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a b s t r a c t

In this letter, we provide experimental evidence of bandgap tunability with global prestrain in
additively-manufactured tensegrity-inspired lattice structures. These lattices are extremely lightweight
and designed to exhibit a nonlinear compressive response that mimics that of a tensegrity structure.
We fabricate them out of a stiff polymer but, owing to their peculiar design, they are compliant and
remain elastic up to high levels of precompression. In turn, unlike tunable metamaterials made of soft
polymers, the response of our lattices is not dominated by damping. We perform experiments on a
one-dimensional lattice subject to longitudinal wave excitation and varying levels of static longitudinal
precompression, and observe continuous tuning of both the wave speed and the location and width
of the lowest-frequency bandgap.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Lattice structures are lightweight foam-like mechanical sys-
ems featuring architected assemblies of simple structural ele-
ents [1]. Known to most for their static properties, they also
resent interesting dynamic attributes and elastic wave disper-
ion characteristics. For example, they can be engineered to
ropagate elastic waves at desired direction-dependent wave
peeds [2–7], and they can be designed to feature bandgaps,
.e., frequency ranges of strong wave attenuation [2,3,8–10]. In
lassical periodic lattice structures, bandgaps are predominantly
f the Bragg scattering type [2]; when lattices feature addi-
ional/auxiliary structural elements located within each unit cell,
hey also feature locally-resonant bandgaps at the resonance fre-
uencies of said auxiliary microstructures [5,9,11,12]. Typically,
he wave properties of lattices are set in stone after fabrication.
his limitation can be lifted for specific lattice structures made
f soft materials that display buckling-induced phase transitions
nd can therefore change shape in response to external precom-
ression [13–18]. These lattices typically feature a discrete degree
f tunability, since they can only transform into a finite num-
er of geometrical configurations when loaded. Moreover, their
oft nature makes practical realizations challenging [16], since
amping tends to dominate these systems’ wave response [19].
ontinuous tunability, whereby the wave properties can be swept
ithin a geometry-dependent interval, is usually not attainable
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in lattice structures, unless they are soft [20], or endowed with
multifunctional capabilities. In this case, tunability can be in-
duced by an external stimulus such as an electric field [21,22],
temperature [23,24] or a magnetic field [25,26].

Tensegrity lattices have recently emerged as systems that are
made of stiff materials and yet are characterized by continu-
ous wave tunability in response to prestrains [27–37]. These
lattices are made by the repetition of a tensegrity unit cell
featuring pin-jointed and prestressed arrangements of cables
and rigid struts [27,38–41]. From a statics perspective, they are
lightweight [27,38,42], capable of supporting large global pre-
strains [43] and exhibit load-limiting, non-linear characteris-
tics [27,35,43–46]. This extreme deformability is at the basis
of their wave tunability attributes: their dispersion character-
istics can be significantly altered by varying the degree of lo-
cal [28–31] or global prestrain [29,37]. To date, an experimental
demonstration of this wave tunability is lacking.

In this work, we study the wave response of 3D-printable,
architected lattices that are designed to mimic several appeal-
ing characteristics of tensegrities: they are lightweight, exhibit
nonlinear load limitation from local member buckling, and re-
main elastic and intact under large global compressive prestrains.
These lattices are printed with a single stiff polymer (polyamide)
and their architecture is tailored to exhibit a tensegrity-analog
static response [47]. We tile 3D unit cells into one-dimensional
arrays and test their longitudinal wave mechanics. Leveraging
these characteristics and the low levels of damping intrinsic of
stiff materials, we provide an experimental demonstration of
elastic wave tuning in response to global prestrains. In particular,
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Fig. 1. (a) A 3-RVE 1D lattice with dimensions. The 1D representative volume
element, or RVE, is enclosed in the red box, and its building block unit cell is
enclosed in the blue box. (b) The experimental, global stress–strain response of
a tensegrity-inspired unit cell, with its deformation shown at 0.4 strain. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

we show that both the wave speed and the width of the Bragg
scattering bandgap can be continuously tuned via precompres-
sion.

2. Basic building blocks and quasistatic response

The 3D-printed tensegrity-inspired structure we use in this
ork is introduced in detail in Ref. [47]. It has 6 square, orthog-
nal faces for tessellation in three dimensions. Its geometry is
nalogous to a truncated octahedron tensegrity unit cell, which
s introduced and studied in Ref. [35]. Although the 3D-printed
tructure has fixed joints, it has an equivalent quasistatic and
mpact response to a pin-jointed, buckling tensegrity unit cell.
hese structures are very lightweight, with relative density of
.5%.
A 1D lattice comprised of six tensegrity-inspired units is shown

n Fig. 1(a). In each unit, the thin cable-like elements are con-
inuously connected at spherical joints on the outer ‘‘surface’’ of
he structure, while the bulkier strut-like elements run within the
tructure and are connected via the cable-like elements. Similarly,
continuous web of cables connecting discontinuous struts is
characteristic of tensegrity systems [38]. The dimensions of

he fabricated structures are the following: the distance between
lat square faces (the size of a unit) is L = 48.3mm, the strut-
ike element diameter is ds = 1.7mm, the cable-like element
iameter is dc = 1.2mm, and the diameter of a spherical joint
s dj = 5.7mm. To tessellate a unit into a one-dimensional
attice, we need to first construct a one-dimensional represen-
ative volume element (RVE). The faces of a unit are twisted with
espect to their perpendicular axes. Because of this, the unit is
ot directly tessellatable without a series of reflection operations,
s described in Ref. [35]. The one-dimensional RVE, therefore, is
btained by merging a unit and its reflection with respect to the
lane of the top face. The 1D RVE is enclosed in the red box in

ig. 1(a).

2

Our structures are fabricated from the Shapeways.com c⃝
olyamide PA2200 material using selective laser sintering. First,
e perform a quasi-static compression experiment on one RVE.
wing to the fact that the struts undergo compression and sub-
equent buckling, the structure exhibits a plateau in the global
tress with increasing compressive strain, as shown in Fig. 1(b).
tress is calculated from the reaction force exhibited by the
ottom four nodes, divided by the square projected area of the
ell. Strain is calculated as the change in the structure height
ivided by its original value. Quasistatic tests are performed on
n Instron E3000 testing machine. We can observe that, like
lassical tensegrity systems, our printed structure also remains
lastic under severe deformation, exhibits a nonlinear response,
nd has a very low relative density. Also, it exhibits post-buckling
tability and load limitation.

. Methods

.1. Experimental setup

To study the dynamic frequency response of the tensegrity-
nspired structure, we resort to the experimental setup shown
n Fig. 2(a). Throughout this study, we use two one-dimensional
attice specimens, with 5 and 3 RVEs. We intend to measure
oth their transmission characteristics (to identify bandgaps) and
heir dispersion properties. The latter task requires us to measure
he response at multiple locations along the direction of wave
ropagation at each RVE. We fabricate the lattice with a plate
n the bottom face that intersects the four spherical nodes to
implify its attachment to the wave source.
We devise a compression apparatus to study the effect of

lobal prestrain on the dynamic response of the structure. A 90-
egree metal bracket mounted on a linear stage (Velmex MN10)
an move continuously in the vertical direction. The flat surface of
he bracket compresses the top face of the structure, controlling
he applied strain. Our samples are long and slender, and global
ateral buckling can occur during their compression. To prevent
his undesired behavior, and to compress the structure to high
trains, we only compress 3-RVE-long specimens and we con-
truct an apparatus that holds the structure in its vertical axis, as
hown in Fig. 2(b). The apparatus uses four tensioned strings, each
ith one extreme tied to one of four equidistant locations on the

attice, and the other extreme tied to, but allowed to slide along, a
ertical rod. The strings hold the structure in place only laterally
nd have minimal influence on longitudinal wave propagation.
To propagate longitudinal waves along the structure, we con-

ect a piezoelectric transducer (Panametrics V1011) to the bot-
om plate on the sample. We excite it with a one-cycle wide-band
urst with a carrier frequency of 200 Hz. Using a single-point
aser Doppler Vibrometer (LDV, Polytec CLV-2534), we measure
he velocity time history along the specimen’s length at each in-
ersection between tensegrity-like units, as well as on the bottom
late. This measurement is repeated 128 times at each loca-
ion and averaged to improve the signal-to-noise ratio. We also
mploy a high-pass filter to eliminate all ambient noise at fre-
uencies lower than 100 Hz. Once we collect the measured data
nto a time–space matrix, we obtain a frequency–wavenumber
ata matrix by using a 2D Discrete Fourier Transform (2D-DFT).
e zero-pad the data prior to performing the 2D-DFT opera-

ion, to interpolate along the wavenumber direction and improve
esults visualization despite having only few spatial samples.
e also obtain frequency transmission data and space–time dia-
rams through post-processing of the output velocity data. These
xperimental and post-processing methods have been similarly
mplemented in Ref. [48].
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Fig. 2. (a) Schematic of the experimental setup used to study the spectro-spatial wave characteristics of a tensegrity-inspired 1D lattice. (b) Photo of the apparatus
designed to prevent global buckling during compression of the lattice. Strings are used to hold the lattice in-axis while still allowing vertical displacement during
longitudinal wave propagation. A compression level of 20% strain is shown.
3.2. Numerical modeling

To provide a comparison with the experimental results as well
as further insight into the wave response of our structure, we
conduct finite element simulations in COMSOL. We construct a 3D
model of a 1D RVE and mesh it with tetrahedral volume elements.
The material properties are obtained from tensile tests on ASTM
D638 material test specimens using an Instron E3000. The mate-
rial exhibits a hyperelastic response, straying from a linear elastic
response at around 4% strain. By extracting the linear portion
of the experimental response, we select a linear elastic material
model with Young’s Modulus of 1.29 GPa, Poisson’s ratio of 0.3,
and density of 930 kg/m3. To calculate the dispersion relation of
he 1D lattice, we use an eigenfrequency step with Bloch periodic
oundary conditions, thus simulating the response of an infinite
attice. To create a tessellatable unit, we make a centered cut
hrough the top and bottom faces to create flat surfaces on which
o apply the vertical periodic boundary conditions.

To produce the dispersion curves, the software solves an eig-
nvalue problem for each wavenumber value k in the irreducible
rillouin zone (IBZ, 0–1/2a 1/m), where a = 2L is the length of
he 1D RVE. To calculate the dispersion curves for varying levels
f precompression, we first use a stationary step to solve for
he quasistatic compressive response. Then, the final conditions
rom the stationary step (including the stresses arising from
recompression) are set as the initial conditions for the linear
igenfrequency step. This small-on-large approach is standard
rocedure when modeling bandgap tunability due to mechanical
orces [13,18].

Finally, a finite lattice with 3 RVEs is simulated in COMSOL in
rder to find the longitudinal frequency transmission response.
ince this simulation takes into account the finite size and bound-
ries of the experiment, we expect it to capture the experimental
esponse better than the numerical dispersion curves. In par-
icular, we perform a harmonic analysis (from 0 to 500 Hz)
y applying a base excitation with amplitude of 1 mm to the
ottom face surface, while the top face surface is kept fixed as
3

in the experiment. The input and output vertical displacement
amplitudes are extracted at approximately the same locations
as in the experiment. In the simulations with precompression,
the nonlinear quasistatic step is performed before the harmonic
analysis.

4. Results

4.1. Unstrained lattice response

The characteristic dispersion curve obtained by simulating the
infinite lattice is shown in Fig. 3(a). The markers are color-coded
according to the mode of wave propagation they correspond to.
We consider the mode shape associated with each single eigen-
value, and we extract the vertical displacement amplitudes at the
top and middle of the RVE and the curl amplitude around the ver-
tical axis. We establish quantitative thresholds based on the ratios
of these values and color the corresponding eigenvalue marker
accordingly [50]. Examples of the mode shapes for longitudinal,
rotational, and flexural modes at the edge of the IBZ are shown
in Fig. 3(b). From previous works we know that, as the structure
is compressed, vertical deformation is coupled with rotation of
the nodes [47]. This explains the coupling between modes that
is observed above 420 Hz. Up until that frequency, however,
the path followed by the longitudinal mode (red markers) is
unambiguous. In particular, we see that a bandgap exists between
351 and 425 Hz. The fact that the low-frequency branch folds
around the edge of the Brillouin zone, and the observation that
the branches before and after the gap resemble the acoustic and
optical modes of a diatomic system (in terms of shape and slope)
suggest that this bandgap is primarily due to Bragg scattering
effects [51].

The experimentally reconstructed dispersion relation of the
unstrained 5-RVE lattice is given by the grayscale colormap of
Fig. 3(c). The dispersion branches are expected to connect the
locations of high amplitude, which correspond to structural res-
onances of the finite specimen [49]. Since we have two mea-
surement points per unit cell, one every a/2, the plot extends to
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Fig. 3. Unstrained 1D lattice response. (a) Numerical dispersion relation. The red circular markers are longitudinal modes, the magenta ones are combined longitudinal
and rotational modes, the blue ones are rotational modes, and the black dots indicate modes that do not clearly belong to any of the above categories, such as flexural
modes. (b) Examples of longitudinal (top left), rotational (top right), and flexural (bottom) mode shapes at the edge of the IBZ. (c) Experimentally-reconstructed
dispersion plot for longitudinal wave motion, for the 5-RVE lattice. We expect the dispersion branches to follow the maxima of the colormap [49]. The red circles
indicate the ‘‘unwrapped’’ longitudinal wave modes from the numerics. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
k = 1/a instead of 1/(2a). Thus, prior to overlapping the longitu-
dinal numerical curve onto the experimental data, we ‘‘unwrap’’
it about 1/(2a) [52], obtaining the red markers of Fig. 3(c). The
experimental and numerical results agree, with the numerical
dispersion following the maxima of the colormap. In particular,
the slopes of the lower branch coincide between the two sets
of results. The bandgap, highlighted in the experimental plot by
the absence of dark regions for vast frequency ranges, fall in a
similar range of frequencies. Note that the region below 100 Hz is
affected by high-pass filtering. We identify two sources of differ-
ences between numerics and experiments. First, the experimental
results are for a finite lattice, and thus are subject to boundary
effects, whereas the numerical results are for an infinite lattice.
Second, since the laser vibrometer is not perfectly parallel to
the length of the chain, small lateral deformations may also be
detected in the experimental results. Even with these factors, the
simulation and experimental results agree well.

4.2. Influence of global prestrain

Since the baseline structure exhibits a nonlinear load-limiting
response, we expect the dispersion characteristics of the 1D lat-
tice to change with increasing axial compression. To examine
this, we perform experiments on a 3-RVE lattice at 0%, 5%, 10%,
15%, and 20% global compressive prestrains. Above 20%, the struc-
ture globally deforms into its second buckling mode. Note that
this could have been prevented by adding additional supporting
strings to our setup. The transmissibility is calculated as the ratio
of the velocity at the final measurement point (output) to the
velocity at the first measurement point (input). The experimental
and numerical dispersion curves and transmissibility plots are
shown in Fig. 4 for 0%, 5%, and 10% strain. Numerical results are
shown in red, and the experimental results in black.
4

Looking at the numerical dispersion curves we clearly see that,
with increased compressive strain, the bandgap width reduces
and the slope of the acoustic branch decreases, lowering the onset
of the bandgap. The only signature of bandgap closure that can
be read from the experimentally-reconstructed dispersion plots
is the narrowing of the peak-less frequency region, that extended
from 340 to 440 Hz in Fig. 4(a) for 0% strain. A perfect match is
not attainable here because the numerics represent the response
of an infinite lattice.

The transmissibility plots, being representative of a finite-
lattice response, show a better match between numerics and
experiments. We first analyze the 0% strain case of Fig. 4(a),
where we can see that the structural resonance peaks between
black and red curves almost coincide (with a minimal shift of
8 Hz, and with the experimental response appearing to be stiffer).
The noisy nature of the experimental response below 100 Hz
is again due to high-pass filtering. A strong anti-resonance is
visible for both numerics and experiments at around 450 Hz.
From these curves, we identify as a bandgap the region between
peaks at approximately 340 and 450 Hz, where the transmission
dips below 100. This attenuation region, shaded in red for the
numerics and in gray for the experiments, is in the vicinity of
the numerical dispersion bandgap, albeit slightly wider. As we
increase the strain to 5% and 10%, as shown in Fig. 4(b) and (c),
respectively, the peaks associated with the modes of the finite
structure shift towards lower frequencies. The numerical curves
show an increased peak density near the bandgap: the valley
identified as gap in Fig. 4(a) becomes increasingly narrow and
shallow (see the evolution of the shaded regions), confirming that
prestrain causes the bandgap to diminish in size. We can also note
that, as we increase prestrain, the shift between numerical and
experimental resonances increases (reaching 19 Hz in Fig. 4(c)).
This is not surprising, as the difference between numerics and
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Fig. 4. Precompression-induced tunability. The left panel of each subfigure represents the experimentally-reconstructed dispersion curve (gray colormap), with
verlapped circular markers corresponding to the numerical dispersion relation. The right panel is the transmissibility plot, where the experimental curves are black
nd the numerical ones are red. The dashed vertical line indicates a transmissibility of 1. The shaded gray and red regions serve as a guide to the eye and indicate
hat we identify as bandgaps for the experimental and numerical curves, respectively. (a) Lattice compressed to 0% global strain. (b) 5% strain. (c) 10% strain. (For

nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
xperiments is bound to increase for larger prestrains, for sev-
ral reasons. First, the material model used in COMSOL is linear
lastic. At higher compression levels, local strains may exceed
he region of negligible deviance from the linear elastic region.
econd, buckling of the structure could affect the response even
efore any buckling is visually apparent. However, even though
hese differences exist, numerical and experimental curves are
omparable.
For higher levels of prestrain, namely 15% and 20%, identifying

he bandgap is increasingly difficult. For this reason, we verify
he consistency of numerics and experiments by tracking the
volution of the longitudinal wave speed with prestrain, as shown
n Fig. 5(a). The wave speed is extracted from the numerical
esults as the slope of the first mode of longitudinal wave propa-
ation in the long-wavelength regime (small k). The experimental

(phase) velocity is measured from the time histories recorded at
the first and last measurement locations: we divide the spatial
distance between those locations by the difference between time
of occurrence of the same feature of the wave packet (a peak or a
valley). The black circle marker is the average of the speed values
obtained for the first peak and the first valley in the recorded
signal. Since the packet is centered at 200 Hz, and since Fig. 4
shows that dispersive features appear around 300 Hz, we expect
this speed to be characteristic of the non-dispersive part of the
branch.

From Fig. 5(a), we see that the numerical and experimental
wave speeds match well at 0% strain. Their wave speeds reduce
similarly from 0% strain to 10% strain, with the numerics showing
a 16% and experiments showing a 13% reduction in wave speed.
As compression is increased, the experimental results again show
a stiffer response with respect to the numerics, resulting in higher
wave speeds. From 0% to 20% strain, the numerical wave speed
reduces by 27%, and the experimental wave speed reduces by
19%. Despite the quantitative discrepancies, our experimental
5

Fig. 5. (a) Experimental and numerical longitudinal wave speeds at varying
levels of compression. The error bars on the experimental line indicate the wave
speeds as calculated by the highest peak and lowest valley in the amplitude of
the measured signal of the first transmitted wave. The black circle markers give
the average of these two values. (b) Evolution of the bandgap width (shaded
region) with strain, as predicted by the numerical dispersion curve.

results qualitatively confirm that wave speed and bandgap can be
continuously tuned with prestrain in tensegrity-inspired lattice
structures.
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Due to difficulties in bandgap identification for finite-size sys-
tems, we resort to numerics only to visualize in a single plot
the bandgap evolution for higher prestrains. The evolution of
the bandgap as derived from the numerical dispersion curve
for our tensegrity-inspired lattice is shown in Fig. 5(b). At no
precompression, the gap is 73 Hz wide, from 352 to 425 Hz.
As precompression is applied, the bandgap narrows significantly
and shifts to lower frequencies. Interestingly, at 15% strain, the
bandgap nearly closes and is only 7 Hz wide, from 323 to 330 Hz.
The bandgap then slightly reopens at 20% strain.

5. Conclusions

Recent numerical studies on tensegrity lattices have shown
them to be tunable with compression and prestrain, while having
the unique advantages of being highly elastically deformable and
having extreme strength-to-weight attributes. In this work, we
demonstrate the dispersion tunability attributes of tensegrity-
inspired 3D-printable lattices. The nonlinearity of the compres-
sive response of the lattice causes a dramatic evolution of its dy-
namic characteristics. Continuous tunability of the bandgap and
wave speeds is obtained by increasing the level of global precom-
pression. This tunability is achieved with a compliant structure
made of a stiff material, whose response is not dominated by
damping. Since the deformation remains elastic even at large
strains, a repeatable tuning of the lattice response is achievable.
While this preliminary study focuses on one-dimensional lattices,
tunability can be extended to larger two- and three-dimensional
assemblies of tensegrity-inspired cells, where the issues related
to global buckling we encountered here are bound to disappear.
This could open avenues for new metamaterials with tunable
wave focusing and waveguiding attributes. Moreover, one could
also envision using these tensegrity-inspired structures as springs
connecting larger masses, as illustrated in the work of Amendola
et al. [29] and Yin et al. [53], to create phononic systems with
richer dynamics.
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