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Abstract
We theoretically and experimentally investigate visco–thermal effects on the acoustic propagation
throughmetamaterials consisting of rigid slabswith subwavelength slits embedded in air.We
demonstrate that this unavoidable lossmechanism is notmerely a refinement, but that it plays a
dominant role in the actual acoustic response of the structure. Specifically, in the case of very narrow
slits, the visco–thermal losses avoid completely the excitation of Fabry–Perot resonances, leading to
100% reflection. This is exactly opposite to the perfect transmission predicted in the idealised lossless
case.Moreover, for awide range of geometrical parameters, there exists an optimum slit width at
which the energy dissipated in the structure can be as high as 50%. This work provides a clear evidence
that visco–thermal effects are necessary to describe realistically the acoustic response of locally
resonantmetamaterials.

1. Introduction

Metamaterials are artificial structuredmaterials inwhich the presence of resonances in themicro/meso-scale
leads to unprecedented properties [1, 2]. In recent years,metamaterials consisting of rigid slabs with
subwavelength perforations have attracted considerable attention due to their ability to achieve normalised-to-
area transmission (i.e., transmission normalised to the fraction of area occupied by the holes) significantly bigger
than unity, a phenomenon known as extraordinary acoustic transmission (EAT) [3]. This phenomenon,
analogue to extraordinary optical transmission [4], can be achieved bymeans of different physicalmechanisms,
such as the excitation of Fabry–Perot (FP) resonances in the holes [3, 5–7], the acoustic Brewster angle [8, 9], or
the acoustic analog to the supercoupling effect in density–near–zerometamaterials [10]. Promising applications
to this fascinating phenomenon have been suggested, including acoustic collimators [11], superlenses [12],
highly efficient Fresnel lenses [13], beam shifters [14], passive phased arrays [15] and invisibility cloaks [16].

Amain limitation in the practical realization of EAT and other unconventional phenomena in locally
resonantmetamaterials arises from the unavoidable presence of viscous and thermal boundary layers at the
solid-fluid interface [17, 18], which can induce important losses. However, only a few papers have investigated
boundary layer effects inmetamaterials. In [19], it was demonstrated that visco–thermal dissipation has a strong
influence in the slow sound propagation inwaveguides with side resonators, hindering the formation of near–
zero group velocity dispersion bands. This feature was exploited later to design low frequency acoustic absorbers
[20].More recently, visco–thermal dissipation inmicroslits has been used to enhance the attenuation of
metamaterials [21], and important boundary layer effects have also been reported in phononic crystals [22, 23].

The goal of the present work is to investigate visco–thermal losses in acousticmetamaterials consisting of
rigid slabswith subwavelength slits. Previous studies have already proven that this dissipationmechanismmay
significantly attenuate the otherwise perfect transmission peaks associated to FP resonances [8, 24], while the
nonresonant EATmechanismbased on the Brewster angle remainsmuch less affected [8]. However, theseworks
lack a clear theoretical analysis of the behaviour of the system in the presence of losses and do not describe
completely the physicalmechanisms governing the reduction of transmission, in relation to reflection and/or
dissipation. This paper complements these earlier studies, providing an experimental and theoretical analysis of
the acoustic transmission, reflection, and absorption in the presence of visco–thermal dissipation. Our results
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demonstrate that this lossmechanism avoids completely the excitation of Fabry–Perot resonances in gratings
with very narrow slits, which leads to 100% reflection. In addition, we prove that the optimumabsorption is
about 50%,which is attributed to the critical coupling of the slit cavity resonators with the hostmedium [25–28].

2. Experimental setup

Figure 1(a) shows the samples under experimental consideration, whichwere fabricated using 3Dprinting
(StratasysObjet500). Thematerial usedwas a rigid thermoplastic (Veromaterials (c))withmanufacturer
specifiedmass density 1.17–1.18 g cm−3 andmodulus of elasticity 2–3 GPa. The samples are rectangular blocks
with an air channel connecting the input and output sides. Sample A has a straight channel, while in samples B to
E the channels describe a zigzag path. Forwavelengthsmuch bigger than the height of the corrugations, the
zigzag channel behaves similarly to a straight slit with effective length Leff, which is approximately equal to
shortest path taken by thewave to pass through the structure [29, 30]. The samples were placed between two
aluminium tubes with square cross-section and 34mm inner side, as shown infigure 1(b). The square cross-
section artificially imposes periodic boundary conditions in the transverse directions. Since, from the point of
view of the planewaves traveling inside the tubes, the samples’ geometry is constant along the z-direction, no
momentum can be excited in this direction. Therefore, the pressure field is always constant in z, meaning that
the structure is equivalent to a 2D slabwith a periodic array of slits along the y-direction, see figure 1(c). The
relevant geometrical parameters of this equivalent system are the slit width w 2.7mm= , the grating period
d=34mmand the effective grating thickness Leff, L L 52 mmeff = = for Sample A, L L2.08eff = for Sample
B, L L3.16eff = for SampleC, L L4.24eff = for SampleD and L L5.32eff = for Sample E. The transmission
T p pt i

2∣ ∣= , reflection R p pr i
2∣ ∣= , and absorption coefficient A R T1= - - weremeasuredwith 4

microphones (G.R.A.S. 40BD)using the two-port technique [31], where p p,i r and pt are respectively the
complex amplitude of the incident, reflected and transmitted planemode [see figure 1(b)].Wemeasured these
quantities using phase sensitive detectionwith a sinusoidal wave as reference signal, injected to a loudspeaker
(Clarion SRE 212 H) on the left extremity. A 150mmthick absorbing foamwas placed on the right side to
minimise backward reflections. The testing frequency rangewas limited to 1 5[ ]- kHz. The lower limit is
imposed by the loudspeaker, which is not able to radiate sound below approximately 1kHz. The upper limit is

Figure 1. (a) Samples under test, characterised by the slit width w 2.7 mm= , the grating period d=34mmand the effective grating
thickness L L 52 mmeff = = for Sample A, L L2.08eff = for Sample B, L L3.16eff = for Sample C, L L4.24eff = for SampleD and
L L5.32eff = . The cover of the samples has been removed to reveal the internal structure. (b) Schematic of the experimental setup. (c)
2Dperforated slab equivalent to the one studied experimentally.
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imposed by the cutoff frequency of the first high-ordermode in the ducts, approximately 5kHz, so that only the
planemode excites the samples.

3.Model

The acoustic propagation through the grating depicted infigure 1(c) ismodelled using amultimodal approach
developed in previous works by the authors [13, 32].We express the acoustic pressure field, p x y,( ), as amodal
decomposition,

p x y A B y, e e , 1
n

n
x

n
x

n
n n( ) ( ) ( ) ( )ȷ ȷå f= +b b-

whereAn andBn are respectively themodal amplitude of the n-th forward and backwardmode, nb are the
propagation constants, and yn ( )f are the eigenfunctions. In the surrounding space with periodic boundary
conditions, the eigenfunctions are
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where k cw= is thewavenumber in free space,ω is the angular frequency, c is the sound speed, and θ is the
incidence angle with respect to x of the impinging planewave (here 0q = ). Assuming rigid boundaries, the
eigenmodes of the slit are given by,

y
w

n

w
y

w
n

2
cos

2
, 3n

n,0( ) ( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ �f

d p
=

-
- Î

with n,0d theKronecker delta ( 1n,0d = for n=0 and 0n,0d = otherwise).
In the absence of losses, the propagation constants of the slitmodes are given by the dispersion relation

k n wn
2 2 2( )b p= - . The effect of the viscous and thermal losses can be taken into account by introducing an

additional term into these propagation constants (see [33]),

k
n

w

k

w

2
2 Im Re 4n n n n

2 2
2

,0 ȷ( )( { } { }) ( )⎜ ⎟⎛
⎝

⎞
⎠b

p
d e e= - + - -

where

n

wk
1 , 5n v t

2

( )⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥e

p
e e= - +

kl
1

2
, 6v

vȷ( ) ( )e = +

and

kl1

1 2
, 7t

tȷ( )
( )

( )e
g

=
+
-

In equations (5)–(7), 1.4g = the adiabatic specific heat ratio of air, lv is the viscous characteristic length and lt is
the thermal characteristic length. At standard conditions, c 344 m» /s, lv and lt are respectivelly
l 4.5 10v

8= ´ - mand l 6.2 10t
8= ´ - m (see [33]).We note that, according to the time convention chosen in

this paper (e tȷw- ), we only keep solutions to equation (4) fulfilling Re , Im 0n n{ } { } .b b .
Writing the continuity equations of pressure and normal velocity at the interface between the grating and the

surrounding space leads to the reflection and transmissionmatrices, R and T (see [13, 32] for details), defined as
A ARR I=
G G

and A ATR I=
G G

, where AI

G
, AR

G
and AT

G
are row vectors containing the incident, reflected and

transmittedmodal amplitudes. Finally, the energy reflection, transmission and absorption coefficients are given
respectively by
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where ckY diag n{ }b r= and superscripts ‘t’ and ‘*’ indicate respectively the transpose and the complex
conjugate. The series of equation (1)was truncated to 40modes in the free, periodic space and 5modes in the slit,
fromwhich only the fundamental one [n= 0 in equations (2)–(4)] is propagative.
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4. Results

We start our analysis by studying the influence of Leff in the acoustic response of the samples. Figures 2(a)–(e)
show the experimental (solid lines) and numerical (dash-doted lines) transmission coefficients. The lossless
transmission coefficients (doted lines), obtained by replacing nb with k n wn

2 2 2( )b p= - in equation (4), are
also shown. The lossless transmission coefficients exhibits the perfect transmission peaks typical of FP
resonances at f sc L2 eff» , with s a positive integer. However, when visco–thermal effects are included in the
model, we observe a strong attenuation of the resonance peaks as Leff increases, which is in good agreementwith
the experimental results.We also observe a downshift of the resonance frequencies compared to the lossless case,
due to the slowing down of thewave because of the dissipation [24]. Thesefigures represent afirst and clear
evidence that neglecting visco–thermal effects leads to a poor description of the actualmetamaterial response.

Figures 2(f)-(j) show the absorption coefficients as a function of frequency for the different samples.
Experimental and numerical results are in good qualitative agreement and demonstrate a strong dissipation at
the FP resonance frequencies. The attenuation peaks reach between 33%and 55% in experiments, and between
30%and 50% in the numerical results.We also notice an increase of absorptionwith frequency, which is due to
the fact that Im 0{ }b ( 0b is the propagation constant of the fundamental slitmode) also increases with frequency,
approximately as f , see equation (4).

Although the agreement between experimental and numerical results is globally good, particularly in terms
of the amplitude of the absorption peaks, we also observe some discrepancies. The experimental absorption
coefficient is in general higher than the numerical one, which can be atributed to additional losses in the
experimental setup, as visco–thermal losses in the aluminium tubes (these effects are onlymodelledwithin the
slits), material losses, or losses due to energy leakage between the different pieces forming the experimental
apparatus.We also observe features in the experimental curves that are not observed in the numerical results.

Figure 2. (a) to (e) show the transmission coefficients for samples A to E, respectively. (f) to (j) show the absorption coefficients for
samples A to E, respectively. The shaded regions in (h), (i) and (j) represent the frequency range inwhich vibrationalmodesmay exist.
An example of thesemodes at f=2750Hz is shown in (i).
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The experimental curves around the fourth peak infigures 2(h)-(j) exhibit an additional peak, not observed in
the numerical curve. The origin of these peaks is the excitation of vibrationalmodes of the samples, which is
consistent with the downshift of the peak frequencies as the height of the internal corrugations increases.We
verified this through the computation of the samples’ vibrationalmodes using ComsolMultiphysics. The
shaded regions infigures 2(h)–(j) represent the frequency range inwhich vibrationalmodes were obtained,
accordingly to the range ofmechanical parameters provided by themanufacturer. An example of thesemodes at
f=2750Hz is displayed infigure 2(i).

It is remarkable to achieve such high absorption using visco–thermal effects, considering that the slit width is
about 2 orders ofmagnitude bigger than the viscous and thermal boundary layers ( 10 m5~ - [34]). This
behaviour, which is consistent with recent observations byWard et al. [24], is rather surprising as intuition
suggest that visco–thermal effects would only become relevant when the slit width is of the same order as the
boundary layers’ thickness.

To quantify themaximumamount of energy that can be absorbed in these structures by the combination of
FP resonances and visco–thermal losses, we have computed the amplitude of the first absorption peak,Ares, as a
function of the geometrical parameters. Figure 3(a) showsAres versus Leff andw for d=34mmfixed, and
figure 3(d) shows the same quantity versus d andw for L 52 mmeff = fixed.We observe that the parameter
having a stronger influence on the response is the slit widthw. For any Leff and d considered,Aeff exhibits a
maximumbetween w 0.5 mm= andw=2mm, atwhich the structure dissipates about 50%of the incident
energy.

The vanishing ofAres after itsmaximum is due to the fact that the acoustic impedance of the surrounding
media, Z c d1 r= , approaches that of the slit cavity, Z ck w2 0r b= , as w dl . This inhibits the formation of a
high amplitude standingwave in the slit cavity and reduces the ability to dissipate energy. However, the
vanishing ofAres as w 0l is less straightforward. In principle, visco–thermal losses (given by Im 0{ }b ) and the
strength of the FP resonance (provided by the impedance ratio Z Z1 2) increase as w 0l when considered
separately. Hence, one should expect the dissipation to increase also in this region.However, inspecting the
transmission and reflection coefficients at resonance, respectivellyTres [figures 3(b) and 3(e)] andRres

[figures 3(c) and 3(f)], we observe that the structure behaves as a perfect reflector as w 0l , meaning that very
little energy is stored (and therefore dissipated) in the resonator. Remarkably, although the dramatic drop in the
transmission is a direct consequence of the presence of losses in the system, this drop is not reflected in an
increase of dissipation.

To explain this counterintuitive behaviour, we derive analytical expressions for the reflection and
transmission coefficients. To accomplish this, we reduce ourmodel to only the fundamentalmode in both the
slit cavity and the free, periodic space [n= 0 in equation (1)]. The amplitude reflection and transmission
coefficients of thismode, respectively r0 and t0, take the following form
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2∣ ∣= andT t0
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Contrary to the conservative case (equations (11) and (12)), we see that the acoustic response at resonance
depends on the geometrical parameters, both on Leff andw/d (through the impedance ratio Z Z w d1 2 µ ). For
w d� , that is Z Z 01 2 l , one has R 1l andT 0l , which is consistent with the numerical results infigure 3.
Remarkably, this result holds for any L 0eff > as long as dissipation is present in the slit (Im 00{ }b > ), which is
always true in realistic situations. In otherwords, the reflection always tends to 1 in slabs such that w d� ,
regardless of the thickness Leff. This is visible infigure 3(c). Another implication of equations (13) and (14) is that,
whenw is very small (say w 1< mm), high transmission can be achieved only if the period d is comparable tow,
that is when Z Z 11 2 l . Thismeans that EAT (i.e. transmission considerably bigger than unitywhen
normalised to the ratiow/d) cannot be achieved in slabs with very narrow slits.

In order to obtain an experimental evidence for this behaviourwe have fabricated and tested two additional
samples. The new samples are identical to sample A, but the slit width is equal to 0.7mmand 1.7mm.
Figure 4(a) to 4(c) show, respectively, the experimental absorption, transmission and reflection coefficients.
Thesefigures confirm the behaviour described previously infigure 3: the reflection (transmission) increases
(decreases)monotonically as w 0l , and there is an optimumw thatmaximises the absorption. For a
quantitative comparison of experiments with theory, figures 4(d)–4(f) show, respectively,Ares,Rres andTres as a
function ofw. Solid lines represent the analytical results obtainedwith equations (11) and (12). Dashed lines

Figure 3. (a)numerical absorption, (b) transmission and (c) reflection coefficients at resonance as a function of Leff andw, for a
constant d=34mm. (d)Numerical absorption, (e) transmission and (f) reflection coefficients at resonance as a function of d andw,
for a constant L 52 mmeff = .
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represent the numerical result obtainedwith themultimodalmethod, equations (8) and (9). The experimental
data, obtained from themaxima ofA andT, orminima ofR infigures 4(a)-(c) is representedwith dots.
Horizontal error bars in experimental results represent the standard deviation of the actual slit width from the
desired values,measured at four different points along the slit. This deviationwas less than 0.1mmfor all
samples. The trend exhibited by experimental results agrees verywell with both numerical and analytical results,
either in absorption, transmission and reflection, which corroborates the theoretical predictions.

The optimum0.5 absorption found infigures 3(a), 3(d) and 4(d) is a characteristic of systemswith open
resonators fulfilling the critical coupling condition [25], a phenomenon that has recently attracted considerable
attention in acoustics [26–28]. This condition refers to the situation inwhich the energy dissipated in the
resonator is equal to the energy radiated to the hostmedium. In the case of a symmetric resonator and one–sided
excitation (as considered in this paper) critical coupling leads to 0.5 absorption [26–28]. To corroborate this
phenomenon in our system, we use the quality factor of the Fabry–Perot transmission peaks,
Q E E EVT rad( )= D + D , where E is the energy stored in the slit cavity resonator, EVTD is the energy dissipated
per cycle due to visco–thermal effects and EradD is the energy radiated per cycle. This quantity is computed as
Q f fres= D , where fres is the resonance frequency and fD is the half–power bandwidth. The quality factor can

also be expressed as Q Q Q1
VT

1
rad

1= +- - - , with Q E EVT
1

VT= D- and Q E Erad
1

rad= D- . In the absence of visco–
thermal losses (Q 0VT

1 =- ) computing the quality factor of the system gives directly the term Qrad
1- . Once Qrad

1- is
known, the term QVT

1- is given by Q Q QVT
1 1

rad
1= -- - - . Notice that critical coupling occurs when Q QVT

1
rad

1=- - .
The red and blue curves infigure 4(d) represent, respectively, Qrad

1- and QVT
1- . As expected, it is observed that the

optimum0.5 absorption (w= 1.20mm) is very close to the crossing between Qrad
1- and QVT

1- (w= 1.24mm). It is
interesting to note that critical couplingmay lead to 100%absorption using a reflecting surface close to the slab
[26, 27], or using asymmetric resonators [28]. These configurations provide an interesting approach for the
development of high performance sound absorbingmaterials.

Figure 4. (a)Experimental absorption, (b) transmission and (c) reflection coefficient for sample Awith slit width 0.7mm (solid line),
1.7mm (dashed line) and 2.7mm (dotted line). (d)Absorption, (e) transmission and (f) reflection coefficient at resonance as a
function ofw. Dots represent the experimental data, obtained from themaxima infigure (a) and (b) and theminima infigure (c). Solid
lines represent analytical results (equations (13) and (14)) and dashed lines represent numerical results (equations (8) and (9)). The red
and blue curves in (d) represent Qrad

1- and QVT
1- , respectively.
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5. Conclusion

In summary, visco–thermal effects are essential to describe realistically the acoustic response ofmetamaterials
composed of rigid slabswith subwavelength slits. Due to the presence of this lossmechanism, the behaviour of
the structure at the FP resonances depends completely on the geometrical parameters, which can be adjusted to
achieve high transmission, high absorption or high reflection.Ourworkmay have important implications in the
design of acousticmetamaterials. For instance, the inability to obtain sharp FP resonances in slabs with very
narrow slits compromises the practical realization of resonant EAT at ultrasonic frequencies. On the other hand,
understanding and exploiting this property gives the possibility to design subwavelengh sized, tailorable devices
providing high transmission, high reflection or high absorption. From amore general perspective, we expect
that our workwill result inwidespread consideration of this unavoidable lossmechanism in acoustic
metamaterials research.
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