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Interaction of highly nonlinear solitary waves with linear elastic media
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We study the interaction of highly nonlinear solitary waves propagating in granular crystals with an adjacent
linear elastic medium. We investigate the effects of interface dynamics on the reflection of incident waves and on
the formation of primary and secondary reflected waves. Experimental tests are performed to correlate the linear
medium geometry, materials, and mass with the formation and propagation of reflected waves. We compare the
experimental results with theoretical analysis based on the long-wavelength approximation and with numerical
predictions obtained from discrete particle models. Experimental results are found to be in agreement with
theoretical analysis and numerical simulations. This preliminary study establishes the foundation for utilizing
reflected solitary waves as novel information carriers in nondestructive evaluation of elastic material systems.
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I. INTRODUCTION

Wave propagation and localization at the interface of
different physical media has been studied in numerous research
areas such as solid-state physics [1], optics [2,3], and acoustics
[4–6]. In particular, the study of interfaces between linear
and nonlinear optical media has allowed the observation of
interesting spatially localized phenomena known as optical
Tamm states [7]. In linear lattice structures, acoustic local-
ization has been reported in association with the boundary
conditions [4] and with the presence of local defects in an
otherwise periodical system [5].

Recently, one-dimensional (1D) granular media composed
of contacting elastic particles (also defined as 1D granular
crystals) have been widely employed in the study of wave
propagation [8–10] and acoustic vibrations [11,12]. It has
been shown that the dynamic response of these chains of
particles can encompass linear, weakly nonlinear, and strongly
nonlinear regimes with highly tunable properties [9,13]. In
the strongly nonlinear regime, a granular chain supports the
formation and propagation of highly nonlinear solitary waves
(HNSWs) [8,9]. Unlike harmonic oscillatory waves in linear
elastic media, HNSWs are lumps of energy that present
unique scattering and superposition responses. They are
characterized by a compactly supported shape and extremely
slow propagation speed in comparison to the sound speed of
the material that composes the particles in the chain [9,14].

Previous work to understand the interaction of solitary
waves with linear elastic interfaces has been reported in the
literature [15–19]. Job et al. investigated the collision of a
single solitary wave with elastic media of various hardness
(herein referred to as the “wall”), and reported different force
profiles originating from the interactions with such walls [15].
Falcon et al. studied the impact of a column of beads on a fixed
wall focusing on the bouncing behaviors of the chain [16]. The
decomposition of incident solitary waves has been reported
under the influence of large-mass granular impurities [17,18]
and heterogeneous granular chains [19].
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In this study, we investigate the reflection of highly
nonlinear solitary waves interacting with different linear elastic
media. We analyze how reflected waves are formed at the
interface between the granular and the linear medium, and
how they attenuate in the granular medium, as a function
of the materials and geometry of the adjacent linear media.
We relate the observed properties of reflected waves with
the particles dynamics in the vicinity of the interface. We
compare experimental results with theoretical results derived
from the long-wavelength approximation, and with numerical
results obtained from a discrete particles model based on
Hertzian particle interactions. We observe that the reflected
solitary waves are sensitive not only to the material properties
of the immediately adjacent medium, but also to the proper-
ties and geometry of the underlying layers in a composite
medium. The information-conveying characteristics of the
reflected solitary waves make highly nonlinear granular chains
very attractive for nondestructive evaluation of uniform or
composite structures.

The rest of the paper is structured as follows: First, we
describe the experimental setup in Sec. II. We then introduce
a numerical model to explain the coupling between nonlinear
and linear media in Sec. III. Section IV describes theoretical
analysis of the particle dynamics at the interface. Section V
describes a comparison between analytical, numerical, and
experimental results. Last, in Sec. VI, we conclude the paper
with summary and possible future work.

II. EXPERIMENTAL SETUP

The nonlinear granular medium studied in this work
consisted of a vertical chain of 20 stainless steel spheres
(McMaster 440C) with 4.76 mm radius and material properties
listed in Table I. The spheres were constrained by four steel
rods coated by Teflon tape to reduce friction (Fig. 1). Single
solitary waves were excited by the impact of a spherical
striker identical to the spheres composing the chain [9]. To
accurately control the striker velocity we used a DC-powered
linear solenoid to release the striker from a drop height of 1 cm.
This release method allowed highly reproducible impacts, with
only a 0.45% standard deviation in the velocity distribution.
We limited our work to the study of 1 cm drop height in order to
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TABLE I. Material properties of polymeric and metallic specimens. The reported values are standard specifications [21] except the Young’s
moduli of polymers, which are extrapolated from the Hugoniot relationship [22].

Material Density (kg/m3) Young’s modulus (GPa) Poisson’s ratio

Stainless steel AISI type 440C 7800 200 0.28
Copper 8960 115 0.35
Brass 360 8550 103 0.34
Aluminum 6061-T6 2693 68.9 0.33
Nylon (Polyamide) 1140 6.52 0.40
Acrylic (Polymethylmethacrylate) 1186 4.75 0.35
Polycarbonate 1196 3.75 0.35
PTFE (Polytetrafluoroethylene) 2151 1.53 0.46

exclude the possible onset of plasticity at or around the contact
region [20]. A high-speed camera (Vision Research Phantom
V12) was employed to measure the actual impact and rebound
velocity of the striker and thus to characterize energy losses.

The propagation of solitary waves in the chain was recorded
using two instrumented particles with calibrated piezo sensors.
To fabricate the instrumented particles a thin layer of lead
zirconate titanate ceramics (APC-850 PZT with 4.75 mm
radius and 0.50 mm thickness) was embedded between two
spherical caps as illustrated in the inset of Fig. 1. Particular
care was taken to ensure that the total mass of the instrumented
particle was equal to the mass of the regular beads in the chain.
The piezo elements were electrically insulated by Kapton film
(McMaster, low-static polyimide with 66.0 μm thickness) to

Kapton tape

PZT

Cap
Wire

FIG. 1. (Color online) Experimental setup consisting of a 20-
particle granular chain vertically positioned on the top of a steel
cylinder (the linear medium). The inset shows the schematic drawing
of the instrumented particle, equipped with a piezo-ceramic (PZT)
layer.

prevent charge leakage to the neighboring elements. All the
components were assembled together using epoxy adhesives.
Custom microminiature wiring was soldered on the silver
coated electrodes of the piezo ceramics to allow connection
to a Tektronix 2024 oscilloscope for signal acquisition. The
instrumented particles were positioned in the 7th and 16th
positions from the top of the chain. The voltage-to-force
conversion factors were obtained based on conservation of
momentum as described in [14].

The chain of particles was assembled on top of cylindrical
specimens composed of different linear elastic materials and
sizes. We tested four different sets of cylindrical specimens in
order to simulate various states of linear media. In each test,
the bottom of the sample was firmly fixed to a massive V-block
by steel adaptors and clamps with fastening screws to impose
fixed boundary conditions (Fig. 1). First, we tested uniform
cylinders made of different materials to assess the effect of
their mechanical properties on the solitary wave reflection. The
materials tested ranged from soft polymers to hard metals, with
their properties listed in Table I. The cylindrical samples were
76.2 mm tall with radius 19.1 mm, four times larger than the
radius of the spheres in the chain. By using samples with a large
cross-sectional area, we could reduce the boundary condition
in the theoretical analysis to a semi-infinite wall [23,24].

The second set of cylindrical samples was selected to
examine the effect of the cylinder’s geometry. In this case,
we tested slender stainless steel cylinders (9.53 mm radius,
twice the radius of beads used in granular chain) examin-
ing 14 samples with various heights ranging from 6.35 to
610 mm. The cylinder centerlines were aligned with the axis of
the granular chain to prevent the generation of flexural waves,
allowing a 1D approximation in the numerical and theoretical
analysis.

The third and fourth sets of cylindrical samples consisted
of layered media [Fig. 2(b)]. In this setup, cylinders of 440C
stainless steel were glued on top of polytetrafluoroethylene
(PTFE) rods with epoxy adhesive. The radii of both the
stainless steel and PTFE cylinders were 9.53 mm. We first
tested different heights of the stainless steel cylinders (from
6.35 to 102 mm) positioned on the top of a 25.4-mm-tall
PTFE cylinder. The use of steel cylinders of different heights
allowed evaluating the effect of the upper layer’s inertia on the
formation of reflected waves at the interface. We then tested
different heights of the PTFE lower cylinders (from 9.52 to
152 mm), while keeping constant the geometry of the stainless
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FIG. 2. (Color online) Schematic diagram showing the 1D chain
of spherical elements in contact with (a) a uniform linear medium
and (b) a composite linear medium.

steel part with a height of 6.35 mm. The use of PTFE cylinders
of different heights allowed evaluating the effect of the lower
layer’s geometry on the formation of reflected waves at the
interface.

III. NUMERICAL MODEL

To evaluate the wave dynamics in the granular chain we
used a 1D discrete particle model [9]. In this approach, we
assumed that the particles interaction is restricted to small
displacements in the axial direction. We also assumed that the
transit times of the solitary waves in the granular media are
much longer than the oscillation period of elastic waves within
the particles. Under these assumptions, we can express the
equation of motion of monodispersed spherical particles using
a modified Hertzian model that includes dissipative terms [25]:

mün = (
Anδ

3/2
n − An+1δ

3/2
n+1

) + (γnδ̇n − γn+1δ̇n+1) + F,

n ∈ {1, . . . ,N}, (1)

where

An ≡

⎧⎪⎨
⎪⎩

A|c = E
√

2R
3(1−ν2) , n ∈ {1, . . . ,N}

A|w = 4
√

R
3

(
1−v2

E
+ 1−v2

w

Ew

)−1
, n = N + 1,

γn ≡
{

γ |c, n ∈ {1, . . . ,N}
γ |w, n = N + 1,

δn ≡ [un−1 − un]+, n ∈ {1, . . . ,N + 1}.
Here R is the radius of the bead, and un is the coordinate of
nth bead’s center from its equilibrium position. We represent
the striker bead with index n = 0, and the displacement at
the nonlinear and linear media interface is denoted by uN+1

[Fig. 2(a)]. The bracket [s]+ takes only positive values and
is equal to 0 if s � 0. The subscripts |c and |w refer to the
chain and wall, respectively. Here F is a body force applied
to the bead, gravity in this study, and E, m, and ν represent
Young’s modulus, mass, and Poisson’s ratio of the granular
elements. The coefficients A|c and A|w represent the contact

stiffness values in the chain (i.e., between two beads) and at
the wall (i.e., between the last bead and the bounding wall),
respectively.

It should be noticed that A|w is different from A|c due to the
sphere-wall contact configuration. This sphere-wall contact
stiffness depends on the mechanical properties of the wall,
which are characterized by Young’s modulus Ew and Poisson’s
ratio νw. We define the critical Young’s modulus of the wall,
when the wall stiffness becomes identical to the chain stiffness
(A|c = A|w). Mathematically, the critical Young’s modulus is
expressed as

Ew|critical = E

2
√

2 − 1

(
1 − ν2

w

1 − ν2

)
, (2)

based on the chain and wall stiffness definition in Eq. (1).
If the linear elastic cylinder and the chain particles exhibit
similar Poisson’s ratios, this relationship can be simplified to
Ew|critical ≈ E/(2

√
2 − 1), where the critical elastic modulus

of the wall is approximately 55% of the particle material’s
modulus. The physical meaning of the critical Young’s
modulus and its role on the formation of reflected waves are
discussed in Sec. V A of this paper.

To accurately predict the wave reflection behavior at the
interface, it is important to account for energy dissipation along
the chain [15,25,26] and for restitutional losses at the wall. We
found that a linear dissipation model [26] yields satisfactory
results to describe the damping phenomena in short chains
of granular particles. The energy losses along the chain are
represented by the chain dissipation coefficient γ |c . The
losses at the interface are characterized by the wall dissipation
coefficient γ |w, which has a strong dependence on the wall
materials. The values of all dissipation coefficients were
extrapolated from experiments (see details in the Appendix).

We used the time delay system model [27] to simulate
the wave propagation within the linear elastic medium. In
this approach, we first define the dimensionless displacement
field of the linear medium u∗

w(ξ,τ ) ≡ uw(x,t)/L with ξ = x/L

being the dimensionless position and τ = ct/L being a time
parameter [Fig. 2(a)]. Here x and L are the position and the
length of the linear medium, and c and t are the longitudinal
wave speed and time. The displacement field can be expressed
as u∗

w(ξ,τ ) = f (τ − ξ ) + g(τ + ξ ) with the two real functions
f and g representing forward and backward waves to satisfy
the D’Alembert’s general solution for the longitudinal wave
equation [27].

The wave propagation solution in the linear medium is
subjected to the boundary and initial conditions. The force
exerted on the medium by the last bead is governed by the
Hertzian interaction including the dissipative force, which is
in equilibrium with the elastic repulsion by the linear medium:

−EwS∂u∗
w/∂ξ |ξ=0 = A|w δ

3/2
N+1 + γ |w δ̇N+1, (3)

where S is the cross-sectional area of the linear medium. Using
∂u∗

w/∂ξ |ξ=0 = −ḟ (τ ) + ġ(τ ) and uN+1 = L[f (τ ) + g(τ )],

046606-3



YANG, SILVESTRO, KHATRI, DE NARDO, AND DARAIO PHYSICAL REVIEW E 83, 046606 (2011)

Eq. (3) can be expressed as

EwS[ḟ (τ ) − ġ(τ )] = A
∣∣
w
δ

3/2
N+1 + γ

∣∣
w
δ̇N+1,

where

δN+1 = [uN − L{ḟ (τ ) + ġ(τ )}]+. (4)

It is notable that Eq. (4) includes the displacement terms of
both the granular chain and the linear medium, linking the
dynamics of the nonlinear and linear medium.

We now apply the rest of boundary and initial conditions
to the linear elastic medium model. Given that the base of the
cylinder is fixed (at x = L), we obtain the Dirichlet boundary
condition:

f (τ − 1) + g(τ + 1) = 0. (5)

The initial condition assumes that the linear medium remains
undisturbed until time t0, which denotes the moment that
the head of solitary wave arrives in the end of the chain.
This means that f (τ ) = 0 for τ � ct0/L and g(τ ) = 0 for
τ � 1 + ct0/L. As expressed in Eq. (5), the two functions f
and g are essentially identical but shifted with a time delay
term. For the numerical integration of the time delay systems,
we used the DDE (delay differential equations) solver in
MATLAB [27,28]. More complicated cases of multilayered
composite media [Fig. 2(b)] can be modeled by introducing
additional pairs of real functions and the corresponding
boundary conditions.

IV. THEORETICAL ANALYSIS

It is well known that the energy carried by a highly nonlinear
solitary wave has a compact support, mostly confined within
the wave length of about five particle diameters, in chains
composed of spherical elements [9]. During the interaction
with a wall, in particular, the majority of the propagating
energy is retrieved as potential energy between the last
bead and the bounding wall [15]. To estimate the theoretical
contact time of the last particle in the chain with the wall, we
assumed that the collision process is fully elastic [29,30]. In
this model the total energy initially carried by the striker is
split between the Hertzian potential and kinetic energy of the
last bead against the bounding wall. Mathematically,

1

2
mV 2

s ≈ 1

2
m

(
duN

dt

)2

+ 2

5
A|w u

5/2
N , (6)

where Vs is the striker velocity. Integrating this differential
equation over the period of interaction, the contact time Tc is
obtained as

Tc ≈ 3.218m2/5V −1/5
s A|−2/5

w . (7)

This equation shows the dependence of the contact time on the
cylinder’s mechanical properties as represented by A|w [see
Eq. (1)].

We proceed to calculate the traveling time of the solitary
waves in the granular chain between the instrumented bead
and the wall. The transit time Tt of the incoming and
reflected solitary waves along the chain can be expressed as
Tt = d/Vi + d/Vr ≈ 2d/Vi . Here, Vi and Vr are the incident
and reflected solitary wave velocity, and d is the distance
between the centers of the last bead and the instrumented bead.

In this approximation we assumed that the reflected solitary
wave velocity is almost the same as the incident velocity. We
found that the difference between the incident and the reflected
solitary wave velocities is not large even in the case of solitary
waves interacting with a “soft” wall, where the reflected waves
are highly attenuated. This is because the effect of the force
amplitude on the solitary wave velocity is extremely weak;
Vi ∝ F

1/6
m , where Fm is the maximum dynamic force between

the beads [9]. Furthermore, the error induced by the velocity
discrepancy is relatively small, compared to the elongated
contact time Tc in the soft-wall impact.

Using Nesterenko’s long-wavelength approximation [9],
we can analytically derive the solitary wave propagation speed
and thus, the wave traveling time Tt in an uncompressed 1D
monodispersed chain. As a result, the speed of the incident
solitary wave Vi can be expressed in terms of bead velocity υ

and chain stiffness A|c:

Vi = (16/25)1/5 (2R)
(
υA|2c

/
m2

)1/5

≈ 1.829R
(
υA|2c

/
m2)1/5

. (8)

Under the excitation of a single solitary wave via the same-
mass striker, Chatterjee numerically found υ ≈ 0.682Vs [31].
Using d ≈ N × 2R,where N is the number of beads between
the sensor and the wall, the solitary wave traveling time Tt in
the granular chain becomes

Tt = 4NR/Vi ≈ 2.361Nm2/5V −1/5
s A|−2/5

c . (9)

We refer to the transit time between the incident and the
reflected solitary waves as the time of flight (TOF). Hence
the TOF of the first arriving reflected wave can be expressed
as TOF ≡ Tc + Tt . In this paper, we refer to the first reflected
solitary waves as primary solitary waves (PSWs). By combin-
ing the analytical formula in Eqs. (7) and (9), the TOF of the
PSW is obtained as

TOF|PSW ≈ (
3.218 A|−2/5

w + 2.361N A|−2/5
c

)
(m2/Vs)

1/5.

(10)

The TOF values of the solitary waves in double-layered
composite media can be acquired by establishing a simple
elastic collision model between the end sphere and the top
layer of the medium [32]. Based on momentum and energy
conservation, the ratio of the end particle’s reflection velocity
υr to the incident velocity υi can be approximated as υr

υi
=

m−Mu

m+Mu
, where m is the mass of the last bead, and Mu is the mass

of the upper layer. In the case that the upper layer is heavier than
the particle mass (Mu > m), the end particle always rebounds
from the adjacent composite medium, triggering the formation
of the primary solitary wave.

Based on Eq. (8), we can express the ratio of reflected
solitary wave velocity to that of the incident wave in terms of
particle velocities: Vr

Vi
= ( υr

υi
)1/5. Thus the modified traveling

time T ′
t of the solitary wave becomes

T ′
t = d

Vi

(
1 + Vi

Vr

)
= Tt

2

[
1 +

(
Mu − m

Mu + m

)−1/5]
. (11)
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Using Eqs. (7) and (11), the TOF of the primary solitary waves
in the composite medium can be expressed as

TOF|PSW ≈ Tc + Tt

2

[
1 +

(
Mu − m

Mu + m

)−1/5]

=
[

3.218A|−2/5
w + 1.181NA|−2/5

c

×
{

1 +
(

Mu − m

Mu + m

)−1/5}]
(m2/Vs)

1/5. (12)

Note that this equation approaches Eq. (10) in the limit of a
semi-infinite wall assumption, where the mass of the upper
media becomes infinite (Mu → ∞).

The generation and propagation of the secondary reflected
solitary waves (SSWs) in the composite double-layered
medium can also be studied. Based on the described simple
collision model, we calculate the velocity of the upper
layer υu = 2m

m+Mu
υi after the impact by the end particle. We

simplify the displacement of the upper medium’s center to
(yN+1 + yN+2)/2 ≈ yN+2 [see Fig. 2(b)], since the upper
stainless steel layer is much harder than the lower PTFE
medium. Hence the equation of motion of the upper layer
during the collision with the lower layer becomes

1

2
Muυ

2
u ≈ 1

2
Mu

(
duN+2

dt

)2

+ 1

2
kdu

2
N+2. (13)

Under linear elastic assumptions, the stiffness of the lower
medium can be expressed as kd ≡ EdS/Ld , where Ed is the
elastic modulus of the lower medium and Ld is its length. After
integrating Eq. (13), we obtained the contact time between the
upper and lower linear media as Tl = π

√
Mu/kd . The TOF of

the secondary solitary waves can be now expressed as a sum
of the TOF of the primary solitary wave in Eq. (12) and the
linear medium contact delay Tl :

TOF|SSW ≈ TOF|PSW + Tl

= [3.218A|−2/5
w + 1.181NA|−2/5

c

×
{
1+

(
Mu − m

Mu + m

)−1/5}]
(m2/Vs)

1/5+ π

√
Mu

kd

.

(14)

Here we neglected the small difference in transit time caused
by the attenuation of the secondary solitary waves. The
analytical TOF values derived from Eqs. (12) and (14) are
verified in the next section using numerical and experimental
approaches.

V. RESULTS AND DISCUSSION

A. Effects of Young’s modulus

We first assessed the effects of the uniform linear media’s
elasticity on the formation and propagation of reflected solitary
waves. Figure 3 shows the experimental and numerical results
obtained testing the interaction of a solitary wave with a
“hard” stainless steel (E = 200 GPa) and a “soft” polyte-
trafluoroethylene (PTFE) (E = 1.53 GPa) adjacent medium.
The plots report force-time measurements recorded by the
instrumented bead in the chain (14th particle away from the

(a) TOF

Ain
AAref

(b)
TOF of PSW

Ain TOF of SSW

Aref of PSW
Aref of SSW

FIG. 3. (Color online) Solitary wave propagation measured from
the 7th bead in the chain against (a) stainless steel wall and (b) PTFE
wall. The time of flight (TOF) represents the delay time between the
arrival of the incident and the reflected waves. The amplitude ratio
(Aref/Ain) denotes the relative magnitude of reflected solitary waves
with respect to the incident solitary waves.

interface). The first impulse corresponds to the arrival of the
incident solitary wave generated by the striker impact, and
the subsequent impulses represent the solitary waves reflected
from the interface with the linear media. The force profiles
present a clear difference between the two cases. Most notably,
the interaction with the soft interface results in a delayed
formation of the primary reflected solitary wave (PSW) and
in the generation of secondary reflected solitary wave (SSW)
[Fig. 3]. The formation of secondary reflected solitary waves
at the interface with a bounding wall was first reported in [15]
but never studied systematically. We tested numerically the
formation of primary and secondary reflected solitary waves
over a range of elastic moduli of the linear media. Results are
shown in Fig. 4, in which different values of elastic moduli
of the linear media are plotted against the waves travel time.
Here the color intensity refers to the amplitude of the force
profile. It is evident that as the elasticity of the linear medium
decreases, the TOF of the reflected wave increases.

To explain the SSW generation mechanism, we investigated
numerically the displacement profiles of the individual parti-
cles in the vicinity of the interface. The displacement profiles
differ significantly when particles interact with a “hard”
stainless steel medium [Fig. 5(a)] and with a “soft” PTFE
medium [Fig. 5(b)] in the post-reflection period. According
to our numerical simulations, the PTFE medium allows four
times deeper penetration of the last bead into the wall than
the stainless steel wall, caused by the discrepancy in the wall
stiffness between the stainless steel and PTFE materials; the
contact stiffnessA|w for the stainless steel wall is 57 times
larger than that of the PTFE wall.

The penetration process into the soft material can result
in the loss of contact of the last bead with the rest of the
chain. In this case the last bead experiences a significant
delay time until it bounces back under the resistance of the
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FIG. 4. Surface plot obtained from numerical simulations show-
ing the formation of primary and secondary solitary waves in the time
domain. The y axis reports a set of different values of elastic moduli
of the linear media adjacent to the chain of spheres. Here, the first
vertical line evident at ∼120 μs from the impact (time = 0) represents
the arrival of the incoming solitary wave. The generation of a reflected
SSW is noticeable after a critical value of elastic modulus of the con-
tact. These simulation results are based on the force profile obtained
from our numerical model for the particle number 7, and the color bar
on the right denotes the amplitude of the force profiles in newtons.

elastic medium. Under the interaction with the PTFE wall,
we observed that the rebounding bead collides with the rest
of the chain at 450 μs marked by the circle in Fig. 5(b).
This first collision generates the formation of the primary
reflected solitary wave. After approximately 0.1-ms delay, the
last bead and the rest of the chain undergo the second impact
due to the wall elasticity, corresponding to the 561-μs moment

(a)

y
y7

Tt /2 Tt/2Tc

yN-1

yN

y7

yN-1yN

(b) y7
Tt/2 Tt/2Tc

yN-1

yN
yN-1

yN

y7

FIG. 5. Numerical results showing the displacement profiles of
the striker bead (first curve on the left) and of the 20 particles
composing the chain. (a) The stainless steel wall induces small
displacement (4.39 μm) and short contact time (85 μs) of the last
bead against the bounding wall (bold red line). (b) the PTFE wall
allows a larger displacement of the last bead (16.66 μm) and as a
result, a longer contact time (241 μs) spent on rebounding. Multiple
impacts between the last and its neighboring beads are observed in the
PTFE case; the first and second collisions occur at 450- and 561-μs
points as marked in circle and diamond, respectively.

marked by the diamond in Fig. 5(b). This second encounter
triggers the formation of the secondary solitary wave. After
the second collision, subsequent minor impacts are followed
producing small backscattered waves in the granular chain.
When the incoming solitary wave interacts with a hard adjacent
medium instead, the last particle in the chain undergoes a
single, strong collision with the rest of the chain [Fig. 5(a)].
In this case no gap opening is created between the particles,
and most energy is retrieved by the PSWs in the absence of
noticeable SSWs.

We hypothesize that the secondary solitary waves occur
when the last particle in the chain loses contact with the
others. This gap opening between the last bead and the rest of
the chain is guaranteed if the end particle’s penetration depth
exceeds its neighboring bead’s maximum displacement in a
noncompressed or weakly compressed granular chain. The
penetration depth of the last bead becomes identical to the
maximum displacement of its neighboring bead in the con-
dition A|c = A|w, which yields the critical Young’s modulus
as defined in Eq. (2). From the numerical results in Fig. 4, we
find that the secondary solitary waves become noticeable for
wall elastic moduli lower than this critical Young’s modulus
(E ≈ 100 GPa).

We compared the numerical, analytical, and experimental
results obtained for the TOF and amplitudes of the reflected
waves as a function of the Young’s modulus of the linear media
[Fig. 6]. To calculate the error bars in experiments we repeated
five tests per specimen and computed the averages and standard
deviations of their TOF and amplitude ratios. We observed
that the TOF of the primary solitary wave is significantly
longer in the soft polymer media than in the hard metallic
media. Viewed from the instrumented bead in the chain, the
average TOF of solitary waves against the PTFE cylinder is
0.616 ms, 45% longer than the 0.483-ms TOF in the case of the
stainless steel cylinder. We found that the experimental results
are in a good agreement with the numerical simulations and
analytical results obtained from Eq. (10). We also compared
the amplitude ratios of the primary reflected solitary waves
over the incident solitary waves. As illustrated in Fig. 6(b),
our experimental data indicates that the amplitude ratio values
range from 42.1% for PTFE to 77.0% for stainless steel
materials. We found that adjacent media with high stiffness
generated large-amplitude reflected waves, whereas softer
adjacent media produced substantially attenuated primary
reflected waves. The general trend of the reflection ratios
obtained numerically and experimentally in this study agrees
well with the results reported by Job et al. [15].

Figures 6(c) and 6(d) report the TOF and amplitude ratio
of secondary reflected solitary waves as a function of the
stiffness of the adjacent linear medium. The TOF curve of the
secondary reflected solitary waves shows an analogous trend
as that of the primary solitary waves with an approximately
0.1-ms delay. However, the ratio of force amplitudes of
PSWs [Fig. 6(b)] and SSWs [Fig. 6(d)] show strikingly
different patterns. The behavior of the SSW amplitudes
resembles a Sigmoidal-shaped function. Contrary to the PSW
behavior, the presence of a hard adjacent medium produces a
smaller secondary solitary wave than that generated by a soft
adjacent medium. This trend is in accordance with momentum
conservation [15]. The plateau in the low elastic modulus
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(a) (b)

(c) (d)

FIG. 6. (Color online) Comparison of experimental, theoretical, and numerical data for the time of flight (TOF) and amplitude ratio of
the primary and secondary reflected solitary waves as a function of the Young’s modulus of the neighboring media. (a) TOF of the PSWs as
obtained by theoretical models (solid red line), numerical calculations (dashed blue line) and experiments. (b) Amplitude ratio of the PSWs to
the incident solitary wave. (c) TOF of the SSWs. (d) Reflection ratio of the SSWs.

range in Fig. 6(d) is probably due to the increased amount
of restitutional energy losses when secondary solitary waves
are generated under the interaction with a soft wall.

B. Effects of thickness of the linear medium

Figure 7 shows the numerical and experimental results for
the TOF and amplitude ratios obtained testing the interaction of
a solitary wave with different cylindrical specimen’s heights.

Interestingly, the reflected solitary waves did not show any
significant dependence on the heights of the slender linear
media. The distribution of TOF values is extremely regular
in the 0.44–0.45 ms range [Fig. 7(a)]. The numerical results
predicted slightly longer TOF values, but the discrepancy is
minute. The values of the amplitude ratios also remain between
73% and 78% range [Fig. 7(b)]. This implies a consistently
strong reflection of the solitary waves over a range of specimen
lengths. It is also notable that no secondary reflected solitary
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FIG. 7. Time of flight and amplitude ratio of the PSWs reflected from the stainless steel slender cylinders as a function of the cylinders’
heights. Numerical and experimental data are compared in the magnified y axis scale. (a) TOF of the PSW. (b) Amplitude ratio of the PSWs.
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wave was observed in the range of the stainless steel cylinders’
geometry tested.

To understand the observed behavior of the solitary wave
reflection, we analyzed the wave dynamics in the vicinity of
the contact point. When the incoming solitary wave arrives
at the interface, the last bead in the chain starts to interact
with the linear medium applying compressive force to its
top surface. Under the 1D approximation, neglecting surface
and flexural waves in the rod, a longitudinal wave propagates
along the axial direction of the rod and reflects back from the
opposite end. During Tc, the contact time of the last bead on
the linear medium, the longitudinal pressure wave travels a
distance equal to cTc, where c is the speed of the longitudinal
wave in the elastic medium. In a long cylindrical member with
length L > cTc/2, this longitudinal pressure wave does not
return to the contact interface during the contact time Tc. In
this case a portion of the incident energy from the granular
chain is lost at the interface in the form of leaked elastic waves
into the rod. On the other hand, if L < cTc/2, the injected
energy is partially transferred back to the nonlinear granular
chain during the solitary wave interaction with the cylinder.
Using the analytical contact time in Eq. (7), we obtained the
characteristic length cTc/2 = 101 mm for the given setup.
Numerical results showed a reduction (∼5%) in the amplitude
ratio around this characteristic length [Fig. 7(b)]. However, it
was difficult to capture such reduction in experiments due to
the limited sensitivity of the experimental setup.

The negligible sensitivity to the height of the linear medium
implies that the energy lost by elastic waves into the linear
media is not significant. Previous studies have reported the
losses of restitution coefficients in the range of 0.5–3.0% for
the impact of an elastic sphere on a wall [29,30]. Such a minor
effect of energy loss is in agreement with our observations. It
should be noted that the negligible sensitivity is valid only if
the wall is much more rigid than the chain. If the cylindrical
member is made of a soft material or if its cross-sectional
area is extremely small, the incidence of solitary wave at the
interface results in a considerable compression of the linear
medium during the contact time. Consequently, the particle
dynamics in the vicinity of the wall is inevitably affected by
the linear medium stiffness. We investigate the effects of the
geometry of a soft adjacent medium in Sec. V D. For the
stainless steel cylinders considered in this section, however,
the maximum displacement of the rod tip remained less than
0.28 μm even for the longest sample. This is an order of
magnitude smaller than the maximum bead displacement in
the chain (8.2 μm) according to our numerical simulations.
Hence, under the interaction with “stiff” cylinders, the wave
dynamics at the nonlinear-linear interface is not sensitively
affected by the cylinders’ uniaxial compression.

C. Effects of upper layer thickness in composite media

Figure 8 shows the numerical and experimental results
obtained testing the interaction of a solitary wave with a
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medium composed of an upper stainless steel layer and a
lower PTFE layer. We tested the wave’s reflection at the
interface as a function of the variable thickness of the upper
stainless steel layer. Based on the simple collision model
described in Sec. IV, we observe that the larger inertia of
the upper layer results in stronger repulsion of the granular
chain, and consequently creates a primary solitary wave with
larger amplitude. Accordingly, the time of flight of the reflected
solitary waves is also shortened, because a stronger repulsion
increases the propagation speed of the reflected solitary waves.
As shown in Fig. 8(a), numerical simulations predict that
as the height of the upper media increases from 6.35 to
102 mm, the TOF of primary reflected solitary wave drops from
0.470 to 0.455 ms. This trend is confirmed by the experimental
results within error margin and by the theoretical analysis
based on Eq. (12), albeit with an evident offset. We find
that the variation in the TOF of the reflected waves is not
significant, as expected from the weak influence of the upper-
layer mass on the solitary wave velocity. On the other hand,
the amplitude reflection ratios obtained experimentally show
more drastic changes from 0.428 to 0.769, when the height
of the upper layer increases 16 times from 6.35 to 101.6 mm
[Fig. 8(b)].

The behavior of secondary reflected solitary waves reveals
a different trend. When the height of the upper cylinder is
increased from 6.35 to 102 mm, we observed in experiments
that the arrival time of the SSW on the instrumented sensor

increases by 32.5%, from 0.619 to 0.821 ms [Fig. 8(c)].
Comparing this with the TOF of the primary solitary waves
[Fig. 8(a)], we notice that the secondary solitary waves showed
an opposite behavior. The numerical TOF curve lies below the
experimental curve with discernible error. This discrepancy
probably stems from the incapability of the numerical model
to capture the viscoelastic effect inside the lower PTFE media.
The estimated TOF based on Eq. (14) is plotted in Fig. 8(c),
and it is in excellent agreement with the experimental results.
This confirms the longer delay time of the SSW formation due
to the increased inertia of the upper layer. The comparison is
shown up to a cylinder height of 25.4 mm, because secondary
solitary waves are no longer noticeable in experiments after
this point [Fig. 8(d)]. As shown in Figs. 8(b) and 8(d),
the reflection ratios of the primary and secondary solitary
waves balance, as we expect from momentum and energy
conservation.

D. Effects of lower layer thickness in composite media

We studied how the thickness of the lower layer of the
composite medium affects the formation of reflected solitary
waves. We compared numerical and experimental results of
extracted TOF and amplitude reflection ratios in Fig. 9. Both
the numerical and experimental TOF values varied between
0.46 and 0.47 ms, showing only 2.5% fluctuations over a range
of lower media’s length variation. Analytical calculations of
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TOF values based on Eq. (12) are also presented in Fig. 9(a),
and they are in qualitative agreement with the numerical and
experimental results. The analytical predictions consistently
underestimated the TOF values as shown in both Figs. 8(a)
and 9(a). This is most likely due to the presence of dissipation
in experiments, which is not accounted for in the analytical
model. The reflection ratio is distributed between 0.40 and 0.46
both numerically and experimentally. The relative insensitivity
of the PSWs to the lower medium dimension confirms that
the generation of the PSWs is governed by the upper media
properties.

Figure 9(c) reports the formation of the secondary solitary
waves in terms of the analytical, numerical, and experimental
TOF values. Compared to the PSW, the secondary solitary
waves exhibit enhanced sensitivity to the lower base’s height
(i.e., lower medium’s longitudinal stiffness). As predicted by
the elastic collision theory in Sec. IV, we observe that the
longer soft medium yields delayed formation of the SSWs.
This is due to the compressive behavior of the lower layer
during the contact of the granular chain to the composite
medium. Such geometrical effect of the soft lower medium
is in sharp contrast to the hard wall interaction, where the
compression of the stainless steel rods was negligible due to the
cylinder’s high stiffness, leading to the negligible sensitivity
to the cylinder’s height (see Sec. V B). The reflection ratios of
the SSWs show no clear trend [Fig. 9(d)]. Here, as elsewhere
in this study, we observed that the empirical errors of the
reflection ratios were larger than those of TOF. This is because
the force measurements are more susceptible to experimental
errors than the TOF measurement due to possible tilting of the
sensor and bead misalignment.

VI. CONCLUSION

We performed a detailed investigation of the interaction of
highly nonlinear solitary waves with linear elastic media. We
found that the formation and propagation of reflected solitary
waves from the interface between the nonlinear and linear
media is strongly governed by the material properties and
geometrical configurations of the linear medium. The mecha-
nisms of the decomposition and attenuation of the reflected
solitary waves were analyzed by examining the complex
particle dynamics in the vicinity of the interface between
the granular chain and the linear medium. Using analytical,
numerical, and experimental approaches, we verified that the
travel time and force magnitudes of the primary and secondary
reflected waves are strongly associated with the elasticity
and geometry of uniform and composite media. It is notable
that the reflected waves always retained a compact support
without the presence of significant dispersion or attenuation.
The robustness of the reflected solitary waves, as well as
their sensitivity, makes them useful as information carriers in
nondestructive evaluation applications. We limited our work
to the investigation of only the primary and secondary solitary
waves, but further studies can be performed to relate the
subsequent impulses with the properties of more complex
structures, such as multilayered or heterogeneous material
systems.
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APPENDIX: ENERGY DISSIPATION IN COMBINED
GRANULAR AND LINEAR MEDIA

In this study, we considered the dissipation occurring
both in the chain and at the wall interface. To assess the
dissipation in the chain, we performed experiments using the
setup described in Sec. II, except for these tests the chain was
composed of 28 particles instead of 20, to acquire a longer
trend. The attenuation of the propagating solitary waves was
recorded by shifting positions of an instrumented bead to every
even numbered particle site in the chain. We acquired five data
sets and averaged them to obtain a force profile for each sensor.
Figure 10(a) shows the measured force profiles. The high spike
in the middle is due to the direct interaction of the last particle
with the wall [15].

We used a least square fitting method [33] to find the
optimized chain dissipation coefficient γ |c that best matches
experimental data. To exclude the restitutional dissipation
effect, we considered only the incident solitary waves. The
residual Ri(γ ) for the ith bead is given by

R2
i (γ ) ≡

∫ tf

t=0

[
f

exp
i (t)−f sim

i (t,γ )
]2

dt, (A1)

where f
exp
i (t) is the experimental force history, and f sim

i (t,γ )
is the numerical force profile derived from the discrete
particle model in Sec. III, given an arbitrary chain dissipation

Particle 28
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Particle 28

Particle 14
Particle 14

Particle 2

(b) Particle 2
Particle 28

Particle 14
Particle 14

Particle 2

FIG. 10. (Color online) Comparison of experimental and numer-
ical force profiles of solitary waves, collected from the particles at
the even-numbered positions. The spike in the center is the force
measurement from the end particle. The force profiles prior to this
spike represent the solitary wave propagation before the wall reflec-
tion, whereas the latter profiles correspond to the reflected solitary
waves from the stainless steel bounding wall. (a) Experimental force
profiles. (b) Numerical force profiles.
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TABLE II. Restitution coefficients obtained for various metallic and polymeric materials, and corresponding wall dissipation coefficients
derived from experimental measurements.

Material Restitution coefficient Damping coefficient (kg/s)

Stainless steel AISI type 440C 0.817 −34.05
Copper 0.891 −17.61
Brass 360 0.865 −21.36
Aluminum 6061-T6 0.875 −17.59
Nylon (Polyamide) 0.656 −23.89
Acrylic (Polymethylmethacrylate) 0.694 −18.13
Polycarbonate 0.884 −5.761
PTFE (Polytetrafluoroethylene) 0.602 −16.51

coefficient γ . The time t is counted from the striker impact
moment to the time tf when the solitary wave reached
the end of the chain. The total square of the residual for
the entire chain is the sum of the residuals for each bead:
R2(γ ) ≡ ∑N

i=1 R2
i (γ ). The least square fitting is obtained

by minimizing the total residual with respect to γ , yielding
the condition ∂γ R2 = 0. For the given configuration of the
dissipative granular chain and striker impact setup, this fitting
gives an estimator for the chain dissipation of γ |c = −4.582.
The numerical results based on this coefficient agree well with
the experimental results (Fig. 10).

To evaluate the energy losses at the wall interface, we
performed a single ball impact test on various materials for
the linear media adjacent to the particles chain. We tested
cylinders having 38.1 mm diameter and 76.2 mm height. The
equation of motion of a single spherical impactor on the wall
can be expressed as

m ü = − A|w u3/2 − γ |w u̇ + F, (A2)

where u is the approach of the spherical impactor to the
bounding wall. We numerically solved this equation to find
γ |wthat matches the restitution coefficient value acquired
from experiments. For the measurement of the restitution
coefficients, we recorded the incident and reflected velocities
using a high speed camera operated at a sampling frequency of
30 kHz. The measured restitution coefficients and calculated
wall damping coefficients are listed in Table II for the various
materials tested.

The linear dissipation model has limitations in capturing
the complicated aspects of the solitary wave attenuation in
the chain and at the wall interface. In particular we found
that this model reveals noticeable errors in predicting the
delay in the formation of the secondary solitary waves
due to its incapability to account for the viscoelastic
effects. Nonetheless, this model successfully encapsulates the
attenuation phenomena in the chain and at the wall, calculating
with high accuracy the TOF of the primary solitary waves and
the force amplitude ratios of the incident to the reflected waves.
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