qm will be stable if σm � 0,
or equivalently, if the Floquet multiplier has modulus less than
unity, |eμmT | � 1. The modified dispersion relationship is ob-
tained by plotting the imaginary part of the Floquet exponent,
ω, against the wavenumber q [see the blue lines of the inset
of Fig. 1(b)]. Since growth is possible, it is also instructive to
plot the real part of the Floquet exponent, σ , see Fig. 3(a).

In the case that the stiffness k(t ) is a periodic step function,
see Eq. (2), �m(t ) can be computed explicitly by adapting a
procedure carried out in the context of an undamped Kronig-
Penney photonic lattice [43,44]. In particular, we make the
ansatz

Hm(t ) =
{

Ha,m(t ), 0 � t < τT

Hb,m(t ), τT � t < T,
(5)

where Ha,m(t ) and Hb,m(t ) are the general solutions to Eq. (4)
on the intervals 0 � t < τT and τT � t < T , respectively.
Such explicit general solutions are available since Eq. (4)
is constant on these intervals. Demanding that Ha,m(τT ) =
Hb,m(τT ) and Ḣa,m(τT ) = Ḣb,m(τT ) ensures continuity at
the interface and demanding that Ha,m(0) = Hb,m(T ) and
Ḣa,m(0) = Ḣb,m(T ) ensures that Hm is T periodic. These four
equations have a determinant condition that can be expressed
as (detailed in Appendix A)

G = cosh
[(

σm + c

2M

)
T

]
cos (ωmT ), (6)

0 = sinh
[(

σm + c

2M

)
T

]
sin (ωmT ), (7)

where G depends on the wavenumber and system parameters,
but not the Floquet exponent μm:

G ≡ − s(ka)2 + s(kb)2

2s(ka)s(kb)
sin [s(ka)τT ] sin [s(kb)(1 − τ )T ]

+ cos [s(ka)τT ] cos [s(kb)(1 − τ )T ],

where s(k) = [4M(λmK + k) − c2]1/2/(2M ). These equa-
tions allow for the exact computation of the Floquet exponents
μm = σm + iωm. An example plot is shown in Fig. 3(a). If
|G| � 1 then σm = −c/(2M ) and ωm = cos−1(G)/T . In this
case the underlying solution is stable. If ±G > 1 then ωm =
(3 ± 1)π/(2T ), implying that the imaginary part of the Flo-
quet exponent is an integer multiple of half the modulation
frequency, which is consistent with situation in general time-
periodic lattices [41]. In this case, the real part of the Floquet
exponent is σm = ± cosh−1(∓G)/T − c/(2M ) which implies
the following condition for stability,

|GD| � 1, GD ≡ G sech

(
cT

2M

)
. (8)

Note that this expression is exact and gives an efficient way
to check for stability via direct substitution of the system
parameters into GD and simply checking the inequality. A plot
of GD is shown in Fig. 3(b). The set of wavenumbers where
|GD| > 1 make up the so-called wavenumber bandgap. The
edges can be found by solving GD = ±1. See the gray regions
of Fig. 3, and the inset of Fig. 1(a) for example wavenumber
bandgaps.

023045-3



CHONG, KIM, WALLACE, AND DARAIO PHYSICAL REVIEW RESEARCH 6, 023045 (2024)

FIG. 3. (a) Plot of the modified dispersion relation for the time-varying lattice with kb = 150 N/m, τ = 0.5, c = 0.15 N s/m, and fmod =
45 Hz in the infinite lattice. In particular, f = ω/(2π ) (blue curve) and σ (red curve) are shown against the wavenumber q, where ω is the
imaginary part of the Floquet exponent and σ is the real part of the exponent. The black dots show the corresponding values for a finite sized
lattice with N = 11. The shaded gray region indicates the region of instability (i.e., the wavenumber bandgap). (b) Plot of the function GD

from Eq. (8) in the infinite lattice (solid blue line) and in the N = 11 lattice (black dots). The plane wave is unstable when |GD| > 1, which is
highlighted by the gray region. The inset shows the corresponding Floquet multipliers in the complex plane. There are two multipliers lying
outside the unit circle (also shown) demonstrating the instability of a general solution.

The theoretical linear stability predictions can be compared
with experimental observations. We fix all parameters other
than the modulation frequency ( fmod) and amplitude (kb). In
Fig. 4 we show the stability diagram for various values of the
duty cycle τ . Red indicates instability (|GD| > 1) and blue
indicates stability (|GD| � 1). The white markers superim-
posed on the figure are the parameter values where the zero
state in experiment was observed to be unstable. A solution is
considered unstable in the experimental setup if an initially
at rest lattice does not come to rest after being excited on
one boundary by an impulse (a stroke of �0.015 m at ap-
proximately 0.4 m/s). If it does come to rest, it is classified
as stable. There is good qualitative agreement between the
model predictions and the experiments. Plausible sources of
discrepancy between model and experiment include the lin-
earization of the modulating coil force, possible nonlinearity
of the frictional forces and the impedance of the system dis-
torting the relatively high current signals for the modulation.
Additionally, in the experiment, modulation is not applied
to the first and last nodes, since these elements are used to
drive the lattice. Model discrepancy with experiments for a

modulated magnetic lattice with sinusoidal modulation is dis-
cussed in more detail in Ref. [24,34].

IV. WAVENUMBER BANDGAP BREATHERS

We start the discussion of wavenumber bandgap breathers
by considering the idealized situation of no damping (c = 0).
If all wavenumbers are outside of the gap, then every plane
wave will be linearly stable (i.e., all Floquet multipliers will
lie on the unit circle). Now consider two Floquet multipliers
moving along the unit circle as an underlying system pa-
rameter is varied until they coalesce at −1. At this critical
parameter value, the modes associated with the −1 multiplier
will have underlying temporal period 2T , signaling a period-
doubling bifurcation. Varying the system parameter further,
the two multipliers that coalesced at −1 will split along the
real axis, with one exceeding unity in modulus. In the top
right of Fig. 5, an example Floquet spectrum is shown where
such a bifurcation has occurred. The black multiplier repre-
sents the unstable mode, with corresponding Floquet exponent
μ = σ + iπ/T (in the dispersion diagram, this mode would

FIG. 4. Stability diagram in the ( fmod, kb) plane for c = 0.15 N s/m and (a) τ = 0.3, (b) τ = 0.5, and (c) τ = 0.7. Red indicates instability
and blue indicates stability. The white markers superimposed on these panels are the parameter values where the experiment was observed to
be unstable. A solution is considered unstable in the experimental setup if an initially at rest lattice that is impacted on one boundary does not
come to rest. If it does come to rest, it is called stable.
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FIG. 5. Velocity profile of the sixth node [u̇6(t ) = v6(t )] upon
initialization of Eq. (1) with an unstable plane wave, un(0) =
10−4 sin(q5n). The parameter values are kb = 50 N/m, τ = 0.5,
T = 1/42 s ( fmod = 42 Hz), and c = 0 N s/m. For these parameter
values, the wavenumber q5 falls into a q-gap, with associated Floquet
exponent μ ≈ 5.764 + 42π i. The underlying oscillation has an ap-
proximate period of 2T . The excitation initially grows exponentially
with rate σ ≈ 5.764, but reaches a turning point, and then decays
exponentially with the same rate. This is the so-called wavenumber
bandgap breather. The Floquet spectrum is shown in the top right of
the figure. The larger black multiplier lying outside the unit circle
corresponds to wavenumber q5.

lie in the wavenumber bandgap). In the example of Fig. 5,
the relevant unstable mode corresponds to q5. If one were to
initialize the linear model with this unstable mode, namely,
un(0) = sin(q5n), the solution would oscillate with period 2T
and would grow exponentially with rate σ . If one takes the
same type of initial data, namely, un(0) = a sin(q5n) where
0 < a � 1, for the nonlinear equations of motion, then it is
possible that a wavenumber bandgap (q-gap) breather is gen-
erated. This is precisely what is shown in Fig. 5. Evidently, the

nonlinearity of the system enabled the temporal localization of
the structure. The remainder of the paper will be dedicated to
understanding the nature of the q-gap breather.

The q-gap breather shown in Fig. 5 is a natural first ex-
ample, since it has exactly one wavenumber in the q-gap. For
larger values of the modulation amplitude, kb, the gap size will
increase, and thus more wavenumbers will tend to fall into the
gap. For the experimental realization of q-gap breathers we re-
quired larger modulation amplitudes (discussed in Sec. IV D).
Thus, for our next example, we select kb = 150 N/m and
fmod = 45 Hz, see Fig. 6. The wavenumbers q5 = 5π/11 and
q4 = 4π/11 fall into the gap (q	, qr ) ≈ (0.93, 1.52). The q5

wavenumber is quite close to right band edge. In particular
the distance to the edge is 
q = qr − q5 ≈ 0.09. The Flo-
quet exponent associated with this wavenumber is μ5 = σ5 +
iω5 = 4.8107 + i45π . Like the first example, we initialize the
dynamics with un(0) = a sin(q5n). The excitation grows, and
then decays, exponentially with rate given by σ5. This happens
uniformly within the lattice, as shown by the intensity plot in
Fig. 6(a). Figure 6(b) shows the time series of the velocity
of the sixth node (solid blue curve). Both Figs. 6(a) and 6(b)
demonstrate that the dynamics are localized in time. Spatial
periodicity of the solution is imposed by construction due to
the finite length of the lattice with zero boundary conditions.
The role of space and time have been switched when com-
pared with the classic breathers of space-periodic systems, and
the underlying wavenumber lies in a q-gap. Thus, the solution
shown in Fig. 6 is another example of q-gap breather. Note
that the q-gap breather was able to form despite the existence
of another wavenumber in the gap, namely, q4. The role of
additional modes in the gap is discussed in Sec. IV D.

The breather envelope of a space-periodic FPUT lattice is
described by a soliton of the NLS equation (in the limit of the
temporal frequency approaching the band edge from within
the spectral gap). Motivated by this fact, we fit the velocity
profile v6 with a function of the form β1sech [σ5(t − β2)]
where β j are fitting parameters and σ5 is the real part of
the Floquet exponent. See the gray dashed line of Fig. 6(b).
The good agreement between the velocity profile and the fit

FIG. 6. Wavenumber bandgap breather for kb = 150 N/m, τ = 0.5, fmod = 45 Hz and c = 0 N s/m in various representations. (a) Intensity
plot of velocity after initializing the dynamics with an unstable mode with wavenumber q5. The temporal localization is uniform throughout the
lattice. (b) Time series of the velocity of node 6 of panel (a). The dashed line shows the best-fit envelope. The red dots are the solution sampled
every 2T seconds. The insets show the spatial Fourier transform before (left) and after (right) the turning point. (c) Plot of the Poincaré map
in the (u6, v6) plane (red dots). In particular, a plot of the solution shown in (b) sampled every 2T seconds is shown [note the red dots of panel
(c) correspond to the red dots in panel (b)]. The gray line is the near homoclinic orbit that is generated by initializing the Poincaré map with
several different initial values along the unstable eigenvector of the zero state. The unstable (stable) eigenvectors are shown as red (blue) lines
near the origin. The near homoclinic orbit surrounds a 2T periodic solution (black marker).

023045-5



CHONG, KIM, WALLACE, AND DARAIO PHYSICAL REVIEW RESEARCH 6, 023045 (2024)

envelope function indicates that the growth and decay rates
are indeed given by the real part of the associated Floquet
exponent, in this case σ5.

A. Dynamical systems view of q-gap breathers

To better understand the mechanism behind the formation
of the wavenumber bandgap breather, we construct a Poincaré
map of the dynamics by sampling the solution with the period
associated with the breather, namely, 2T . Thus, the map will
be of the form F j (u0) = u(2T j), where j is an integer, and
u = (u1, u2, . . . , uN−1, v1, v2, . . . , vN−1) ∈ R2(N−1) is vector
valued solution of Eq. (1) with initial value u0. As in the
simulation shown in Fig. 6(b), the initial value of the map is
given by an unstable mode (e.g., with wavenumber q5). The
red dots of Fig. 6(b) show values of the map F that correspond
to v6 and Fig. 6(c) show values of F in the (u6, v6) phase
plane. The eigenvector corresponding to the unstable (stable)
Floquet exponent μ5 (−μ5) is shown in red (blue). The gray
line of Fig. 6(c) is obtained by repeatedly generating the map
F in the (u6, v6) plane for various (small) multiples of the
initial value u0. The origin is a saddle type fixed point, and the
trajectory forms a near homoclinic orbit that surrounds a time-
periodic solution with period 2T [the black dot of Fig. 6(c)].
The periodic orbit was obtained by applying Newton’s method
to the equation 0 = F(u0) − u0. The dynamical systems view
of the waveform allows us to see the interplay of the stability
of the zero state (with exact stability analysis performed in
Sec. III) and the nonlinearity of the system leading naturally
to a near homoclinic orbit. The orbit is not exactly homoclinic,
since it does not approach the origin via the stable eigenvector
as t → ∞. Indeed, as can also be inferred from Fig. 6(b), the
solution does not decay to zero, but rather it experiences small
oscillations. This is due to the existence of other modes in the
system (e.g., ones with associated multipliers lying on the unit
circle), which are excited during the dynamic evolution. The
insets of Fig. 6(b) show a normalized spatial Fourier transform
of the signal before (the left inset) and after (the right inset)
the maximum velocity is attained. In particular, the quantity
|v̂|/| max v̂| is shown against the wavenumber, where v̂(q) =

2
N−1

∑
n vn(t ) sin(nq) where t = 0.66s and t = 1.02s are the

times used to compute the transform before and after the
turning point, respectively. Before the turning point the only
prominent wavenumber is the one associated with the initial
value (in this case q5 = 5π/11). After the turning point, there
is an additional mode excited that lies outside the wavenumber
bandgap (in this case q3 = 3π/11). It is this mode that is
primarily responsible for the nonzero oscillations at the tail
of the breather. If one imposes the additional criterion that a
breather must have tails decaying to zero, then strictly speak-
ing, the structure found here would be a generalized breather,
since the orbit is not exactly homoclinic. Classic breathers
with tails that do not decay to zero are common in continuous
nonintegrable systems, and have sometimes been referred to
as generalized breathers [45]. Over longer time windows, the
amplitude of the signal can grow again (leading to a repeated
appearance of breathers), but eventually the structure typically
breaks down, leading to chaotic type dynamics for long-time
simulations, see Fig. 7. Similar observations have been made

FIG. 7. (a) Same simulation as Fig. 6(b) but over a longer time
interval. The breathing pattern appears twice before breaking down,
and exhibits possible chaotic dynamics. (b) Same as panel (a), but
with kb = 90 N/m. The breathing pattern repeats several times, but
it also eventually breaks down.

for k-gap solitons in photonic systems [35], where the soliton
pattern repeats until it eventually breaks down.

B. Families of q-gap breathers

q-gap breathers for other values of the duty cycle, τ , and
lattice length are qualitatively similar to those of Fig. 6.
Some examples are provided in Appendix B. In this sec-
tion, we focus rather on generating a family of wavenumber
bandgap breathers parametrized by the distance the under-
lying wavenumber is from the band edge. For the breather
shown in Fig. 6 the distance to the edge is 
q = qr − q5 ≈
0.09. This is a natural parameter to consider, as the distance
to the band edge determines breather width and amplitude
in space-periodic systems [1]. Keeping all parameters fixed,
but gradually varying the modulation frequency fmod has the
effect of shifting the bandgap in the wavenumber axis. Thus,
we fix the wavenumber (q5 in this case), whose distance to
the right edge will increase as the modulation frequency is
increased. In particular, we have that 
q = qr ( fmod) − q5. To
find the value of qr in the model, we find values of q such
that GD = −1, where GD is defined in Eq. (8). The larger
of the two solutions of GD = −1 will be qr . Note that it is
possible for a bandgap to open when GD = 1, but that is not
the case for the parameter set chosen for the present study. It is
also possible in principle that multiple bandgaps can exist, but
this situation is not considered here. By construction, 
q = 0
will be precisely when the mode q5 is at the band edge. In
terms of the linear theory, 
q = 0 corresponds to two Floquet
multipliers coalescing at −1 on the unit circle. There is some
critical modulation frequency at which this occurs, which we
call f model

mod .
For each value of fmod (and hence 
q) we generate a q-gap

breather using the procedure described in the previous section,
namely, we initialize the dynamics with the mode a sin(q5n).
The amplitude of the resulting breather is computed as the
maximum velocity of the sixth node, i.e., maxt ‖v6(t )‖. The
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FIG. 8. Plot of the breather amplitude for the c = 0 N s/m (red
dots) and c = 0.15 N s/m (blue circles) simulations vs distance of
the wavenumber to the band edge, 
q. The other parameter values
are kb = 150 N/m and τ = 0.5. The lines show the best-fit function
of the form β1
qβ2 . The markers with error bars are the measured
amplitude from the experiment. The solid red squares and open
blue squares show the theoretical HWHM for the c = 0 N s/m
and c = 0.15 N s/m cases, respectively. The black triangles are the
experimentally measured HWHM.

red dots of Fig. 8 show the amplitude of the breather vs

q. Note that the breather becomes larger in amplitude as
the wavenumber goes deeper into the q-gap, namely, as 
q
increases.

The amplitude data is fit with a function of the form
β1
qβ2 , with the best-fit values being β1 = 3.34 and β2 =
0.57 (see the solid line in Fig. 8 passing through the red
dots). This is consistent with the trend found for discrete
breathers in space-periodic systems where it is well known
that the breather amplitude grows like O(

√

ω), where 
ω

is the difference between the breather frequency and the edge
of the frequency spectrum [1]. Moreover, discrete breathers
typically bifurcate from one (not both) of the band edges.

Which edge is determined by the nonlinearity of the system
(leading to a so-called hardening inequality [1]). Simulations
of our temporally periodic lattice with modes with wavenum-
ber near the left edge of the bandgap (q5 ≈ q	) did not lead to
the robust formation of breathers, suggesting that an analog to
the hardening inequality of discrete breathers may exist in this
setting too.

C. The role of damping on q-gap breathers

Now that we have established the existence of wavenumber
bandgap breathers in Eq. (1), we consider the role of damping,
which will bring us closer to the experimentally relevant con-
ditions. Breathers in experiments will always be a dissipative
analog of breathers in lossless models. To motivate a modified
definition, we repeat the simulations shown in Fig. 6 but
with a nonzero damping parameter. The yellow square (blue
circle) markers of Fig. 9(a) show the orbit with a damping
parameter of c = 0.075 (c = 0.15) N s/m. The orbit starts
close to being homoclinic, but the dynamics are attracted to
a stable fixed point (i.e., a time-periodic orbit of the original
system with period 2T ). This fixed point exists in the lossless
(c = 0) system too [shown as the black marker of Fig. 6(c)],
but it is not asymptotically stable. The orbit in the damped
system experiences an initial exponential growth and a turning
point, like the lossless breather, but rather than approaching
near zero amplitude, the dynamics tend to the stable fixed
point. Thus, the left tail of the “damped breather” (in the time
domain) is much like a lossless breather, whose amplitude
is slightly lower due to the presence of damping. The right
tail of the “damped breather” approaches a periodic oscilla-
tion, whose amplitude is not necessarily small relative to the
amplitude of the breather. See Fig. 9(b) for an example time
series with c = 0.15 N s/m. Simulations with other values of
the damping constant c are qualitatively similar. Examples are
given in Appendix B.

As in the previous section, we also generate a family of
damped q-gap breathers for various modulation frequencies
(and hence 
q values) for the damping value c = 0.15 N s.
The breather amplitude is shown as the blue circle markers in
Fig. 8. The qualitative amplitude trend is similar to the lossless

FIG. 9. (a) Poincaré maps with c = 0.075 N s/m (yellow squares) and c = 0.15 N s/m (blue circles) showing how damping affects the near
homoclinic orbit [shown for reference in red markers, see also Fig. 6(c)]. The parameter values are kb = 150 N/m, τ = 0.5 and fmod = 45 Hz.
The gray lines are generated by initializing the Poincaré map with several different initial values along the unstable eigenvector of the zero
state. (b) Time series example for the c = 0.15 N s/m simulation with 
q = 0.147 ( fmod = 45 Hz). The dashed line shows the best-fit envelope
of the solution up until the maximum. The insets show the spatial Fourier transform before (left) and after (right) the turning point. (c) Same
as panel (b), but for the experiment with 
q = 0.147 ( fmod = 45.2 Hz).
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FIG. 10. (a) Intensity plot of Fourier amplitude in the ( fmod, m) plane, where m is the mode number. The Fourier transform was applied to
the experimental data after the q5 mode was excited using the procedure detailed in the text. Color intensity corresponds to the absolute value
of the spatial Fourier transform of the velocity at the peak of the time series. The parameter values are kb = 150 N/m and τ = 0.5. The vertical
dashed line is the modulation frequency where the m = 5 mode changes stability. (b) Plot of the absolute value of the Fourier modes m = 3
(green dotted line), m = 4 (yellow dotted line), m = 5 (red line) and m = 6 (blue dashed line) vs modulation frequency fmod. The horizontal
dashed line is the Fourier amplitude cutoff value used to determine when mode m = 5 changes stability (the red line). The vertical dashed line
is the corresponding modulation frequency. (c) Same as panel (b), but only the m = 4 (yellow dotted line) and m = 5 (red line) modes are
shown. The horizontal axis is now 
q. By construction 
q = 0 corresponds to the vertical dashed line of panel (a). The markers with error
bars are maximum velocity of the sixth node (taken from Fig. 8). The small spike in amplitude can partially be explained by the emergence of
the q4 mode.

case, but the amplitude is decreased. The amplitude data in the
damped case is also fit with a function of the form β1
qβ2 ,
with the best-fit values being β1 = 2.62 and β2 = 0.59, see
the solid line passing through the blue circles in Fig. 8.

D. Experimental realization of q-gap breathers

We now turn to the experimental construction of wavenum-
ber bandgap breathers using the dissipative definition of a
breather defined above. To initialize the experiment with a
mode with wavenumber qm, the unmodulated system is driven
with the frequency ωdisp(qm). This will excite a waveform with
wavenumber and frequency concentration at qm and ωdisp(qm),
respectively, and is thereby approximate to a linear traveling
plane wave. Once the desired plane wave is excited, the initial
driving is turned off, and the modulation is turned on simulta-
neously. The waveform in the experimental chain at the time
the modulation is turned on will be approximate to the initial
condition used in the simulations of the modulated chain at
t = 0. Like in the damped simulation, the amplitude in the
experiment will initially grow, reach a turning point, decay,
but eventually approach a periodic orbit (or exhibit chaotic
behavior). An example experimental time series is shown in
Fig. 9(c). Notice the qualitative agreement to the theoretical
prediction shown in Fig. 9(b).

To generate a family of q-gap breathers, a method to es-
timate the distance to the band edge in the experiment, 
q,
must first be established. Recall from Sec. IV B that 
q = 0
corresponds to a change in stability of the mode q5, which oc-
curs for some critical modulation frequency f model

mod . In general,
the critical modulation frequency in the experiment will be
different, which we call f expt

mod . To determine when a particular
mode (e.g., q5) changes stability in the experiment, we inspect
the spatial Fourier transform. We call the Fourier amplitude
of a particular mode the absolute value of the spatial Fourier
transform of the velocity at the peak of the time series. The
Fourier amplitudes are shown in Fig. 10(a,b) after the mode

q5 is excited. It can be seen that the procedure to excite the q5

mode does indeed create a waveform that has wavenumber
concentration near q5 (in particular, see the fmod > 45 Hz
range). Imperfections in the experimental procedure, however,
will inevitability excite other modes (the consequence of these
additional modes is discussed below). At some critical mod-
ulation frequency (what we are calling f expt

mod ), the q5 mode
will become stable, and this in turn will result in a very
small Fourier amplitude of the q5 mode. We define the cutoff
amplitude based on the measured amplitude of the noise of
the system, see the horizontal dashed line of Fig. 10(b). The
cutoff modulation frequency corresponding to this amplitude
is approximately 40.8 Hz. This frequency now represents the
experimental value of the critical modulation frequency, f expt

mod .
To have 
q = qr − q5 = 0 in the experiment when qr is eval-
uated with the critical modulation frequency f expt

mod , we define

q = qr ( fmod − δ fmod) − q5, where δ fmod = f expt

mod − f model
mod .

In this way, 
q = 0 corresponds to the frequency at which
q5 becomes unstable for both experiment and model.

With a method to estimate 
q in the experiment now in
place, we can plot the amplitude of the breather as a function
of 
q, see the error bars in Fig. 8. The qualitative amplitude
trend agrees with the theoretical prediction. The breather am-
plitude in the experiment increases as 
q increases, just as in
the theoretical prediction, but the amplitude is underestimated
by the theory (compare the error bars to the blue markers). The
underestimation can also be seen in the time series example
shown in Figs. 9(b) and 9(c). This can be partially explained
by the fact that other modes (including unstable ones) in the
experiment besides q5 are excited. In Fig. 10(b), it can be seen
that the Fourier amplitude of the q4 mode (yellow dotted line)
is non-negligible, even though the waveform shown was the
result of exciting the q5 mode. The insets of Fig. 9(c) show the
spatial Fourier transform of the experiment before (t = 1.6 s)
and after (t = 2.2 s) the turning point, with both demonstrat-
ing non-negligible amplitude of the unstable q4 mode. This
is in contrast with the theoretical simulation, where q4 is also
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unstable, yet is not excited in the theoretical evolution, see
insets of Fig. 9(b). This is due to the fact that we can initialize
the model simulation with an exact q5 mode, which can only
be done approximately in the experiment.

The effect of additional modes on the breather amplitude
is also evident in Fig. 10(c). The markers with error bars from
Fig. 8, showing the experimental breather amplitude, have
been superimposed on Fig. 10(c). Notice that the small spike
in amplitude of the black error bars coincides with the emer-
gence of the q4 mode (yellow dotted line). Thus, breathers
for modulation frequencies with a non-negligible unstable q4

mode are also experiencing growth in that mode, which will
lead to amplitudes that will be larger than the predictions.
This partly explains why the amplitude trend of the theory
in Fig. 8 underestimates the experimental observation. Note
that the parameter values used in this study were determined
before any stability or breather experiments were conducted
(using the procedure detailed in Ref. [34]). While additional
parameter tuning may lead to better quantitative agreement,
we find overall that the qualitative behavior is captured quite
well with the untuned model.

In all the examples considered thus far, the presence of
modes in addition to q5 affected the observed dynamics. It is
worth summarizing and comparing these effects. In the loss-
less case (c = 0), these modes are not initially present but are
instead excited as the waveform experiences growth due to the
instability of the q5 mode. It is the coupling to such modes that
causes small oscillations in the right tail of the structure and
is ultimately responsible for the breakdown of the structure.
In all simulations we preformed, the additional excited modes
laid outside of the q-gap and were therefore neutrally stable.
In the damped case (c �= 0), additional stable modes may also
be excited during the dynamic evolution, but the dynamics
are eventually attracted to a stable-periodic orbit, and hence,
there is no observation of chaotic dynamics. On the contrary,
in the experiments, other modes are excited initially, namely,
in the process of exciting the q5 mode. In particular, unstable
modes (such as q4) are also initially present. It is the presence
of additional unstable modes that leads to larger amplitudes.

Finally, we measure the width of the structures using the
half-width at half maximum (HWHM) metric. The HWHM
is given by tmax − thalf , where tmax is the time the maximum
is attained and thalf is the time where the trajectory first at-
tains half the maximum value. We use the half width (as
opposed to full width) in the metric since the right tail of
the structure is affected by the presence of damping, see
Figs. 9(b) and 9(c). Using the half width allows for better
comparison of the structure for various values of the damp-
ing constant. The experimentally measured values are shown
as the black triangles in Fig. 8. The width of the structure
can be predicted theoretically using the real part of the Flo-
quet exponent. In particular, assuming the envelope of the
breather follows the form asech(σ t ), which we demonstrated
previously was a reasonable assumption, we can compute the
HWHM as sech−1(1/2)/σ5. The prediction in the lossless
(c = 0) and damped (c = 0.15 N s/m) cases are shown as red
solid squares and open blue squares, respectively, in Fig. 8.
For sufficiently large values of 
q, there is good agreement
between theory and experiment, and both show the structure
becomes more narrow as the wavenumber goes deeper into

the gap. This is consistent with discrete breathers in space
periodic systems [1].

E. Contrasting q-gap breathers and discrete breathers

The q-gap breathers studied here share a number of
properties with classical discrete breathers. This includes
the envelope function being well described by a hyper-
bolic secant, the breather amplitude being proportional to the
square-root of the wavenumber’s (or frequency in case of
discrete breathers) distance to the gap edge, and the fact that
breathers typically bifurcate from one edge of the gap (excep-
tions include stiffness-dimers [46] and mass-in-mass chains
[47] where breathers can bifurcate from both edges). There
are, however, key differences. At the linear level in spatially
periodic, temporally homogeneous lattices, all plane waves
are stable. It is only in the presence of nonlinearity that plane
waves can exhibit instability. In comparison, plane waves can
be unstable in linear temporally periodic, spatially homoge-
neous lattices. In terms of breather formation this has practical
implications. For systems with a frequency gap, a breather can
form by initializing the dynamics with a plane wave at the
edge of the linear spectrum. The amplitude of the plane wave
ultimately determines the temporal frequency of the resulting
classical breather [1]. For systems with a q-gap, any plane
wave with wavenumber in the q-gap can be used for initial-
ization, and the underlying frequency and wavenumber of the
resulting breather are approximately equal to the correspond-
ing linear frequency and wavenumber. Discrete breathers are
discrete in the axis of localization and so coupling to higher-
order harmonics can be avoided due to the band limited nature
of the spectrum [1]. This implies that discrete breathers can be
long-lived. The q-gap breathers studied here are continuous
in the axis of localization, and hence, coupling with other
modes is unavoidable in general, leading to small oscillating
tails and eventual break down of the structure. For classical
breathers in continuous systems, coupling to other modes also
occurs in generic systems [45]. The exceptions are integrable
equations, in which case coupling to other modes vanishes due
to the underlying integrable structure [48]. For nonintegrable,
spatially continuous systems, the Hamiltonian structure can be
exploited to bound the amplitude of the tails [45]. The system
studied here is not integrable and there is no Hamiltonian
structure, so it is not clear if the system can be constructed
in such a way to avoid growth of the tails. However, since
the system is finite and discrete in space, it would be possible
in principle to construct a system where all wavenumbers
fall into some gap. In this case, genuine homoclinic orbits
could be possible. The existence of such solutions is a further
direction this study motivates.

V. CONCLUSION

We provided the first experimental evidence of wavenum-
ber bandgap (q-gap) breathers, and corroborated results with
analysis and direct numerical simulations. q-gap breathers are
structures that are localized in time, periodic in space, and
have wavenumber in a q-gap. They are the direct analog of
the discrete breathers of spatially periodic lattices, which are
of fundamental importance in a diverse range of fields.
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We studied q-gap breathers in the context of a time-varying
phononic lattice. The key ingredient for the formation of such
solutions was the opening of a q-gap. For a stiffness given
by a time-periodic step function, we computed an exact con-
dition for the opening of a q-gap and verified the stability
predictions against experiments directly. We showed that the
q-gap breathers become narrower and larger in amplitude as
the underlying wavenumber moves deeper into the q-gap,
both in experiment and theory. The dynamical systems view
of the solutions with no damping showed that the orbits in
the phase plane were not exactly homoclinic but rather ex-
perienced small oscillations due to the presence of neutrally
stable modes. The coupling to such modes causes the eventual
breakdown of the structure over long time simulations. In
the presence of damping, the solutions approached a time-
periodic orbit, but the transition to this state was still well
described by the undamped breather solution.

There are several avenues of inquiry that follow naturally
from this study, including establishing rigorously the exis-
tence of q-gap breathers with oscillating tails, the possible
existence of genuine q-gap breathers (i.e., with both tails
decaying to zero), the numerically exact computation of q-gap
breathers (i.e., numerical roots of the appropriate map up
to a user-prescribed tolerance) and an analytical description
of the breather profiles via a multiple-scales analysis. The
exploration of such structures in higher spatial dimensions or
in other settings beyond the phononic or photonic realm would
also be of great interest. q-gap breathers seem to be generic
and may be possible in a wide class of nonlinear time-varying
systems with a q-gap. Recent advances in experimental plat-
forms for other time-varying phononic as well as photonic
and electric systems suggest that q-gap breathers could be
relevant there as well. q-gap breathers offer an alternative
mechanism for controllable temporal localization, which may
have applications in the creation of frequency combs, energy
harvesting applications, or signal processing. Moreover, any
system that is already described by a nonlinear wave equa-
tion that could be adapted to be time-varying (in order to
induce a q-gap) would be a candidate for the implementation
of q-gap breathers. This suggests that q-gap breathers’ rele-
vance could extend beyond physics to fields such as chemistry,
biology, and more.
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APPENDIX A: MODULATION INSTABILITY
CALCULATIONS

In this Appendix, we are considering the linearized dynam-
ics,

Mün = K (un−1 − 2un + un+1) − k(t )un − cu̇n, (A1)

where K = αAdα−1. We now derive an exact condition for sta-
bility in this equation, discussing first the case of no damping
(c = 0) before moving on to the damped lattice case.

1. Undamped case

Making the ansatz un(t ) = Xm(n)�m(t ), one finds upon
substitution into Eq. (A1) that the spatial and temporal parts
satisfy, respectively,

λmXm(n) = −Xm(n − 1) + 2Xm(n) − Xm(n + 1), (A2)

�̈m = −λmK − k(t )

M
�m. (A3)

The eigenvalue problem Eq. (A2) subject to the Dirichlet
boundary conditions X (0) = X (N ) = 0 has the eigenvalues
λm = 4 sin2(qm/2) where the wavenumber is qm = mπ/N
with m = 1, . . . , N − 1. The associated eigenfunctions are
Xm(n) = sin(qmn). Equation (A3) has the form of a Hill’s
equation when k(t ) is assumed to be periodic [49]. In the
case that the modulation coefficient is given by a step-function
we can obtain an exact solution and stability condition. To
motivate the approach to achieve this, consider that the gen-
eral solution of the Hill’s equation will be a superposition of
functions of the form

�m(t ) = Hm(t )eiωmt , (A4)

where Hm(t ) is a function with the same period as k(t ) and
±iωm is a Floquet exponent [49]. Due to the symmetries of
Eq. (A3) (which has no damping), ωm will either be real, in
which case the underlying solution will be stable, or ωm will
be purely imaginary, in which case the underlying solution
will be unstable. The general solution of Eq. (A1) will thus
be unstable, since it is simply a superposition of the N − 1
solutions of the form Xm(n)�m(t ).

We now find an expression that will indicate if ωm is real,
or purely imaginary, which will be our stability condition. We
suppose that Hm(t ) is a piecewise function with period T ,

Hm(t ) =
{

Ha,m(t ), 0 � t < τT

Hb,m(t ), τT � t < T,
Hm(t + T ) = Hm(t ).

(A5)

Upon substitution of Eq. (A4) into Eq. (A3) we obtain for
0 � t < τT ,

Ḧa,m(t ) =
(

ω2
m − λmK + ka

M

)
Ha,m(t ) − 2iωmḢa,m(t ), (A6)

and for τT � t < T we have

Ḧb,m(t ) =
(

ω2
m − λmK + kb

M

)
Hb,m(t ) − 2iωmḢb,m(t ). (A7)

Equations (A6) and (A7) have the general solutions, re-
spectively,

Ha,m(t ) = e−iωmt [A cos (sa,mt ) + B sin (sa,mt )], (A8)

Hb,m(t ) = e−iωmt [C cos (sb,mt ) + D sin (sb,mt )], (A9)
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where A, B,C, D are arbitrary constants and

sa,m =
√

λmK + ka

M
, sb,m =

√
λmK + kb

M
.

Demanding that Hm(t ) is continuous and differentiable at t =
0 and t = τT leads to the following four conditions:

0 = e−iωmτT cos (sa,mτT )A + e−iωmτT sin (sa,mτT )B

− e−iωmτT cos (sb,mτT )C − e−iωmτT sin (sb,mτT )D,

0 = A − e−iωmT C cos (sb,mT ) − e−iωmT D sin (sb,mT ),

0 = −e−iωmτT [sa,m sin (sa,mτT ) + iωm cos (sa,mτT )]A

+ e−iωmτT [sa,m cos (sa,mτT ) − iωm sin (sa,mτT )]B

+ e−iωmτT [sb,m sin (sb,mτT ) + iωm cos (sb,mτT )]C

− e−iωmτT [sb,m cos (sb,mτT ) − iωm sin (sb,mτT )]D,

0 = −iωmA + Bsa,m + Ce−iωmT [sb,m sin (sb,mT )

+ iωm cos (sb,mT )] − DeωmT [sb,m cos (sb,mT )

− iωm sin (sb,mT )].

The above system of homogeneous linear equations for
(A, B,C, D) has nontrivial solutions only if its determinant
vanishes. This condition leads to the following equation for
ωm,

cos (ωmT ) = cos (sa,mτT ) cos [sb,m(1 − τ )T ]

− s2
a,m + s2

b,m

2sa,msb,m
sin (sa,mτT ) sin [sb,m(1 − τ )T ]

≡ G0. (A10)

Since the magnitude of the left-hand side of this equation can-
not exceed unity for real ω, we have a condition for instability.
In particular |G0| > 1 implies that ω must be imaginary and
thus the underlying solution is unstable. This result is similar
to those obtained in photonic systems [43].

2. Damped case

In the presence of damping (c �= 0), the temporal part of
the separated solution �m(t ) satisfies

�̈m = −λmK − k(t )

M
�m − c

M
�̇m, (A11)

where the eigenvalues λm remain unchanged. In the presence
of the damping term, we cannot assume that the existence of
a Floquet exponent with real part implies instability. Thus, a
slightly more general form of the solution is assumed

�m(t ) = Hm(t )eμmt , (A12)

where μm = σm + iωm is the Floquet exponent where
σm, ωm ∈ R. Note, this is in contrast with the previous sec-
tion where ωm was allowed to be imaginary, which made the
analysis slightly simpler. Here, we have dedicated terms for
the real and imaginary part of the Floquet exponent, with
σm > 0 implying instability. Following the process described
in the previous section with the modified ansatz given by

(A12), we find the following determinant equation:

exp
[
−

(
σm + c

2M

)
T

]
[cos (ωmT ) − i sin (ωmT )]

+ exp
[(

σm + c

2M

)
T

]
[cos (ωmT ) + i sin (ωmT )] = 2G,

(A13)

where G has the same definition as G0 in Eq. (A10), but with

sa,m = 1

2

√
4(λmK + ka)

M
−

( c

M

)2
,

sb,m = 1

2

√
4(λmK + kb)

M
−

( c

M

)2
.

Note that if c = 0 and σm = 0 then G0 = G and Eq. (A13)
is identical to Eq. (A10). Separating Eq. (A13) into real and
imaginary parts we obtain

G = cosh
[(

σm + c

2M

)
T

]
cos (ωmT ), (A14)

0 = sinh
[(

σm + c

2M

)
T

]
sin (ωmT ). (A15)

These are Eqs. (6) and (7) of the main text. Since σm � 0
implies stability, these equations imply the following stability
condition:

|GD| � 1, GD ≡ G sech

(
cT

2M

)
, (A16)

which is Eq. (8) of the main text.

APPENDIX B: MORE EXAMPLES OF q-GAP BREATHERS

In the main text we primarily considered the parameter set
kb = 150 N/m, τ = 0.5 s, and c = 0 or c = 0.15 N s/m. In
this Appendix we provide a few examples of q-gap breather
for other parameter sets.

We start with a lattice of size N = 301, kb = 150 N/m, τ =
0.5, c = 0 N s/m, and fmod = 52 Hz. For a lattice this large,
there will be a large number of wavenumbers that fall into the
gap. Figure 11 shows an example of such a simulation that
was initialized with an unstable mode with q = 181π/301.
In Fig. 11(a), the time series of the velocity of the node
n = 150 is shown. The pulse is localized in time. The insets
show the spatial Fourier transform before (t = 0.48 s) and
after the turning point (t = 1.86 s). During the dynamic
evolution, the (stable) mode q = 240π/301 is excited. The
excitation of such modes ultimately leads to the eventual
break down of the structure, as seen in Fig. 11(a) and also
in the main text for examples in lattices with length parameter
N = 11 (see Fig. 7).

We excite q-gap breathers for several wavenumbers in the
bandgap [for these parameter values the gap is (1.35,1.9)].
In particular, for each wavenumber qm considered, we sim-
ulate the dynamics with initial condition given by the mode
10−4 sin(qmn). The amplitude is taken to be the maximum
velocity in the considered time domain, max0<n<N maxt vn(t ).
Note, this is in contrast with the amplitude metric in the main
text, which only measures the amplitude of the sixth node.
Since the wavenumber is changing, the amplitude of an indi-
vidual node will also change upon changing the wavenumber.
Thus, a smoother metric in this case is to take the max velocity
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FIG. 11. (a) Wavenumber bandgap breather for τ = 0.5, kb =
150 N/m, fmod = 52 Hz, c = 0 N s/m, and N = 301. Velocity profile
of the n = 150 node is shown. While the structure is temporally
localized, it eventually breaks down. (b) Plot of the amplitude (red
dots) and half width at half maximum (HWMH) (red squares) of
breathers bifurcating from the right band edge of the wavenumber
bandgap. The vertical black dashed line is the edge of the bandgap.

among all nodes. The width of the solution is measured to be
half the width at half the maximum of the solution (HWHM),
as in the main text. As Fig. 11(b) shows, the wavenumber
gap breather follows the same trend as shown in the main
text; the amplitude increases and the width decreases as the
wavenumber goes deeper into the gap. At some point, the
breather no longer forms (q ≈ 1.7).

We now return to the lattice size of the experiment, with
N = 11. In this case, the wavenumber bandgap breathers are
qualitatively similar for other values of the duty cycle τ , as
seen in Fig. 12.

Figure 13 shows how the wavenumber bandgap breather
evolution is affected by the presence of damping. A value of
the modulation amplitude kb that is different from the main
text is used (kb = 90 N/m in this example). For nonzero
damping, there exists a nonzero fixed point that can be asymp-
totically stable that the dynamics are eventually attracted to.
In the transient regime, as the damping is increased, the time
between consecutive peaks in the re-occurrence decreases
(compare the c = 0.01 N s/m and c = 0.05 N s/m panels).
For larger values of the damping constant the stable fixed
point (i.e., a time periodic orbit with period 2T ) is approached
fairly quickly (see the c = 0.15 N s/m panel).

FIG. 12. Wavenumber bandgap breathers for kb = 150 N/m, c =
0, N = 11 and various τ values. Velocity of the sixth node is shown.
(a) Breather with τ = 0.3 and fmod = 49.4 Hz. (b) Breather with τ =
0.7 and fmod = 42.34 Hz.

FIG. 13. Examples of wavenumber bandgap breathers for kb =
90 N/m, fmod = 45 Hz, τ = 0.5, and N = 11 and various c N s/m
values.
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