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A B S T R A C T

We investigate the propagation of Rayleigh waves in a half-space coupled to a nonlinear
metasurface. The metasurface consists of an array of nonlinear oscillators attached to the free
surface of a homogeneous substrate. We describe, analytically and numerically, the effects of
nonlinear interaction force and energy loss on the dispersion of Rayleigh waves. We develop
closed-form expressions to predict the dispersive characteristics of nonlinear Rayleigh waves
by adopting a leading-order effective medium description. In particular, we demonstrate how
hardening nonlinearity reduces and eventually eliminates the linear filtering bandwidth of the
metasurface. Softening nonlinearity, in contrast, induces lower and broader spectral gaps for
weak to moderate strengths of nonlinearity, and narrows and eventually closes the gaps at high
strengths of nonlinearity. We also observe the emergence of a spatial gap (in wavenumber) in
the in-phase branch of the dispersion curves for softening nonlinearity. Finally, we investigate
the interplay between nonlinearity and energy loss and discuss their combined effects on the
dispersive properties of the metasurface. Our analytical results, supported by finite element
simulations, demonstrate the mechanisms for achieving tunable dispersion characteristics in
nonlinear metasurfaces.

. Introduction

The dynamics of elastic media equipped with a distribution of locally resonant elements, also known as metamaterials, has
ecome an established field of research for mechanicians and physicists interested in manipulating the propagation of elastic waves.
n the last two decades, a plethora of studies have proposed novel metamaterial designs to enrich the dynamics of discrete and
ontinuous waveguides composed of spring–mass chains, rods, beams, plates, and 3D architectured lattices [1,2].

For bulk metamaterials, the majority of the proposed layouts require complex geometries, thereby challenging the available
anufacturing techniques both at the micro and at large scales. Therefore, more recent design strategies take advantage of elastic
etasurfaces, thin resonant interfaces patterned at the surface of an elastic waveguide or at the junction between different media [3].
everal of these resonant interfaces aim at manipulating the propagation of surface waves in elastic substrates, e.g., Rayleigh and
ove waves. Metasurfaces of this type can support a rich variety of wave phenomena, such as amplitude attenuation via mode
onversion (classical [4] or Umklapp conversion [5]), energy trapping [6], waveguiding [7], and lensing [8,9]. These phenomena
re investigated to inform and enable technological applications based on surface acoustic waves (SAW) for signal processing [10],
nergy harvesting [6], and mitigation devices for ground-borne vibrations [11].

∗ Corresponding authors.
E-mail addresses: antonio.palermo6@unibo.it (A. Palermo), behrooz.yousefzadeh@concordia.ca (B. Yousefzadeh).

1 Equal contributors and corresponding authors.
vailable online 11 November 2021
022-460X/© 2021 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.jsv.2021.116599
eceived 14 July 2021; Received in revised form 24 October 2021; Accepted 31 October 2021

http://www.elsevier.com/locate/jsvi
http://www.elsevier.com/locate/jsvi
mailto:antonio.palermo6@unibo.it
mailto:behrooz.yousefzadeh@concordia.ca
https://doi.org/10.1016/j.jsv.2021.116599
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2021.116599&domain=pdf
https://doi.org/10.1016/j.jsv.2021.116599


Journal of Sound and Vibration 520 (2022) 116599A. Palermo et al.

l
i
f
t
s
p
t

l
t
t

a
c

s
m
b
f
t
t

p
c
a
c
t
a
n
m

i
i
n
a

2

2

I

w

w

Theoretical models of increasing complexity have been developed to describe the dynamics of elastic metasurfaces. At its simplest
evel, a metasurface can be modeled as a uniform array of discrete oscillators (a spring–mass system) attached to a homogeneous
sotropic elastic substrate [12]. The uniform distribution and the sub-wavelength dimensions of the resonators allow a mathematical
ormulation based on the effective-medium theory, where the resonators are included as dynamic effective boundary conditions of
he Robin type for the substrate [12,13]. This formulation can describe the dynamic coupling between the resonators and the
ubstrate. The dynamics of the resonators has later been enriched by adopting continuous models for rods [14], beams [15] and
lates [16]. Similarly, the description of the substrate has been improved to account for more complex rheological models such as
he presence of fluids or the variation of the elastic properties along the medium depth [17].

Alternatively, asymptotic analysis can be used to obtain closed-form expressions for dispersion relations, for example for
ongitudinal and flexural metasurfaces [14,15]. Similar techniques can be utilized to obtain homogenized models for calculation of
he wave fields and reflection coefficients of periodic metasurfaces [16]. Additionally, asymptotic analysis can be successfully used
o describe the nonreciprocal propagation of Rayleigh waves in metasurfaces with space–time modulated properties [18,19].

Graded arrangements of resonators have been investigated for wave guiding and focusing applications [6,20]. When the
rrangement of surface resonators is not regular in space, Green’s functions and multiple scattering techniques can be used to
alculate the wave field and the transmission coefficients [21].

Despite the rich literature on elastic metasurfaces, the focus has predominantly remained on the propagation of low-amplitude
urface waves across linear locally resonant structures. Indeed, nonlinearity may be utilized to introduce new functionalities for
etasurfaces. Nonlinear effects can be triggered by generation of finite-amplitude waves or by engineering the interaction force

etween the resonator and substrate [22,23]. The presence of nonlinear forces can enable and enhance a variety of unique
unctionalities such as tunable [24] and asymmetric [25] propagation of waves. Although nonlinearity has been utilized to expand
he available design space in metamaterials [1,26], its application in metasurfaces remains rare [3,27,28]. The most relevant studies,
o the best of our knowledge, are those that involve nonlinear resonators attached to a one-dimensional substrate [29–33].

In this work, we investigate the nonlinear dispersive properties of a metasurface consisting of a uniform array of local resonators
laced on the free surface of a homogeneous elastic substrate. Both nonlinearity and energy loss of the local resonators are
onsidered. We focus on the effects of the nonlinear interaction between the surface waves and resonators, and describe how the
mplitude-dependent response of the surface resonators influence the dispersion of Rayleigh waves. To this purpose, we develop
losed-form expressions for the leading-order nonlinear dispersion relation of the metasurface and discuss the effects of different
ypes of nonlinearity (softening and hardening), of energy loss, and of the combined effects of damping and nonlinearity. We support
nd validate our theoretical findings by reproducing the main dispersion characteristics using direct numerical simulations. The
umerical results highlight additional nonlinear effects (third harmonic generations) that are not accounted for in our analytical
odel.

This work is organized as follows: the general formulation of the problem is provided in Section 2. In Section 3, we discuss the
nfluence of the surface resonators on the dispersion of Rayleigh waves and highlight the prominent effects of nonlinearity in the
nteraction force. The influence of incorporating energy loss in the surface resonators is explored in Section 4 for both linear and
onlinear resonators. Numerical validation of the main results are presented in Section 5. We summarize our findings in Section 6
nd discuss a few avenues for further developments.

. General formulation

.1. Metasurface model

The system comprises a uniform array of nonlinear resonators placed on a semi-infinite, isotropic elastic substrate (see Fig. 1).
n a 2D plane-strain state, the elastic waves in the substrate are governed by the equations

𝜙,𝑥𝑥 + 𝜙,𝑧𝑧 = 𝜙,𝑡𝑡∕𝑐2𝐿
𝜓,𝑥𝑥 + 𝜓,𝑧𝑧 = 𝜓,𝑡𝑡∕𝑐2𝑇

(1)

here 𝜙 and 𝜓 are, respectively, the potentials for the longitudinal and shear waves, 𝑐𝐿 =
√

(𝜆 + 2𝜇)∕𝜌 and 𝑐𝑇 =
√

𝜇∕𝜌 are the
corresponding wave speeds [34,35], with 𝜌, 𝜆 and 𝜇, respectively, the density and the Lamé parameters of the substrate. We denote
with (.),𝑗 the partial derivative 𝜕(.)∕𝜕𝑗.

For a substrate with a surface at 𝑧 = 0 and extending to 𝑧 = −∞, we assume harmonic wave solutions to Eq. (1) that travel in
the 𝑥 direction and remain bounded in the 𝑧 direction

𝜙(𝑥, 𝑧, 𝑡) = 𝐵𝐿𝑒
𝑞𝐿𝑧𝑒𝑖(𝜔𝑡−𝑞𝑥) , 𝑞𝐿 =

√

𝑞2 − 𝜔2∕𝑐2𝐿 (2a)

𝜓(𝑥, 𝑧, 𝑡) = 𝐵𝑇 𝑒
𝑞𝑇 𝑧𝑒𝑖(𝜔𝑡−𝑞𝑥) , 𝑞𝑇 =

√

𝑞2 − 𝜔2∕𝑐2𝑇 (2b)

here 𝐵𝐿 and 𝐵𝑇 are the potential amplitudes. The stress components in the substrate are related to the potentials 𝜙 and 𝜓 by

𝜎𝑧𝑥 = 𝜇(2𝜙,𝑥𝑧 + 𝜓,𝑥𝑥 − 𝜓,𝑧𝑧) (3a)

𝜎𝑧𝑧 = (𝜆 + 2𝜇)(𝜙,𝑧𝑧 + 𝜓,𝑥𝑧) + 𝜆(𝜙,𝑥𝑥 − 𝜓,𝑥𝑧) (3b)
2



Journal of Sound and Vibration 520 (2022) 116599A. Palermo et al.
Fig. 1. Schematic of the setup.

The relation between the wavenumber 𝑞 and frequency 𝜔 of surface waves, i.e., the dispersion relation, is determined from the
boundary conditions. In this regards, we assume the resonators far enough from each other that there is no contact between them,
and consider only their vertical motion. Then, the following equations describe the boundary conditions for the substrate free surface
(𝑧 = 0):

𝜎𝑧𝑥(𝑥, 0, 𝑡) = 0 (4a)

𝜎𝑧𝑧(𝑥, 0, 𝑡)𝐴 = 𝑓𝑅(𝑦) (4b)

where 𝑓𝑅(𝑦) is the force exerted by the resonator of mass 𝑚 on the substrate and distributed uniformly over the effective contact
area 𝐴. In Eq. (4b), it is implicitly assumed that the distance between adjacent resonators is smaller than the wavelength 2𝜋∕𝑞 of
the surface waves so that the resonators can be treated as an effective continuum [36]. The interaction force 𝑓𝑅(𝑦) depends on the
relative motion between the resonator mass 𝑤𝑅(𝑥, 𝑡) and the vertical motion of the substrate surface 𝑤(𝑥, 0, 𝑡):

𝑦(𝑥, 𝑡) = 𝑤𝑅(𝑥, 𝑡) −𝑤(𝑥, 0, 𝑡) =
( 1
𝑟
− 1

)

𝑤(𝑥, 0, 𝑡) (5)

where 𝑟 = 𝑤(𝑥,0,𝑡)
𝑤𝑅(𝑥,𝑡)

. Thus, the equilibrium equation of the local resonator reads

𝑚�̈� + 𝑓𝑅(𝑦) = −𝑚�̈�(𝑥, 0, 𝑡) (6)

The four equations (4a), (4b), (5) and (6) are used to determine the dispersion relation for surface waves defined in Eq. (2).
When the resonator is linear, it is not necessary to introduce the relative motion 𝑦(𝑥, 𝑡) because 𝑟 does not depend on 𝑤(𝑥, 0, 𝑡). In the
nonlinear problem, instead, the parameter 𝑟 is amplitude-dependent, e.g. 𝑟 = 𝑟(𝑦(𝑤)). Thus, the use of relative motion is necessary
(see Section 3).

2.2. Interaction force and resonator response

For finite, small-amplitude oscillations of the resonators on the substrate (weak nonlinearity), the interaction force may be
approximated by a Taylor expansion around the equilibrium position of the resonators,

𝑓𝑅 ≈ 𝑘0 + 𝑘1𝑦 + 𝑘2𝑦2 + 𝑘3𝑦3 (7)

The values of the stiffness coefficients in Eq. (7) are determined by the specific contact law, such as the Hertz law for contact bead
resonators [36]. Here, we consider the influence of these terms individually, without tying 𝑓𝑅 to a specific interaction force. This
general discussion can be narrowed down to a particular nonlinear interaction force if necessary, as long as using a Taylor expansion
is a reasonable approximation for that force.

Regarding the type of nonlinearity, we consider both softening and hardening nonlinear forces. For a softening nonlinearity, the
effective stiffness decreases with increased deformation. This is typical, for example, of contact-based interaction forces. The effective
stiffness increases with increased deformation in the case of hardening nonlinearity. This is typical of clamped beam resonators,
where stiffness hardening occurs due to midplane stretching of the beam. Both these type of resonators (i.e., contact-resonances and
beams) have already been used as building blocks of a metasurface.
3
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The static term, 𝑘0, shifts the equilibrium position of the resonators. One can think of this as caused by a precompression of the
esonator onto the substrate, which can be utilized in tuning the interaction force [23]. When the force 𝑓𝑅(𝑦) is not subjected to

tuning, without loss of generality, one can choose the origin of 𝑦 such that 𝑘0 = 0. We take this approach throughout this work. The
linear stiffness, 𝑘1, is the leading-order term. Depending on the properties of the interaction force, the next term could be either the
quadratic stiffness, 𝑘2, or the cubic stiffness, 𝑘3.

As a first step, we consider an interaction force for which the quadratic term is negligible with respect to the cubic term,
𝑘2∕𝑘3 → 0. Ignoring the quadratic term simplifies the analysis and enables us to focus on the most typical effects of nonlinear
interaction force first. We discuss the prominent effects of quadratic nonlinearity in Section 3.

The interaction between the nonlinear resonator and surfaces waves is described by Eq. (6). The vertical displacement of the
ubstrate satisfies the relation

𝑤(𝑥, 𝑧, 𝑡) = 𝜙,𝑧 + 𝜓,𝑥 (8)

Using Eq. (2), we have 𝑤(𝑥, 0, 𝑡) = 𝐵𝑊 exp(𝑖(𝜔𝑡 − 𝑞𝑥)) for the substrate, with

𝐵𝑊 = 𝑞𝐿𝐵𝐿 − 𝑖𝑞𝐵𝑇 (9)

The term on the right-hand side of Eq. (6) can be treated as a harmonic excitation. Accordingly, Eq. (6) can be viewed as a
harmonically forced Duffing oscillator, the solutions of which are well documented [37]. In this work, we assume a harmonic
wave solution for the relative motion of the resonators, 𝑦(𝑥, 𝑡) = 𝑌 exp(𝑖(𝜔𝑡 − 𝑞𝑥)), consistent with Eq. (2) and Eq. (5). Thus, we can
relate 𝑌 and 𝐵𝑊 in form of an algebraic equation

(

𝛺 − 𝜔2) 𝑌 = 𝜔2𝐵𝑊 (10)

where

𝛺 = 𝜔2
𝑅(1 + 3𝛽|𝑌 |2) (11)

with 𝜔2
𝑅 = 𝑘1∕𝑚 and 𝛽 = 𝑘3∕𝑘1. As expected, we retrieve the linear response when 𝛽 = 0. The interaction force can then be

approximated as

𝑓𝑅 = 𝑚𝛺𝑌 exp(𝑖(𝜔𝑡 − 𝑞𝑥)) (12)

In writing Eq. (11) and Eq. (12), we have implicitly restricted our analysis to the motion of the resonators near their primary
resonance. This assumption is in accordance with a single-term plane-wave expansion of the wave field. Note that the adopted
leading-order approximation ignores the possibility of the generation of higher (or lower) harmonics due to nonlinearity, and
subsequently ignores any modal interaction with higher-order plane waves. The most accessible higher-order effect for cubic
nonlinearity is the generation of third harmonics, which we briefly discuss in Section 5. See [31] for a detailed example of
third-harmonic generation in a similar problem in which the substrate is a thin beam.

3. Dispersion of Rayleigh waves

To obtain the dispersion relation in the presence of weak cubic nonlinearity, we follow the classical approach developed for
linear metasurfaces. In a linear system, the four equations (4a), (4b), (5) and (6) yield a homogeneous algebraic system of equations
for the four wave amplitudes 𝐵𝐿, 𝐵𝑇 , 𝐵𝑊 and 𝑌 . A non-trivial solution is possible if the following relation holds

𝑟
(

4𝑞2𝑞𝐿𝑞𝑇 − (𝑞2 + 𝑞2𝑇 )
2)𝜇2𝐴 = 𝑚𝜌𝑞𝐿𝜔

4 (13)

where

𝑟 =
𝑤(𝑥, 0, 𝑡)
𝑤𝑅(𝑥, 𝑡)

= 1 − 𝜔2

𝛺
(14)

and 𝛺 = 𝜔2
𝑅 in the linear, undamped problem – see Appendix. When the interaction force is linear, Eq. (13) corresponds to the

classical dispersion relation reported by Boechler et al. [36]. Eq. (13) can be easily adapted to account for the nonlinear interaction
force: the amplitude-dependent dynamics of the surface resonators are introduced through parameter 𝑟, defined in Eq. (14). For
cubic nonlinearity, the amplitude-dependent behavior is captured by 𝛺 = 𝛺(𝛽, |𝑌 |) in Eq. (11). Naturally, the nonlinear effects
depend on both the amplitude of motion (e.g., quantified by 𝑌 or 𝐵𝑊 ) and the value of the cubic stiffness 𝛽.

In this work, we fix 𝛽 = ±1 and tune the amplitude-dependent dynamics by imposing 𝐵𝑊 . This choice is relevant to experimental
realizations of the setup, where 𝐵𝑊 may be controlled directly as the input to the system [23]. Qualitatively, the same behavior
may be observed by fixing the wave amplitude and varying 𝛽 instead.

Hence, the leading-order effect of the cubic stiffness can be captured in our analysis by changing 𝛺 from 𝜔2
𝑅 to 𝜔2

𝑅(1 + 3𝛽|𝑌 |2)
in Eq. (14). To obtain the dispersion relation for a given amplitude of the incoming wave 𝐵𝑊 , we calculate the relative motion

using Eqs. (10) and (11). The amplitude-dependent dispersive properties are then obtained by solving the dispersion relation in
q. (13). The flowchart in Fig. 2 summarizes this procedure.

Concerning the quadratic nonlinearity, one can still use the proposed procedure to obtain an amplitude-dependent dispersion
4

elation when the quadratic term in Eq. (7) is not negligible with respect to the cubic term. In this case, a standard multiple-scale
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Fig. 2. Flow chart depicting the procedure to calculate the amplitude-dependent dispersive properties of the nonlinear metasurface.

Fig. 3. Panel (a): dispersion relation for Rayleigh waves with linear interaction force, 𝑐𝐿∕𝑐𝑇 = 1.5 and 𝑚𝜔𝑅∕𝜌𝐴𝑐𝑇 = 0.15. The dash-dotted curve corresponds
o 𝜔 = 𝑐𝑅𝑞, the dispersion curve for Rayleigh waves in the absence of surface resonators. The dashed curve corresponds to shear wave dispersion, 𝜔 = 𝑐𝑇 𝑞,
bove which waves are not bound to the surface. The horizontal dotted lines indicate the lower bound (𝜔 = 𝜔𝑅) and the upper bound (𝜔 = 𝜔⋆) of the band
ap. The vertical dotted line indicates 𝑞 = 𝑞⋆, the onset of the out-of-phase branch of the dispersion curve. Panel (b): steady-state dynamics of an undamped
urface resonator, |𝑌 ∕𝐵𝑊 |, as a function of the frequency of the incoming Rayleigh wave, 𝜔, with linear (𝛽 = 0) and nonlinear (𝛽 = ±1) interaction forces. The
ncoming wave amplitude is 𝐵𝑊 = 0.005 for both the hardening and softening types of nonlinearity. The unstable portions of the response curves are depicted
sing dashed lines. The vertical dash-dotted line indicates 𝜔 = 𝜔⋆.

nalysis can be employed to solve Eq. (6) for the relative motion [37]. The leading-order effect would appear then as a correction to
he parameter 𝛽 in Eq. (11). This analysis would be based on the assumption of weak nonlinearity (finite, small-amplitude waves),
nd would ignore the modal interaction between plane waves. The typical higher-order effects for quadratic nonlinearity are the
eneration of second harmonics and the appearance of a DC shift in the oscillations (also known as drift). We postpone a detailed
nvestigation of these effects to future studies. We discuss the details of the dispersion curves for both softening and hardening
onlinearities in Section 3.2

.1. Linear analysis

To better appreciate the effect of nonlinearity on the metasurface dispersion curve, we briefly summarize the main dispersive
eatures of a linear metasurface; i.e. 𝑓𝑅(𝑦) = 𝑘1𝑦. The presence of the local resonators creates a band gap in the dispersion curve,
𝑙 < 𝜔𝑔𝑎𝑝 < 𝜔𝑢, for the propagation of surface waves (see Fig. 3(a)). The lower bound 𝜔𝑙 =

√

𝛺 coincides with the horizontal
tangency of the dispersion curve at (𝑞, 𝜔) = (+∞, 𝜔𝑅). This corresponds to the resonance of the surface oscillator subject to harmonic
base displacement, as depicted in Fig. 3(b) for 𝛽 = 0. We can see from Eq. (14) that for frequencies below the local resonance, 𝜔 < 𝜔𝑅,
the resonators move in phase with the substrate (𝑟 > 0). The upper bound, 𝜔𝑢, satisfies 𝜔 = 𝑞𝑐𝑇 , and is found to be the positive root
of

𝜔2
𝑢 −

𝑚
𝜌𝐴

(

𝑐−2𝑇 − 𝑐−2𝐿
)

𝛺𝜔𝑢 −𝛺 = 0 , (15)

Eq. (15) can be obtained by using 𝜔𝑢 = 𝑞𝑐𝑇 in Eqs. (13) and (14) to eliminate 𝑞 and solve for 𝜔𝑢. Note, from Eq. (2b), that 𝑞𝑇 = 0
n this case.

According to Eq. (2), the solutions of Eq. (13) for which 𝜔 > 𝑞𝑐𝑇 correspond to waves that are not confined to the surface of the
ubstrate. For all the admissible surface waves above the band gap, the resonators move out of phase with the substrate (𝑟 < 0).

We choose 𝑐𝐿∕𝑐𝑇 = 1.5 and 𝑚𝜔𝑅
𝜌𝐴𝑐𝑇

= 0.15 throughout this work. These are the two key parameter groups that determine the physics
of linear wave propagation. The first group determines the elastic properties of the substrate and the second one determines the
strength of the interaction between the resonators the substrate. The upper bound of the band gap, determined from Eq. (15) to be
at frequency 𝜔⋆ = 1.0575𝜔𝑅, with a corresponding wavenumber 𝑞⋆ = 𝑐𝑇𝜔⋆, are used to normalize the dispersion curves throughout
5

this work (see Fig. 3(a)). The reader can refer to [36,38,39] for further details on the physics of the linear problem.
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Fig. 4. Panel (a): influence of hardening, cubic nonlinearity (𝛽 = 1, 𝑘2 = 0) on the dispersion of Rayleigh waves for different values of the incoming wave
mplitude, 𝐵𝑊 . The onset of the out-of-phase branch remains almost unchanged for small values of 𝐵𝑊 . The inset highlights the effect of nonlinearity on the
nset of the out-of-phase branch at higher values of 𝐵𝑊 . Panel (b): influence of softening, cubic nonlinearity (𝛽 = −1, 𝑘2 = 0) on the dispersion of Rayleigh
aves for different values of the incoming wave amplitude, 𝐵𝑊 . The onset of the out-of-phase branch remains almost unchanged for small values of 𝐵𝑊 . The

nset highlights the effect of nonlinearity on onset of the out-of-phase branch at higher values of 𝐵𝑊 . In both the panels, the linear dispersion curve from Fig. 3
s included for comparison and the unstable portions of the response curves are depicted using dashed lines.

.2. Nonlinear analysis

.2.1. Hardening nonlinearity
Fig. 4(a) shows the influence of hardening cubic nonlinearity (𝛽 = 1) on the dispersion curves. Focusing on the in-phase (acoustic)

branch, one can note that 𝜔 = 𝜔𝑅 is no longer the horizontal asymptote of the dispersion curve. The frequency of the in-phase branch
increases monotonically with its wavenumber and the band gap disappears. This behavior is driven by the response of the surface
resonator to a prescribed base motion (Fig. 3(b)), which presents the well-known bending at its primary resonance. Because there is
no damping, the in-phase branch in Fig. 3(b) (extending to the origin) increases monotonically with frequency, dictating a similar
behavior in the corresponding in-phase branch of the dispersion curve.

Conversely, the onset of the out-of-phase (optical) branch remains almost unchanged for incoming base motion with very low
amplitude (Fig. 4, 𝐵𝑊 = 0.005 and 𝐵𝑊 = 0.010). This is linked to the behavior of the out-of-phase branch of the resonator’s
esponse curve in Fig. 3(b), i.e., the branch that becomes asymptotically horizontal (|𝑌 ∕𝐵𝑊 | → 1 when 𝜔 → ∞). Since waves for

which 𝜔 > 𝑞𝑐𝑇 are not confined to the surface, the out-of-phase branch terminates at 𝜔 = 𝜔⋆, as shown in Fig. 4(a). For larger values
of 𝐵𝑊 , the turning point in the out-of-phase branch occurs at a frequency higher than 𝜔⋆. A corresponding turning point appears
in the dispersion curve, as shown in the inset of Fig. 4(a) for 𝐵𝑊 = 0.080. This turning point separates stable Rayleigh waves from
unstable ones.

In summary, the linear band gap between 𝜔𝑅 < 𝜔 < 𝜔⋆ disappears in the presence of hardening nonlinearity. The in-phase branch
of dispersion is much more sensitive to nonlinearity (controlled by the amplitude of incoming wave, 𝐵𝑊 ) than the out-of-phase one.
We anticipate that the presence of damping can have a significant influence on the dynamics near the resonance, as will be discussed
in Section 4.

3.2.2. Softening nonlinearity
The influence of softening cubic nonlinearity (𝛽 = −1) on the dispersion curve is shown in Fig. 4(b). We observe that the in-phase

branch turns back on itself, consistently with the behavior of the response curve in Fig. 3(b). The group velocity is zero at the turning
point (i.e., 𝜕𝜔∕𝜕𝑞 = 0), beyond which the solution is unstable. Therefore, the in-phase branch of dispersion terminates at the turning
point and the lower bound of the band gap effectively decreases as a function of the input wave amplitude. Note in Fig. 4(b) that
the change in admissible wavenumbers for the in-phase branch is much greater than the change in admissible frequencies. In other
words, the lower bound of the band gap occurs at a finite wavenumber (in contrast to a linear system). This results in the creation
of a partial gap in admissible wavenumbers for surface waves moving in phase with the substrate.

Similar to what we observed for the hardening metasurface, the onset of the out-of-phase branch of dispersion remains almost
unchanged when the incoming waves have very low amplitude (Fig. 4(b), 𝐵𝑊 = 0.005 and 𝐵𝑊 = 0.010). This is because the
dynamics of the surface resonator has an insignificant dependence on 𝐵𝑊 at frequencies near and above 𝜔⋆ (see Fig. 3(b)). In this
range of parameters, the effective band gap of the system becomes wider as 𝐵𝑊 increases. For larger values of 𝐵𝑊 , the onset of the
out-of-phase dispersion branch occurs at increasingly lower frequencies, as expected from the softening nature of nonlinearity. The
band gap becomes increasingly narrower, as a result. The band gap is eventually closed if the amplitude of the incoming wave is
large enough, as depicted in Fig. 4(b) for 𝐵𝑊 = 0.056.

In summary, the linear band gap between 𝜔𝑅 < 𝜔 < 𝜔⋆ first widens as a function of the incoming wave amplitude, then narrows
until it ultimately disappears (closes). When a band gap exists, its lower bound occurs at a finite wavenumber.
6
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Fig. 5. Influence of energy loss on the linear dispersion of Rayleigh waves for increasing values of damping ratio. Panels (a) and (b) show, respectively, the
real and imaginary parts of the dispersion curves. The imaginary part is shown with a negative sign. Notice that the dispersion curve of the undamped system
(𝜁 = 0) is real-valued.

4. Energy loss in resonators

Very low amount of damping does not significantly alter or interfere with the interaction between surface waves and resonators
in the linear operating range, as evidenced by the success of previous experimental studies [36,38]. Energy loss is nevertheless
inevitable in any experimental realization of the setup in Fig. 1. In this section, we investigate the effect of energy loss for both
linear and nonlinear resonators.

We focus solely on energy loss that occurs in the oscillators (i.e., the interaction force), which is modeled as a linear, viscous
damping mechanism acting in parallel to the elasticity. This is incorporated in the interaction force by adding the term 𝑐�̇� to Eq. (6)
and Eq. (7), where 𝑐 is the damping coefficient. This additional term appears in the dispersion relation by adding 𝑖𝑐𝜔 to parameter

in Eq. (14). The effects of incorporating energy loss in the substrate are discussed elsewhere for linear waves [40].
In our analysis of harmonic wave propagation in a damped periodic medium, we adopt the convention of using real-valued

ave frequency and allowing the wavenumber to become complex-valued [41–44]. This formulation is particularly suitable when
nalyzing the effects of damping due to continuous harmonic wave excitation, i.e., a wave transmission problem. The alternative
ormulation with complex-valued frequency and real-valued wavenumber would give the same results at long wavelengths and
or small values of damping [45]. Physically, however, the formulation with real-valued wavenumbers corresponds to a different
xperimental scenario: a wave scattering experiment in which a prescribed wavenumber is given as the input to the system [46].
lthough both approaches are experimentally viable [36,38], we base our analysis on the transmission problem due to its relative
ase of implementation in experiments. Further distinctions between the two approaches are discussed in Ref. [46].

.1. Linear damped metasurface

Energy loss appears in the dispersion relation through the amplitude ratio 𝑟, defined in Eq. (14). In the linear operating range,
we have 𝛺 = 𝜔2

𝑅(1+2𝑖𝜁𝜔∕𝜔𝑅), where 𝜁 = 𝑐∕2𝜔𝑅 is the damping ratio. The damping force introduces a gradual, frequency-dependent
phase difference between the motions of the resonator and the substrate under it. This is captured in our formulation by complex-
valued wave amplitudes. More importantly, the wavenumber associated with a given incoming wave becomes complex-valued as
well. The imaginary part of the wavenumber represents spatial decay (due to damping) of the wave amplitude as the wave propagates
along the surface.

Fig. 5 shows the evolution of the surface wave dispersion curves for increasing values of damping ratio; panel (a) shows the real
part of the wavenumber and panel (b) shows its imaginary part with a negative sign. As expected, introduction of energy loss in
the resonator response results in spatial decay of the surface waves. In particular, the real part of the in-phase branch bends back
on itself at a finite value of the wavenumber; see Fig. 5(a) and its inset. This creates an upper limit for the wavenumber of surface
waves moving in phase with the local resonators. The emergence of partial wavenumber gaps due to damping is well documented in
discrete and continuous models of phononic crystals [42,43]. The onset of the partial wavenumber gap corresponds to the maximum
displacement amplitude of the local resonators, and occurs at longer wavelengths as damping increases. Moreover, increasing the
value of damping slightly reduces the frequency at which the in-phase branch folds on itself, consistent with the viscous nature of
the damping force.

The influence of damping on the out-of-phase branch is better observed in the imaginary part of the dispersion curve, Fig. 5(b).
When damping is small, the magnitude of the imaginary parts of the out-of-phase branches are smaller than those of the in-phase
branches, meaning that the spatial decay rate is smaller for the out-of-phase branch. This is no longer the case for moderate values of
damping: the two branches merge together near 𝜁 = 0.060 (quality factor of 8.3). Similar effects are reported in previous studies [46]
7



Journal of Sound and Vibration 520 (2022) 116599A. Palermo et al.

p
t
w
t
o

d
w
d
(
a
c
u
p
o
d

5

a
d
a
a

r
m

Fig. 6. Influence of hardening, cubic nonlinearity (𝛽 = 1, 𝑘2 = 0) on the dispersion of damped Rayleigh waves with 𝜁 = 0.010 for different values of the incoming
wave amplitude, 𝐵𝑊 . Panels (a) and (b) show, respectively, the real and imaginary parts of the dispersion curves. The linear dispersion curve from Fig. 5 is
included for comparison. The portions of the in-phase branches beyond the first turning point are depicted in dotted lines to highlight the maximum admissible
wavenumber in each case.

and observed in experiments with sound waves [47]. In the presence of damping, the upper edge of the band gap (denoted by 𝜔⋆
when 𝜁 = 0) occurs at a frequency lower than 𝜔⋆. This can be observed in Fig. 5(b) by noting the horizontal asymptotes of the
out-of-phase branches.

4.2. Nonlinear damped metasurface

Following the approaches in Sections 2.2 and 4.1, we now incorporate the effects of energy loss and nonlinearity in the dispersion
relation by using 𝛺 = 𝜔2

𝑅(1 + 2𝑖𝜁𝜔∕𝜔𝑅 + 3𝛽|𝑌 |2) in Eq. (10) and Eq. (14). The rest of the analysis follows the same procedure as in
Section 3.2.

Fig. 6 shows the influence of hardening cubic nonlinearity on the dispersion of damped surface waves with 𝜁 = 0.010. In contrast
to the undamped dispersion curves (cf. Fig. 4), all the in-phase branches fold back on themselves in the presence of damping —
recall the discussion in Section 4.1. Due to the hardening nature of the nonlinear interaction force (𝛽 > 0), the locus of the fold
oint moves to higher frequencies and higher wavenumbers as the amplitude of the incoming wave (𝐵𝑊 ) increases. Therefore,
he in-phase branch extends to higher frequencies and the onset of the damping-induced gap in the wavenumber occurs at shorter
avelengths. The onset of the out-of-phase branch, on the other hand, is changed by nonlinearity to a smaller extent, as evident by

he imaginary part of the dispersion curve. The overall effect is the gradual decrease in the width of the band gap as the amplitude
f the incoming wave increases, until the bandgap is completely closed around 𝐵𝑊 = 0.01.

Fig. 7 shows the influence of softening cubic nonlinearity on the dispersion of damped surface waves with 𝜁 = 0.010. As already
iscussed in Section 3.2.2 and Section 4.1, both damping and softening nonlinearity can lead to the emergence of gaps in admissible
avenumbers in the in-phase dispersion branch. Consistently, we see in Fig. 7 that increasing the amplitude of the incoming waves
ecreases the maximum admissible wavenumber. For a linear metasurface with damping, the maximum admissible wavenumber
i.e., the onset of the wavenumber gap) corresponds to the vertical tangency of the dispersion curve (𝜕𝑞∕𝜕𝜔 = 0). In the presence of
softening nonlinearity, however, the maximum admissible wavenumber corresponds to the horizontal tangency of the dispersion

urve (𝜕𝜔∕𝜕𝑞 = 0). This is because the region of the dispersion curve between the horizontal and vertical tangencies corresponds to
nstable motion of the local resonators, as already described in Section 3.2.2. In comparison to the in-phase branches, the out-of-
hase branches remain relatively unchanged for weak to moderate values of the incoming wave amplitude; see Fig. 7(b). The onset
f the out-of-phase branch could eventually move to lower frequencies for large values of the incoming wave amplitude, as already
escribed in Section 3.2.2 and Fig. 4(b).

. Numerical modeling

We develop a 2D plane-strain finite-element (FE) model comprising an elastic substrate and a finite chain of local resonators
t the surface of the substrate (Fig. 8(a)). The model includes a portion of an elastic substrate of unitary thickness and in-plane
imensions 𝐿 ×𝐻 , where 𝐿 = 10𝜆𝑅, 𝐻 = 3𝜆𝑅, and 𝜆𝑅 = 2𝜋𝑐𝑇 ∕𝜔𝑅. The free surface hosts an array of 125 oscillators, arranged with
subwavelength spacing 𝑠 = 𝜆𝑅

25 to cover a total length of 𝐿𝑎 = 5𝜆𝑅. To replicate the results discussed in the analytical section, we
dopt the same mechanical parameters, namely 𝑐𝐿∕𝑐𝑇 = 1.5 and 𝑚𝜔𝑟

𝜌𝐴𝑐𝑇
= 0.15.

The wave field is generated by an imposed vertical displacement 𝑊𝑠(𝑡) applied at sufficient distance (𝑑𝑠 = 3.5𝜆𝑅) from the first
esonator to produce a base excitation mainly conveyed by Rayleigh modes. Low-reflective boundary conditions (LRB) are used to
inimize the amplitude of the reflected signals and simulate an effective semi-infinite domain.
8
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Fig. 7. Influence of softening, cubic nonlinearity (𝛽 = −1, 𝑘2 = 0) on the dispersion of damped Rayleigh waves with 𝜁 = 0.010 for different values of the incoming
wave amplitude, 𝐵𝑊 . Panels (a) and (b) show, respectively, the real and imaginary parts of the dispersion curves. The linear dispersion curve from Fig. 5 is
included for comparison. The portions of the in-phase branches beyond the first turning point are depicted in dotted lines.

Fig. 8. FE Numerical model. (a) Geometry of the FE model. (b) Up-chirp and (c) down-chirp frequency vs. time behavior.𝑇𝑅 = 2𝜋
𝜔𝑅

, 𝑡1 = 87.5𝑇𝑅.

The FE models are developed in COMSOL Multiphysics using a convergent mesh of linear triangular elements for the substrate
and nonlinear truss elements for the resonators. The time-domain integration of the governing equations is performed using the
Generalized-𝛼 method, employing the damped Newton method as the nonlinear solver at each time step. From the full-field
simulations, we collect the displacement response at the base of each resonator 𝐵𝑊 (𝑡, 𝑥𝑟) and use them to numerically reconstruct
the Rayleigh wave dispersion curves |𝐵𝑊 (𝜔, 𝑞)| via 2D Fourier transform (2DFFT).

We model the propagation of Rayleigh waves in three different metasurfaces: linear (𝛽 = 0), softening (𝛽 = −1) and hardening
(𝛽 = 1) type. For each configuration, we perform two time-domain simulations, employing as the input signal 𝑊𝑠(𝑡) a linear chirp
with frequency 𝜔(𝑡) = 𝜔0 + 𝑐𝑡, 𝑡 = [0, 𝑡1], padded by a constant harmonic signal at 𝜔1 = 𝜔(𝑡1). For the first batch of simulations, we
adopt a chirp with increasing frequency (up-chirp) between 𝜔0 = 0.5𝜔𝑅 and 𝜔1 = 1.05𝜔𝑅. The up-chirp allows to excite the in-phase
collective response of the resonators and in turn the acoustic mode supported by the metasurface. In the second batch, we employ
a chirp with decreasing frequency (down-chirp) between 𝜔0 = 1.5𝜔𝑅 and 𝜔1 = 0.95𝜔𝑅 to excite the out-of-phase, optical, branch
(see Fig. 8(b),(c)).

Fig. 9 shows the colormaps of the spectral amplitude |𝐵𝑊 (𝜔, 𝑞)| for up-chirps propagating along a chain of linear (panel a),
hardening (panel b) and softening (panel c) resonators. The response of the linear array (panel a), used for reference and validation
purposes, shows evidence of the expected hybridization phenomenon, namely a clear spectral gap and a flat acoustic branch. The
numerical results match the analytical predictions (marked by white lines).

The dispersive characteristics of Rayleigh waves are significantly altered by the nonlinear nature of the interaction force. For a
chain of resonators with hardening nonlinearity, Fig. 9(b), the spectral gap disappears as predicted by the analysis of Section 3.2.1.
We observe in the numerical results that the signal amplitude spreads across a wide range of wavenumbers while approaching
and crossing the linear resonance 𝜔𝑅. This phenomenon can be ascribed to the variation of the base amplitude along the chain of
resonators, which affects the dispersion of the Rayleigh waves (see Fig. 10(a)).
9
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Fig. 9. Dispersion reconstruction via 2DFFT. Panels (a), (b) and (c) show the reconstructed dispersion curves for the configurations with linear, hardening and
softening forces, respectively. The excitation signal is a traveling up-chirp with 𝜔 = [0.5 − 1.05]𝜔𝑅. All the models assume a damping coefficient 𝜁 = 0.010. The
nalytical curves, reported as white lines, are obtained assuming a base amplitude displacement 𝐵𝑊 = 0.056.

In the case of a metasurface with softening nonlinearity, the 2DFFT in Fig. 9(c) shows a large spectral gap caused by a shifted
nd truncated acoustic branch. As for the hardening configuration, we observe a significant variation in the base amplitude along
he metasurface (see Fig. 10(b)).

Nonetheless, for both hardening and softening metasurfaces, the dispersive features are well captured by the analytical dispersion
urves, overimposed to the colormaps in Fig. Fig. 9(b),(c), and calculated for a constant reference base displacement amplitude
𝑊 = 0.056. The value is estimated from the low-frequency base displacement amplitude at the onset of the array. In particular, we
onsider the time-response at the base of the 10th resonator, displayed in Fig. 10(c),(d), for hardening and softening metasurfaces,
espectively. The choice of this resonator allows to avoid local effects at the interface between the free substrate and the metasurface.

Inspection of the time-domain response can highlight another difference between the effects of the two types of nonlinearity.
he response at the base of the hardening resonator (Figs. 10(c)) shows no amplitude reduction as a result of the resonance shift
owards higher frequency range. Conversely, at the base of the softening resonator, a marked amplitude reduction is observed in a
ower and broader frequency range (Figs. 10(d)). These effects are also noticeable in the corresponding spectrograms (short Fourier
ransform) of the base displacement response, reported in Figs. 10(e),(f). Furthermore, the spectrograms highlight the presence of
hird harmonics, which are particularly pronounced in the response of the cubic hardening resonators.

Fig. 11 shows the reconstructed out-of-phase branch of dispersion curves for metasurfaces with linear (panel a), hardening (panel
), and softening (panel c) behavior, as obtained from the 2DFFT of the traveling down-chirps. In accordance with the analytical
redictions of Section 3, the effects of nonlinearity on the out-of-phase branches are weaker than their effects on the in-phase
ranches. For the range of incoming wave amplitudes investigated here, our numerical analysis cannot clearly capture the weak
ffects of nonlinearity on the dispersion of out-of-phase branches that were discussed in Section 3, partially due to the limited
esolution of the 2DFFT.

. Summary and conclusion

We provided a theoretical description of the dispersion of Rayleigh waves in a metasurface with nonlinear interaction force
etween the surface and local resonators. We developed closed-form expressions for the dispersion relation of the metasurface
ithin the context of an amplitude-dependent effective medium. Our analysis uses a single-term plane-wave expansion of the wave

ield to describe the leading-order effects of nonlinearity in the interaction force, and ignores the generation of harmonics and modal
nteractions between them. We further investigated the effects of energy loss in the resonator on transmission of Rayleigh waves. We
eveloped the methodology for a general weak nonlinearity based on a Taylor expansion. Detailed results and discussions, however,
ere only presented for an interaction force with a symmetric functional form (cubic nonlinearity and linear damping).

The amplitude-dependent dynamic response of the surface resonators governs the sub-wavelength band gap and manifests as a
hift on the onset or offset of the effective band gap. Specifically, when the metasurface exhibits a hardening type of nonlinearity,
he band gap disappears because the in-phase branch of dispersion no longer has an upper bound. Energy loss re-introduces an
pper bound to the in-phase dispersion branch. The relative strengths of the nonlinear and damping forces determines if a band
ap reappears in this case. The onset of the out-of-phase branch of dispersion shifts to higher frequencies as nonlinearity becomes
tronger; this is a marginal effect in comparison to the changes introduced to the in-phase branch.

When the type of nonlinearity is softening, the in-phase branch terminates at a lower frequency (than the linear scenario), while
10

he out-of-phase branch remains relatively unchanged. Thus, the band gap extends to lower frequencies for moderate strengths of



Journal of Sound and Vibration 520 (2022) 116599A. Palermo et al.
Fig. 10. Displacement response at the base of the resonators. Panels (a) and (b) show the base displacement along the entire metasurface for the configurations
with hardening and softening force, respectively (𝛬𝑅 = 2𝜋𝑐𝑇

𝜔𝑅
). Panels (c) and (d) compare the time-domain response of the hardening (red line) and softening (blue

line) configurations, respectively, both extracted at the base of the 10th resonator. The response of the linear resonator (black line) is provided for reference.
Panels (e) and (f) show the spectrograms (in dB) of the time-domain responses of panels (c) and (d), respectively. The arrows indicates the amplitudes of the
third harmonic components. The dashed lines enclose the frequency region of the linear band gap.

nonlinearity. The onset of the out-of-phase branch shifts to lower frequencies and eventually closes the band gap beyond a certain
amplitude of incoming waves. The early termination of the in-phase branch is caused by the dynamic instability of the surface
resonators. This is accompanied by the emergence of a maximum admissible wavenumber, thus introducing a spatial gap in the
dispersion curve. The maximum admissible wavenumber decreases both with increasing the amplitude of incoming waves and with
increasing damping.

We have used the finite element method to validate our analytical findings and to provide additional insights on the dynamics
of the nonlinear metasurface. In particular, we provide evidence of modal interactions in the form of third-harmonic generation
and of strong amplitude variation along the metasurface. Beyond validating the predictions of our analytical results, the numerical
findings point to promising directions for extension of this work: exploration of the modal interactions by means of higher-order
plane-wave expansion, of the spatial gaps in the dispersion relation by reformulating the setup as a scattering problem, and of the
additional tuning capabilities introduced by an interaction force with quadratic nonlinearity.

Further analytical developments can facilitate parametric studies of the behavior of the band gap. Experimental investigation of
the type of amplitude-dependent behavior described here can pave the way for development of surface wave filtering and control
strategies with tunable properties, for example in contact-resonant metasurfaces or in thin-beam metasurfaces with geometric
nonlinearity. Beyond that, the present work may contribute to advancements and future developments in seismic metamaterials
[48].
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Fig. 11. Dispersion reconstruction via 2DFFT. Panel (a) reports the reconstructed dispersion curve for a linear chain of oscillators, panels (b) and (c) the
dispersion curves for hardening and softening resonators, respectively. The exciting signal is an up-chirp for a traveling down-chirp with 𝜔 = [1.5 − 0.95]𝜔𝑅.

ll the models assume a damping coefficient 𝜁 = 0.010. The analytical curves, reported as white lines, are obtained assuming a base amplitude displacement
𝑊 = 0.056.
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ppendix. Derivation of the dispersion relation

The dispersion relation Eq. (13) is obtained by simultaneously solving Eqs. (4a), (4b), (5) and (6), assuming a single-term plane-
ave expansion for the wave fields. Using Eqs. (2) and (3a), Eq. (4a) reduces to (2𝑖𝑞𝑞𝐿)𝐵𝐿 + (𝑞2 + 𝑞2𝑇 )𝐵𝑇 = 0. Using Eqs. (2), (12)
nd (3b), Eq. (4b) reduces to (𝜆(𝑞2𝐿 − 𝑞2) + 2𝜇𝑞2𝐿)𝐵𝐿 − 2𝑖𝑞𝑞𝑇𝐵𝑇 = 𝑚𝛺𝑌 . As explained in Section 2.2, Eq. (6) results in Eq. (10),
(𝛺 − 𝜔2)𝑌 = 𝑚𝜔2𝐵𝑊 . Finally, Eq. (10) relates 𝐵𝑊 to the potential amplitudes as 𝐵𝑊 = 𝑞𝐿𝐵𝐿 − 𝑖𝑞𝐵𝑇 . These equations form a
omogeneous algebraic system of equations for the four wave amplitudes 𝐵𝐿, 𝐵𝑇 , 𝐵𝑊 and 𝑌 , which is written in matrix form as

⎡

⎢

⎢

⎢

⎢

⎣

2𝑖𝑞𝑞𝐿 𝑞2 + 𝑞2𝑇 0 0
𝜆(𝑞2𝐿 − 𝑞2) + 2𝜇𝑞2𝐿 −2𝑖𝑞𝑞𝑇 −𝑚𝛺 0

0 0 𝑚(𝛺 − 𝜔2) −𝑚𝜔2

𝑞𝐿 −𝑖𝑞 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐵𝐿
𝐵𝑇
𝑌
𝐵𝑊

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0
0
0
0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(A.1)

on-trivial solutions of Eq. (A.1) are only feasible when the determinant of the matrix of coefficients is zero. This solvability
ondition is the dispersion relation for Rayleigh waves, which takes the form of Eq. (13) after some algebraic manipulation.
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