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Enhancement of Deep-
Subwavelength Band Gaps in Flat
Spiral-Based Phononic
Metamaterials Using the
Trampoline Phenomena
Elastic and acoustic metamaterials can sculpt dispersion of waves through resonances. In
turn, resonances can give rise to negative effective properties, usually localized around the
resonance frequencies, which support band gaps at subwavelength frequencies (i.e., below
the Bragg-scattering limit). However, the band gaps width correlates strongly with the res-
onators’ mass and volume, which limits their functionality in applications. Trampoline phe-
nomena have been numerically and experimentally shown to broaden the operational
frequency ranges of two-dimensional, pillar-based metamaterials through perforation. In
this work, we demonstrate trampoline phenomena in lightweight and planar lattices consist-
ing of arrays of Archimedean spirals in unit cells. Spiral-based metamaterials have been
shown to support different band gap opening mechanisms, namely, Bragg-scattering,
local resonances and inertia amplification. Here, we numerically analyze and experimen-
tally realize trampoline phenomena in planar metasurfaces for different lattice tessellations.
Finally, we carry out a comparative study between trampoline pillars and spirals and show
that trampoline spirals outperform the pillars in lightweight, compactness and operational
bandwidth. [DOI: 10.1115/1.4046893]
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1 Introduction
Phononic crystals and metamaterials are structured materials that

exploit the geometry of their architecture to control the dispersion
and the propagation of stress waves. Their operational spectrum
can range from a few Hertz within the infra-sound range to
audible and ultrasonic frequencies [1]. Phononic crystals and meta-
materials have been proposed for different applications, e.g., in
seismic waves’ shielding [2,3] at very low frequencies and as effec-
tive noise and vibrations protecting layers in various frequency
ranges [4–8]. They also have been proposed for frequency filtering
[9,10], wave-guiding [11,12], computing [13,14], subwavelength
lensing [15] and acoustic cloaking [16].
Most phononic crystals and metamaterials consist of basic build-

ing blocks that repeat spatially in a periodic or quasi-periodic
fashion. One of the important traits of these structured materials
is the emergence of band gaps within their frequency dispersion dia-
grams. Band gaps are frequency ranges where waves are not
allowed to propagate within the host medium. The main mecha-
nisms for opening such frequency gaps are Bragg-scattering, local
resonance, or amplification of inertia. The building blocks are
usually composed of one or more materials depending on the
desired band gap opening mechanism. To induce a Bragg-scattering
band gap, the spatial periodicity is usually engineered to match the
wavelength of the targeted waves, triggering destructive interfer-
ences between traveling and reflected waves [17,18]. This is
usually achieved by having two or more materials within the unit

cell or a single material with holes of various shapes. A different
path to open band gaps is the presence of locally resonant elements
within the building blocks. Such design principle decouples the unit
cell size from the wavelength of the attenuated waves and enables
subwavelength wave control (i.e., below what is possible through
Bragg-scattering) [4]. Such resonance-based design principle does
not mandate the periodicity of the medium [19]. Another resonance-
based mechanism is the effective amplification of inertia, where a
resonator is usually connected to the unit cell through hinges or
complaint mechanisms [20]. These resonance-based approaches
enable metamaterials to retain properties that do not exist in conven-
tional materials, such as negative effective density or stiffness
[21–23]. Recently, we presented a platform for realizing different
phononic metamaterial physics based on Archimedean spirals span-
ning Bragg-scattering, local resonance, and amplification of inertia
utilizing simple variations of the spirals’ geometrical parameters
and symmetries [24].
The ability to control the propagation of elastic waves through

the utilization of metasurfaces (i.e., two-dimensional plates) is
important for wave guiding or vibration insulation of sensitive
equipment [25,26] and the potential realization of meta-devices
[14,27,28]. Metasurfaces decorated with arrays of pillars [29,30]
have been utilized in many studies due to their simple geometry
[19,31–42] with applicability across multiple scales [27,43].
However, similar to most locally resonant metamaterials, the reso-
nance frequency of pillared-metasurfaces correlate strongly with the
mass and volume of the pillar resonators. Lightweight and planar
metasurfaces are useful in various domains, particularly those
restricted by mass and volume (e.g., aerospace applications). An
additional limitation of resonant metasurfaces is their relatively
narrow frequency region of operation. To overcome this obstacle,
many approaches are introduced, such as using a multi-material
and/or multi-pillars system on the same side of the base plate
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[44,45], adding pillars to the bottom and top surface of the base
plate [46,47], introducing soft material to couple the pillar to the
base plate [48] or by introducing holes into the base plate (aka
the trampoline phenomenon [49]). Trampoline phenomena have
been shown to numerically [49] and experimentally [50] increase
the band gap width in single material metasurfaces due to the
added compliance to the base plate, which enhances the pillars’ res-
onance. In addition, in a trampoline metasurface, increasing pillar’s
mass, with the presence of holes, increases the band gap width [51].
An alternative approach to opening wide band gaps is decorating
the base plates with arrays of Archimedean spirals instead of
pillars [24,52–54]. Metasurfaces realized by patterning arrays of
spirals can encapsulate element-wise, real-time tunability [55] and
can be easily produced by additive [55] or subtractive [14] manufac-
turing. Moreover, the tunability of spiral-based metasurfaces
[14,55,56] has been used to realize all-phononic logic devices
[14]. Finally, the planar nature of the geometry is suitable for min-
iaturization, for example, by fabricating membranes etched with
conventional lithographic techniques [57,58].
In this study, we investigate the effect of the introduction of holes

on planar metasurfaces decorated with arrays of spirals. This geom-
etry allows the system to be completely two-dimensional and to
reduce the overall mass and volume of the metasurface (Fig. 1).
We start our analysis by calculating the numerical dispersion
curves, relating frequency to wavenumber, for different arrange-
ments of holes and spirals. Both square and hexagonal packings
are considered. We investigate the effect of different spiraling
cuts on the width and the position of the band gaps within the fre-
quency spectrum. Then, we analyze the resulting partial and full
band gaps, by taking a closer look at their corresponding dispersion
curves, for both square and hexagonal lattices. We fabricate two dif-
ferent samples: a spirals-only metasurface and a trampoline-spirals
metasurface (Figs. 1(b) and 1(c)). We experimentally measure the
elastic wave propagation characteristics in both samples through
different excitations. We consider both in-plane and out-of-plane

elastic wave polarizations. Finally, we compare the performance
of planar spiraling metasurfaces to pillar-based metasurfaces fabri-
cated with the same material and same base plate dimensions. We
investigate the influence of trampoline phenomena on the width
of the band gap in both configurations.

2 Numerical Simulations
We consider an infinite array of repeating unit cells in both x and

y directions. The basic building block is a single material plate with
side length a and thickness th carved with four concentric Archime-
dean spirals. The elastic wave equations for a heterogeneous
medium is [59]:

∇ · C: 1
2
(∇u + (u)T) = ρü (1)

where ∇ is the gradient operator, C is the elasticity tensor, u is the
displacement vector, ρ is the density, and (.)T is the transpose opera-
tion. To obtain the dispersion diagram correlating frequency and
wave number for our material, we apply the Bloch wave formulation
in both x and y directions (i.e., Bloch boundary conditions) [60]. The
Bloch solution is assumed to beu(x, κ; t) = ũ(x, κ)ei(κ.x−ωt), where ũ
is the Bloch displacement vector, κ is the wave vector, ω is the fre-
quency, x= {x, y, z} is the position vector, and t is the time. This
form of solution yields a complex eigenvalue problem when
plugged into the wave equation in a discretized form:

[K(κ) − ω2M]u = 0 (2)

where K, M are the stiffness and mass matrices, respectively. We
solve the complex eigenvalue problem using the finite element
method.
We numerically analyze two configurations of unit cells. The first

unit cell configuration is constructed by cutting four concentric
Archimedean spirals from a homogeneous plate. The second unit
cell is constructed from the same spiraling pattern with additional
circular cuts at the corners of the unit cell (Fig. 1(a)). We refer to
the first configuration as spirals-only metasurface and to the
second as spiral-trampoline metasurface. The polar representation
of the Archimedean spiral is r(s)=R− (R− r)s, ϕ(s) = 2πns,
where r is the inside radius, R is the outside radius, n is the
number of turns, and s∈ [0; 1]. The repetition of Archimedean
spirals can give rise to a plethora of intriguing wave phenomena
depending on the underlying lattice vectors (for example, frequency
dependent wave beaming) [24]. In our study, we consider both
square and hexagonal lattice tessellations. We start our analysis
by comparing the dispersion diagrams for both metasurfaces config-
urations to a homogeneous unit cell with the same dimensions as a
reference (Figs. 2 and 3). We vary the wavenumber (κ) along the
symmetry lines Γ−X−M−Γ for the square lattice case (Fig. 2)
and along the vectors Γ−M−K−Γ for hexagonal lattices
(Fig. 3). The lattice constant, defined as the distance between the
center of two neighboring unit cells, is a= 25mm. The parameters
for the spiral geometry in both lattices are lattice constant, a= 25
mm, thickness, th= 3.1mm, spiral width w = 0.48mm, hole radius,
and spiral outside radius, R= 8.1mm, spiral inside radius, r= 5.9
mm. The material parameters are [50] ρ = 1200Kg/m3, E= 2.3GPa,
and ν = 0.35. The resulting dispersion curves are plotted in Figs.
2 and 3.
In the square lattice case, the introduction of the spiral pattern

opens a band gap (Fig. 2(b)) with normalized width Δω/ωc =
17.71% (where ωc is the band gap central frequency). Using this
percentage metric takes into account both the absolute width and
the central frequency of the gap. After perforation (i.e., introduction
of the holes), the same spiraling geometry retains a 28.87% normal-
ized band gap width (Fig. 2(c)) with an increase of 63% from the
spirals-only metasurface. To highlight the trampoline effect, we
consider the vibrational mode shapes of the unit cell and compare
the spiral-metasurface modes to the trampoline-spiral modes. The

(a)

(b) (c)

Fig. 1 Metasurfaces realization: (a) the construction of
spirals-only unit cell by subtracting four concentric Archime-
dean spirals from a homogeneous plate. The construction of
the trampoline-spiral unit cell by removing a quarter circle from
each corner of the unit cell. (b) Metasurface with concentric
Archimedean spirals, consisting of an array of 7 ×7 unit cells pat-
terned on a polycarbonate plate. The plate thickness is 3.1mm
and the lattice spacing is 25mm. The spiral inner radius is 4.9
mm and the spiral width is 0.48mm. (c) Trampoline metasurface
composed of spirals and holes with a radius of 7.8mm. The
insets show the unit cells of each metasurface. The scale bar is
25mm.
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first three fundamental vibrational modes, namely the out-of-plane
mode of the unit cell and the two in-plane modes are plotted in
the first row in panels d for the spiral metasurface and in panel e
for the trampoline-spiral metasurface. The introduction of holes in
the trampoline metasurface does not change the frequency or the
shape of either of the first three modes (modes A–C) and therefore
does not change the lower edge of the band gap for the given set of
spiral parameters. The upper edge of the gap, however, is shifted
upwards due to the presence of the holes. The change of the position
of the mode shapes in the frequency spectrum can be observed in
both modes (D) and (E) in Fig. 2 (panel (d ) and (e)). In particular,
the (E) mode in the trampoline case shows the engagement of the
base plate in the resonance motion of the spiral core of the unit
cell, which highlights the signature of the trampoline effect [49].
Moreover, it is worth noting that mode (F), which is a rotational
mode of the spiral core does not change position with or without
the presence of the holes. This fixed position of the rotational
mode (F) makes it is easy to note the change in the frequency of
modes (D) and (E) as they switch from being at a lower frequency
to a higher frequency relative to mode (F).
In the case of the hexagonal lattice, the same spiral pattern opens

a narrow band gap (Fig. 3(b)) with a normalized width of 5.63%.
The introduction of holes increases the band gap relative width to
23.79% with an increase of 322%. All the band gaps reported in
Figs. 2 and 3 are in the deep-subwavelength frequency range (i.e.,
below the Bragg-scattering limit) [24], in comparison to the homo-
geneous plate properties. For the considered unit cells, the square
lattice band gaps are lower in frequency than the hexagonal ones
by approximately a factor of 5.
To analyze the influence of the trampoline phenomena on the rel-

ative band gap width of spiraling metasurfaces, we systematically
vary the inner radius of the spirals (r) from 2.8mm to 7mm
(Fig. 4). We record the frequencies of the upper and lower edges
of the first band gaps for both spirals-only and spiral-trampoline
metasurfaces (Figs. 4(a) and4(b)). We first consider the partial
band gaps, i.e., focusing only on the waves propagating along the
Γ−X direction, for both configurations (Fig. 4(a)). The evolution
of the first partial band gap as a function of r is divided in two
regions. The first region includes r ranging from 2.8mm to 4.7
mm. Spirals-only metasurfaces have no significant band gaps,
while trampoline-spiral metasurfaces have a maximum band gap

Fig. 2 The dispersion curves of three different unit cells in a
square lattice: (a) a homogeneous plate, (b) spirals metasurface,
and (c) trampoline spirals metasurface. The insets represent the
symmetry lines for the considered wave vectors along the path Γ
−X−M−Γ. The band gap region are shaded in green. Selected
mode shapes around the band gap for (d) spirals metasurface
and (e) trampoline spirals. (Color version online.)

(a) (b) (c)

Fig. 3 The dispersion curves of three different unit cells in a hexagonal lattice: (a) a
homogeneous plate, (b) spirals metasurface, and (c) trampoline spirals metasurface.
The insets represent the symmetry lines for the considered wave vectors along the
path Γ−M−K−Γ. The band gap regions are shaded in the dispersion curves. (Color
version online.)
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relative width of 22.85%. To understand the reasoning behind the
emergence of the band gaps in the trampoline configuration, we
plot the dispersion curves of selected r values (Fig. 5). An increase
in the compliance “softening” of the plate base affects the lower
limit of the Bragg-scattering frequency [24], which gives rise to
the partial band gaps. Such a phenomenon can be observed in
Fig. 5(a) versus (b) at r= 3.26 mm. As the inner radius of the
spirals increases (e.g., r= 4.61 mm), the central mass of the spiral
gets heavier. The increase of the relative mass of the core of the
spiral lowers the resonance frequency without any significant
effect on the overall stiffness of the plate, which narrows width of
the partial band gap while giving rise to a full one (Fig. 5(b)).
The region of the second partial band gap extends between

r= 4.8 mm until the end of the considered parametric sweep
at r= 7 mm. In this region, both partial and full band gaps coincide,
as the resonance induced by the spiral core is strong enough to
open a full band gap starting from 118Hz. A full band gap starts at
r= 4.5 mm for the trampoline spirals, but not until r= 5.1 mm for

the spirals-only configuration (Fig. 4(c)). The maximum full band
gap in the trampoline case exists at r= 6.3 mm with normalized
width of 30.85%. That is almost as twice as the maximum gap for
spirals-only at r= 6.2 mm which peaks at 17.72%. The lowest gap
for the considered parameters spans the range of 118–150Hz for
trampoline spirals, with a three-fold increase over spirals-only meta-
surfaces (Fig. 4(d )). As a conclusion for the square lattice configura-
tion, the lower edge of the band gap in the spiral-trampoline case is
always below the spirals-only configuration. In addition, the gaps
in the spirals-trampoline case are always wider. Having band gaps
starting at lower frequencies translates to smaller unit cell sizes, in
comparison to spirals-only metasurfaces, for the same operating fre-
quency. The increased width in band gap is beneficial as it translates
to larger operational bandwidth.
It is established that periodicity is not essential for opening

locally resonant or inertially amplified band gaps. However, the
addition of ordered holes, inducing Bragg-scattering hybridization,
can give rise to different phenomena depending on the lattice con-
figuration. To fully capture the influence of lattice configuration on
trampoline phenomena, we consider hexagonal packing of spiraling
metasurfaces with perforation (i.e., introduction of the holes) at the
six corners of the unitcell (Fig. 3(c)). We record the evolution of the
band gap width as a function of the spiral inner radius (Fig. 6). We
vary r from 2.2 to 5.2mm. The band gaps for spirals-only metasur-
faces evolve in two separate regions, similar to that of the square
lattice configuration. The first region represents partial band gaps
at r= 2.3 to 3.6mm, while the second region corresponds to full
band gaps at r= 3.78 to 4.5mm (Figs. 6(a) and 6(c)). The
maximum normalized width of the full band gap in the trampoline-
spiral metasurfaces is 24.89% taking place at r= 4.68 mm, which is
150% more than the 9.98% maximum full band gap for spirals-only
metasurfaces at r= 4.23 mm. Moreover, the lowest possible full
band gap with spirals-only starts at 1511Hz, which is almost
twice that of the lowest full band gap for trampoline-spirals starting
at 878Hz. To examine the emergence of the band gaps in the tram-
poline configuration, we plot the dispersion curves of selected r
values (Fig. 7). The band gap opening mechanism is pure
Bragg-scattering from the beginning of the parameter sweep up to
r= 2.61 mm, where a hybrid band gap starts to appear. The
partial gap starts as a hybridization between Bragg-scattering and
resonance at r= 2.61 mm (Fig. 7(a)) below the Bragg-scattering
gap. The hybridization is more pronounced in the trampoline con-
figuration compared to that of the spirals-only metasurface
(Fig. 7(b)). As the inner radius increases, the mass of the spiral
core increases, which lowers its resonance frequency, causing the
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Fig. 4 First band gap evolution for a square lattice: The first
band gap edges as a function of inner radius for both spirals
(gray) and trampoline spirals (dashed orange) metasurfaces
along (a) Γ−X direction, partial band gaps (c) Γ−X−M−Γ, full
band gaps. The percentages of the first band gaps for
(b) partial band gaps and (d) full band gaps. The insets in
(a) and (c) represent the symmetry line(s) for the considered
wave vectors. (Color version online.)
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(b)

Fig. 5 Band gap evolution for square packing of spirals as a function of its inner radius for (a) spirals-only configuration and
(b) trampoline spirals. The inset represents the symmetry lines for the considered wave vectors. Band gap frequency ranges
are highlighted in dispersion curves.
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lower band gap to overtake the pure Bragg-scattering band gap at
r= 3 mm. The hybrid gap peaks at r= 3.4 mm, after which it
shifts to lower frequencies as the resonance increases. The reso-
nance eventually dominates and opens a locally resonant full
band gap starting at r= 4.05 mm for the trampoline-spiral meta-
surfaces. As a conclusion for both square and hexagonal lattice
configurations, adding perforation to the base plate increases the
width of both partial and full band gaps in all polarizations.

3 Experiments
To experimentally verify the existence of deep-subwavelength

band gaps within our metasurfaces (both spirals-only and
trampoline-spirals), we fabricate an array of 7 × 7 unit cells made
of polycarbonate (PC) using a Fortus 400mc from Stratasys
(Fig. 1). The parameters for the fabricated geometry are as
follows: lattice constant, a= 25mm; thickness, th= 3.1mm; spiral
width w = 0.48mm; hole radius and spiral outside radius, R= 7.8
mm; and spiral inside radius, r= 4.9 mm. We excite the

metasurfaces with a harmonic signal (i) out-of-plane, perpendicular
to the metasurfaces (Fig. 8(a)) and (ii) in-plane, along the thickness
of the metasurfaces (Fig. 8(b)). The excitation point in both cases is
at one of the plate corners using a mechanical shaker (Bruel & Kjaer
Type 4810). The excitation signal is sent to the shaker from the
computer through an audio amplifier (Topping TP22). The traveling
wave velocity in the plate is detected by a laser Doppler vibrometer
(Polytec OFV- 505 with a OFV-5000 decoder). The velocity is sent
back to the computer through a lock-in amplifier from Zurich Instru-
ments (HF2LI). We vary the excitation frequency from 50Hz to 1.5
kHz in 3Hz increments and record the wave transmission through
the metasurfaces measured at the points illustrated by the red
laser dot path in Fig. 8.
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Fig. 6 First band gap evolution for a hexagonal lattice: the
first band gap edges as a function of inner radius for both
spirals (gray) and trampoline spirals (dashed orange) metasur-
faces along (a) Γ−X direction, partial band gaps (c) Γ−X−M−
Γ, full band gaps. The percentages of the first band gaps for
(b) partial band gaps and (d) full band gaps (Color version
online.)

(a)

(b)

Fig. 7 Band gap evolution for hexagonal packing of spirals as a function of its inner radius for (a) spirals-only configuration and
(b) trampoline spirals. The inset represents the symmetry lines for the considered wave vectors. Band gaps frequency ranges are
highlighted in dispersion curves.

Fig. 8 Experimental setup: (a) a metasurface sample mounted
horizontally on a mechanical shaker to test out-of-plane
(bending) waves and (b) the same metasurface sample
mounted on the shaker vertically to test in-plane waves. In both
panels, the red dot is the laser Doppler vibrometer measurement
point. (Color version online.)
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The dispersion curves for both spirals-only and trampoline-spiral
metasurfaces are plotted in Figs. 9(a) and 9(c), respectively. Since
each polarization is excited separately, the dispersion lines are
colored according to the polarization: blue for in-plane waves and
orange for out-of-plane waves. The spirals-only geometry retains
a separate band gap for each polarization (Fig. 9(a)). The
out-of-plane band gap ranges from 604Hz to 730Hz, while the
in-plane band gap ranges from 744Hz to 870Hz. The trampoline-
spiral geometry has a band gap from 545Hz to 808Hz for
out-of-plane waves and another band gap from 744Hz to 960Hz
for in-plane waves (Fig. 9(c)). The two gaps have a small

intersecting frequency range that opens a full band gap for both
in-plane and out-of-plane polarizations.
The recorded wave velocities at the measurement points, which

are highlighted in red in Fig. 8, are normalized by the measured
velocities at the excitation point. To calculate the transmission,
the recorded wave velocities at the measurement points are normal-
ized by the measured velocities at the excitation point. The mea-
surements are done separately for each wave polarization. The
frequency response function correlating the frequency of excitation
and the normalized transmission amplitude for both in-plane (blue)
and out-of-plane (orange) waves are plotted in (Figs. 9(b) and 9(d )).

Fig. 9 Experimental and numerical characterization of metasurface. Dispersion curves of (a) spirals-only metasurface and (b) its
measured frequency response function. (c) Dispersion curves of spiral-trampoline metasurface with the same plate thickness and
spiral parameter. (d) The measured frequency response function. The lines are color-coded based on polarization; blue for
in-plane and orange for out-of-plane. The band gaps are highlighted in blue for in-plane, orange for out-of-plane, and purple for
combined band gaps. (Color version online.)

Fig. 10 Numerical comparison between the first complete band gap induced by different pillar and
spiral configurations. Pillared metasurface: (a) Frequency range of the complete band gap with different
pillar heights in pillared metasurface and trampoline pillared metasurface. (b) Band gap percentage of
both pillared configurations as a function of pillar height. Spiral-based metasurface: (c) Frequency
range of the complete band gap with different spiral inner radius in trampoline versus non-trampoline
metasurface. (d) Band gap percentage of both spiral configurations as a function of inner radius.
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In the spirals-only case, we observe a perfect match for out-of-plane
waves, while the measured in-plane gap is slightly smaller than pre-
dicted (Fig. 9(b)). In the trampoline case, the out-of-plane gap’s
upper edge is slightly lower than numerically predicted. In
general, the experimentally measured band gaps for out-of-plane
(bending) waves in both metasurfaces are in good agreement with
the numerical prediction, (Fig. 9(b)), while the in-plane waves
have slightly higher frequencies than predicted. This deviation for
the in-plane gaps could be due to fabrication imperfections of the
cutting width of the spirals, which affect in-plane waves more
than out-of-plane waves [24]. For both polarizations, the addition
of holes significantly increased the width of the gap in both numer-
ics and experiments.

4 Trampoline Pillars Versus Trampoline Spirals
Finally, we analyze the trampoline effect on different metasur-

face configurations by comparing the full band gap width resulting
from the erection of pillars on a plate (pillar-based metasurfaces)
and a planar plate with spiraling cuts (spiral-based metasurfaces).
We numerically simulate different variations of both geometries
(pillars and spirals) and record the frequency range of the first full
band gap for each. We also consider the percentage corresponding
to the normalized band gap width (Fig. 10). All geometries are sim-
ulated with the same parameters as in Bilal et al. [50] using ABS
plastic (ρ = 1040Kg/m3, E= 1.65GPa, ν = 0.35), square lattice
spacing a= 25mm, and a plate thickness th= 3.2mm. We choose
the outer radius of the spirals, the pillars, and the holes to be iden-
tical with R= 7.8mm.
For the considered pillar-based metasurfaces, the addition of

holes lowers both the upper and lower edges of the band gap. Tram-
poline effect slightly expands the existence of full band gaps as a
function of pillar heights in both directions (Fig. 10(a)). Having
band gaps at lower frequencies, even with the same width Δω,
results in a higher band gap percentage BG = Δω/ωc; because
the central frequency of the band gap ωc decreases. The
maximum gap percentage for the pillars-only configuration is
18.4%, while the band gap percentage after adding the holes can
go up to 24.4% with an increase of 32.6% (Fig. 10(b)). In the
spirals configuration, the addition of holes increases the frequency
of the upper band gap edge, however, with limited influence on
the lower edge of the gap. The trampoline effect also expands the
inner radii range of metasurfaces with full band gaps in both direc-
tions (Fig. 10(c)). The maximum gap percentage for the spirals-only
configuration is 19.4%, while the band gap percentage after adding
the holes can go up to 37.1% with an increase of 91.3%
(Fig. 10(d )).
For both spiraling and pillared metasurfaces, perforation

increases the percentage of the band gaps. However, the effect in
the spirals case is more profound with almost double of the
maximum possible band gap relative width. It is worth noting that
the lowest frequency for the bottom edge of the band gap is 3230
Hz in the trampoline-pillars case, while being 125Hz for
trampoline-spirals with the same spacing. That translates to a
factor of 25 in operational frequency in addition to more than an
order of magnitude increase in band gap percentage (3% BG at
pillar height 18mm and 36.8% BG at inner radius 7mm). In addi-
tion, spiraling metasurfaces (with or without the holes) retain both
mass and volume advantages over pillared metasurfaces.

5 Conclusion
In this paper, we introduced the concept of linear, local-

resonance enhancement (trampoline effect) to planer metasurfaces
carved with Archimedean spirals. We first numerically analyze
the effect of the increase of the inner radius of the spiral on the
band gap frequency range and the normalized band gap percentage.
We consider both partial (directional) and complete band gaps.
Then, we explore the effect of the underlying lattice on trampoline

metasurfaces by analyzing hexagonal packing of spirals with and
without holes. In a square lattice, the trampoline effect for spiral-
based metasurfaces leads to the opening of full and partial band
gaps where spiral-based metasurfaces (made out of the same mate-
rial and spiral parameters) do not support band gaps. In a hexagonal
lattice, there exists a small range of parameters where a spirals-only
metasurface can open band gaps while trampoline metasurfaces can
not. Generally, the spiral-trampoline metasurface outperforms the
spirals-only metasurface in band gap percentage. In order to vali-
date the numerical analysis, we fabricate two metasurfaces—
spirals only and trampoline spirals using a single material through
additive manufacturing. Both samples are exited harmonically at
the corner using a mechanical shaker in both in-plane and
out-of-plane polarization. The experimentally observed band gap
frequency ranges agree well with our numerical predictions. More-
over, we compare the band gap width of pillared metasurfaces
against spiral-based metasurfaces, in both the absence and the pres-
ence of the trampoline effect, all fabricated from same material. In
the case of the trampoline spirals, the band gaps are wider with sig-
nificantly less mass. Such properties could be beneficial in aero-
space vibration insulation and naval domains, where limitations
on the overall system mass and volume are present.
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