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Dynamics of periodic mechanical structures containing bistable elastic elements:
From elastic to solitary wave propagation
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We investigate the nonlinear dynamics of a periodic chain of bistable elements consisting of masses connected
by elastic springs whose constraint arrangement gives rise to a large-deformation snap-through instability. We
show that the resulting negative-stiffness effect produces three different regimes of (linear and nonlinear) wave
propagation in the periodic medium, depending on the wave amplitude. At small amplitudes, linear elastic waves
experience dispersion that is controllable by the geometry and by the level of precompression. At moderate to
large amplitudes, solitary waves arise in the weakly and strongly nonlinear regime. For each case, we present
closed-form analytical solutions and we confirm our theoretical findings by specific numerical examples. The
precompression reveals a class of wave propagation for a partially positive and negative potential. The presented
results highlight opportunities in the design of mechanical metamaterials based on negative-stiffness elements,
which go beyond current concepts primarily based on linear elastic wave propagation. Our findings shed light on
the rich effective dynamics achievable by nonlinear small-scale instabilities in solids and structures.
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I. INTRODUCTION

The periodic arrangement of small-scale building blocks
results in acoustic or mechanical metamaterials [1], which
have attracted great attention because of their extremely
rich field of applications including acoustic wave guides and
filters [2,3], acoustic lenses and diodes [4,5], sound isolators
and sensors [6,7], and acoustic cloaks and sonar stealth
technologies [8,9]. Design strategies commonly exploit the
scattering of elastic waves in periodic media at characteristic
frequencies in all or specific directions [10–12] as well as
resonant phenomena capable of absorbing energy on lower
scales by local resonators [5,13,14]. In all these examples,
the careful microscale periodic architecture of multiscale
engineered material systems leads to an interesting or ben-
eficial effective dynamic behavior on the macroscale. Besides
pronounced acoustic band gaps [15,16], this design paradigm
has resulted in negative effective dynamic stiffness [17] and
mass density [18,19] and combinations of both [20]. Here
negative stiffness and negative mass density refer to the ef-
fective dynamic properties: An elastic system containing only
positive-stiffness elements can demonstrate negative effective
dynamic quantities near resonance. All these phenomena in
the linear elastic regime are well understood.

Static negative (incremental) stiffness arises from insta-
bilities in solids and structures when the energy landscape
loses (some notion of) convexity. Bistable elements such as
the spring configuration schematically shown in Fig. 1 make
an excellent example: The potential energy’s nonconvexity
provides the system with an unstable regime of negative energy
curvature (i.e., negative incremental stiffness) whose nonlinear
force-displacement relation leads to a spontaneous snapping
from one stable equilibrium to the next energy minimum
if pure tractions are applied. The same phenomenon can
be observed in prestressed buckled structural members [21].
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Furthermore, solids undergoing phase transitions or domain
switching display a similar instability on the microscale when
the crystal lattice transforms from one energy-minimizing
phase into another (or into a mixture of variants) under
the action of external stimuli such as thermal [22,23] or
electric fields [24,25] or under imposed deformation or applied
loads [26,27]. In all systems, a negative curvature of the energy
landscape implies a violation of positive definiteness of the
incremental elastic modulus tensor, which has been referred
to as (static) negative stiffness [28,29].

While unconstrained homogeneous solids with static neg-
ative stiffness are thermodynamically unstable [30], the pos-
sibility to stabilize negative stiffness in heterogeneous media
(e.g., non-positive-definite phases in linear elastic composite
materials [31,32]) has become a focus of scientific interest due
to the exciting effective physical properties that may arise from
the combination of positive- and negative-stiffness phases in
a composite system. Examples include extreme values of the
effective viscoelastic moduli [29,33], the piezo- and pyroelec-
tric as well as thermoelastic coefficients [34], and extreme
effective dynamic moduli [35]. The effective quasistatic and
dynamic behavior of systems containing negative-stiffness
phases has been subject to substantial investigation both
theoretically [31,36–38] and experimentally [23,29,39–41].
However, such studies to date have focused on the linear elastic
regime.

The rich dynamics of physical, chemical, and biological
systems containing bistable elements have been studied exten-
sively, demonstrating, among other things, the formation of
solitary waves. Previous studies on the nonlinear dynamics
of discrete systems have used various phenomenological
potentials of the Frenkel-Kontorova form giving rise to a
kink soliton solution. For example, periodic potentials of
Sine-Gordon type, nonsinusoidal and multibarrier potentials
[42–45], and anharmonic potentials have been used to
model such diverse physical systems as dislocation dynam-
ics [46–50], incommensurate structural transitions in surface
physics [51–53] and dielectrics [54,55], ferromagnetic and
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FIG. 1. (Color online) Bistable element consisting of two elastic
springs and a point mass, energy ψ(u), and force F (u).

antiferromagnetic domain wall transitions [56–58], and molec-
ular shock interactions [59,60], to mention but a few. The
mechanical response of carbon nanotubes [61,62] as well
as of cellular structural solids [63], has been explained on
the basis of buckling or snapping instabilities arising from
systems with multiple stable configurations. Moreover, the
dynamics of atomic-scale configurational changes as well as
the mechanisms of damage and fracture have been analyzed
by recourse to chains of elements with a nonmonotonic
force-displacement (or stress-strain) response; see, e.g.,
Refs. [64–71].

The dynamic response of such nonmonotonic force chains
was shown theoretically to result in solitary waves [44,45,72–
74]. In addition, previous results have shown that chains
of elements with nonmonotonic (piecewise-linear) force-
displacement relations can dissipate energy at a fast rate by
transforming kinetic energy into high-frequency oscillations
(so-called twinkling modes). This was later extended to chains
with smooth nonmonotonic force-displacement relations in a
comprehensive stability analysis [75]. It was also experimen-
tally demonstrated in chains of granular particles with a non-
smooth contact interaction [76]. Other relevant research has
focused on the quasistatic response, including the derivation
of atomically informed stress-strain relations [77] or studies of
the hysteresis and dissipative effects in elastoplasticity [78,79].

Although the beneficial effects of negative-stiffness ele-
ments on the effective dynamic performance of acoustic or
mechanical metamaterials and composites is well known [38],
previous research has focused on the linear elastic regime.
However, as discussed above, bistable or multistable build-
ing blocks in periodic solids and structures also promise
interesting nonlinear dynamic effects, including solitary-wave
propagation, which provides opportunities to focus acoustic
signals in mechanical metamaterials [4,80,81]. Homogeneous
solids undergoing finite elastic deformation [82] as well as
periodic media experiencing nonlinear elastic instabilities [83]
have been shown to exhibit acoustic band gaps that are
controllable by the amount of nonlinear predeformation, yet
the investigated waves again operate in the linear elastic
regime. To date, only one example of a periodic elastic
mechanical system has been reported that produces Sine-
Gordon solitons by allowing a kink propagation in the
form of elastically connected rotating pendulums [84–88].
The weakly or strongly nonlinear response of elastic media
containing negative-stiffness elements such as the bistable
spring configuration shown in Fig. 1 has remained widely

unexplored, in part because such instabilities in solids and
the resulting nonlinear effective dynamics are mathematically
complex and make analytical solutions a rare find.

Here we study a mechanical system capable of propagating
impact pressure waves in three different regimes, serving as
a model for the creation of nonlinear acoustic metamaterials
with static negative-stiffness elements. We present closed-form
analytical results for the nonlinear response of a chain of
bistable elements consisting of elastic springs and point
masses. The specific configuration of the periodically repeated
elementary unit cell displays a continuous nonmonotonic
force-displacement relation with two stable equilibria and one
unstable equilibrium configuration giving rise to temporary
negative (static) stiffness. We have deliberately chosen a
simple albeit instructive mechanical system that enables us to
study the rich dynamics of periodic chains of bistable elements
in the full range of its linear to strongly nonlinear behavior.
The chosen spring configuration shows the same features as
prebuckled structures (while allowing for a clean analytical
investigation) and the conclusions drawn here can qualitatively
be transferred to numerous structural instabilities. In fact,
the interesting wave propagation characteristics reported here
hint at the design of novel mechanical metamaterials with
controllable wave propagation in the linear and nonlinear
regimes, with applications ranging from waveguides and
amplifiers to vibration attenuators. The chosen system admits
a clean identification of all model parameters and allows for
experimental implementation. We note that in our analysis
we assume conservative systems and thereby neglect energy
dissipation through internal friction or other damping mecha-
nisms that are usually found in mechanical systems. Of course,
the presence of damping will alter the response of the system
(our numerical examples contain small amounts of damping
to remove transient effects, whereas all analytical solutions
assume energy conservation).

II. BISTABLE CHAIN CONFIGURATION

A. Geometry and kinetics

Consider the bistable structure consisting of two identical
and symmetrically arranged linear elastic springs with stiff-
ness k1 as shown schematically in Fig. 1 in its unstressed
equilibrium configuration. Both springs are connected by a
joint allowing for rotation and carrying point mass m. Their
free ends are attached to joints, which allow for rotation but
prevent translation. Due to symmetry, a horizontal force on
mass m will result in a horizontal displacement u, so we may
treat the system as one dimensional in the following. The total
potential energy stored by the structure is given by

ψ(u) = k1[l(u) − l0]2, (1)

where

l(u) =
√

(L − u)2 + (δ/2)2 (2)

is the deformed length of each spring with geometric details
δ and L introduced in Fig. 1. Consequently, the initial spring
length is given by l0 = l(0). Energy (1) is illustrated in Fig. 1
as a function of the displacement u, which demonstrates two
stable equilibria (i.e., local energy minima) and one unstable
equilibrium configuration (corresponding to the local energy
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FIG. 2. (Color online) Periodic chain of bistable elements.

maximum). The structure experiences negative stiffness as it
passes through this unstable regime.

To arrive at a periodic one-dimensional chain, we consider
an array of N such bistable elements connected by horizontal
linear springs of stiffness k2 that act as force transfer elements.
Identical masses m are placed at each node of the chain, as
shown schematically in Fig. 2. The total Hamiltonian of the
spring system can be written as

H (u,u,t ) =
N∑

i=1

[
m

2
u2

i,t + ψi(ui)

]
+

N−1∑
i=1

k2

2
(ui+1 − ui)

2,

(3)

where ψ(ui) is the potential energy stored by the ith bistable
pair of springs, u = {u1, . . . ,uN } denotes the vector of all
nodal displacements depending on time t , and a comma in
indices denotes differentiation with respect to the ensuing
variable(s). Therefore, the rate of change of momentum of
mass i follows from Hamilton’s equation, i.e.

pi,t = mui,tt = −∂H

∂ui

. (4)

Application of (3) yields

mui,tt + k2(−ui+1 + 2ui − ui−1) − F (ui) = 0, (5)

where the internal force applied to mass i by the bistable spring
element was introduced as

F (u) = −ψ ′(u) = −2k1(L − u)
l(u) − l0

l(u)
. (6)

B. Scaling and continuum limit

Dimensionless equations will enable us to investigate the
mechanics of the system without having to specify geometry
and material parameters explicitly. In order to reduce the
problem to a self-similar type, we scale the displacements
and the nodal spacing with respect to their respective length
scales. For a lattice parameter a (initial spacing between two
masses), we define

x̄ = x

a
, ū = u

L
, (7)

where x̄ and ū are the dimensionless x coordinate and
displacement, respectively. Therefore, the force F (u) can be
expressed in dimensionless form as

F̄ (ū) = F (u)

k1L
= 2(1 − ū)

(
1 − l̄0

l̄(u)

)
(8)

with

l̄(ū) =
√

(1 − ū)2 + d2, d = δ

2L
, l̄0 = l̄(0). (9)

This suggests that the dimensionless force of the bistable
spring element only depends on ratio d = δ/2L and not on
actual lengths. The governing equation (5) can be nondimen-
sionalized by using the same force scale and defining two
new dimensionless parameters, viz., the stiffness ratio Kr and
the characteristic time scale T (the period associated with
the eigenfrequency of mass m attached to a single spring of
stiffness k1):

Kr = k2

k1
, T =

√
m

k1
. (10)

This gives

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) − F̄ (ūi) = 0. (11)

We choose the origin such that mass i is initially located at
xi = ia and positions are normalized by defining

x̄i = xi

a
= i so that �x̄ = x̄i − x̄i−1 = 1. (12)

In the continuum limit (a → 0), ūi+1 and ūi−1 can be
written, using a Taylor expansion, as

ūi±1 = ūi ± ∂ūi

∂x̄
+ 1

2

∂2ūi

∂x̄2
± 1

6

∂3ūi

∂x̄3
+ 1

24

∂4ūi

∂x̄4
+ T , (13)

where T denotes higher-order terms. By substituting (13)
into (11), we obtain the dimensionless continuum limit of the
equation of motion

ū,t̄ t̄ − Kr

(
∂2ū

∂x̄2
+ 1

12

∂4ū

∂x̄4
+ T

)
− F̄ (ū) = 0. (14)

C. Dispersion relation and long-wavelength approximation

In order to determine the dispersion relation of the periodic
chain in the continuum limit, let us first consider the linear
regime. Here the equation of motion can be approximated by
linearizing (8) about ū = 0, which gives

ū,t̄ t̄ − Kr

(
∂2ū

∂x̄2
+ 1

12

∂4ū

∂x̄4
+ T

)
+ ω2

0ū = 0, (15)

where

ω2
0 = 2

1 + d2
. (16)

We assume a traveling-wave solution of the form

ū = ûei(q̄x̄−ω̄t̄), (17)

with q̄ = qa and ω̄ = ωT . Substitution of (17) into (15) yields
the continuum dispersion relation

ω̄(q̄) =
√

ω2
0 + Kr

(
q̄2 − 1

12 q̄4 + T
)
. (18)

In the long-wavelength limit q̄ = qa � 1 the dispersion
relation can be approximated by only retaining the leading-
order quadratic term and dropping all higher-order terms such
that (18) becomes

ω̄(q̄) ≈ ω̄c(q̄) =
√

ω2
0 + Krq̄2. (19)
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FIG. 3. (Color online) Dispersion relation comparison.

The exact dispersion relation for the discrete system is
obtained by substituting the traveling wave form (17) into
the discrete equation of motion (11), which gives

ω̄d (q̄) =
√

ω2
0 + 2Kr (1 − cos q̄). (20)

Obviously, in the long-wavelength limit q̄ � 1 [keeping only
quadratic terms in (20)], the two dispersion relations (19)
and (20) agree. Figure 3 compares the exact discrete and
the approximate continuum dispersion relations (for Kr = 10)
and demonstrates excellent agreement with deviations of less
than 3% up to q̄ = 0.86. Therefore, in the following we only
consider long wavelengths, for which the governing equation
assumes wave equation character (with dimensionless wave
speed c̄2

0 = Kr ):

ū,t̄ t̄ − c̄2
0ūx̄x̄ − F̄ (ū) = 0. (21)

D. Regimes of wave propagation

Owing to the nonlinearity of force F̄ (ū), we can identify
three distinct regimes of wave propagation that depend on
the magnitude of the amplitude of ū and for each case we
seek solutions for the propagating wave by approximating the
nonlinear force in (21). We discriminate the following three
regimes of propagating waves: (i) For small amplitudes ū � 1
we expand the nonlinear spring force to linear leading order as

F̄ (ū) ≈ − 2

1 + d2
ū = −ω2

0ū,

(ii) for moderate amplitudes ū < 1 we approximate the
nonlinear force by a third-order Taylor expansion, i.e.,

F̄ (ū) ≈ − 2

1 + d2
ū + 3d2

(1 + d2)2
ū2 − d2(d2 − 4)

(1 + d2)3
ū3,

and (iii) for large amplitudes ū > 1 we use the exact spring
force

F̄ (ū) = 2(1 − ū)

(
1 − l̄0

l̄(u)

)
. (22)

Figure 4 illustrates the three approximations of the nonlinear
spring force in comparison with the exact force for the
specific choice of d = 1. We note that the nodal spacing a
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FIG. 4. (Color online) Nonlinear spring force and approxima-
tions introduced for the three regimes for d = 1.

is independent of the characteristic spring length L and of
ratio d, so in the long-wavelength limit the governing equation
for all three regimes is given by (21). The special case of
amplitude ū = 1 is excluded because ū = 1 corresponds to an
unstable equilibrium configuration of the system. The smallest
perturbation is sufficient to cause the system to snap into either
energy well and thus to transform the scenario into either the
ū > 1 or the ū < 1 case.

In the following sections we will investigate the wave
propagation behavior in all three regimes. To confirm our
theoretical solutions, we will compare to numerical results
obtained for the example parameters d = 1, T = 1, and Kr =
10, from which the three regimes are chosen as (i) |ū| � 0.05,
(ii) |ū| � 0.3, and (iii) |ū| � 2. Convincing agreement has
been verified for various combinations of these parameters;
for brevity we present here only this specific case.

Numerical solutions are obtained from a chain of 100
elementary unit cells modeled in the time domain by an
implicit finite-difference scheme of Newmark-β type with
parameters chosen to minimize numerical damping (β =
0.25 and γ = 0.5). Displacement and/or velocity boundary
conditions are directly imposed on the first node of the chain,
while the remaining nodes may vibrate freely. All nodes are
constrained to only move horizontally.

III. WAVE PROPAGATION RESULTS

A. Small amplitude: Linear solution

1. Analytical solution

The equation governing the wave propagation in this regime
is given by

ū,t̄ t̄ − c̄2
0ūx̄x̄ + ω2

0ū = 0, (23)

with ω2
0 from (16). This is the dimensionless linear Klein-

Gordon equation [89] for the unknown displacement field
ū(x̄,t̄). The theoretical solution for this problem is of the form

ū(x̄,t̄) = A cos(q̄x̄ − ω̄t̄) + B sin(q̄x̄ − ω̄t̄), (24)

where the dimensionless wave number q̄ and the dimensionless
angular frequency ω̄ are related by the dispersion relation (19).
Therefore, this regime admits the propagation of linear elastic
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FIG. 5. (Color online) Small-amplitude regime: numerical re-
sults compared to the linear Klein-Gordon solution.

waves at frequencies outside the stop bands characterized by
the dispersion relations.

2. Numerical results

For the numerical benchmark test, the first node of the
chain of bistable elements is excited by time-harmonic
displacements (we enforce displacement and corresponding
velocity boundary conditions at the first node) according to

ū1(t) = û cos(ω̄t̄), ū1,t (t) = −ûω̄ sin(ω̄t̄). (25)

As only small amplitudes are permitted in this regime, we
choose û = 0.05 along with a value of ω̄ = 2 such that the
long-wavelength limit holds, which becomes apparent from
the dispersion relations in Fig. 3. Transient effects are removed
by artificial initial damping.

Figure 5 shows a comparison of the numerical solution
with the theoretical solution in space, at a specific instant of
time. The two solutions match with minor deviations due to
numerical noise arising from the discrete solution (as the wave
passes through the long chain towards its rightmost node, a
weakly nonlinear effect causes the curve to slightly deviate
from the theoretical solution). The wave speed can be inferred
from the x-t contour diagram of the numerical solution shown
in Fig. 6. The observed velocity of propagation agrees with
the phase speed computed from the dispersion relation (also
included as a solid red line). Nonlinear effects therefore only
play a negligible role in this regime of small amplitudes, so
the linear Klein-Gordon solution is a legitimate approximation
to describe and explain the wave propagation behavior in this
regime.

B. Medium amplitude: Weak nonlinearity

1. Analytical solution

For moderate displacements, the dimensionless governing
equation in the continuum long-wavelength limit is approxi-
mated by

ūt̄ t̄ − c̄2
0ūx̄x̄ + 2

1 + d2
ū − 3d2

(1 + d2)2
ū2 + d2(d2 − 4)

(1 + d2)3
ū3 = 0,

(26)

FIG. 6. (Color online) Small-amplitude regime: x-t contour dia-
gram of the numerical solution; for comparison, the solid red line
represents a positive characteristic of the theoretical solution.

an equation of cubic nonlinear Klein-Gordon type [90,91]
for the unknown displacement field ū(x̄,t̄). The solution can
be found by a perturbation multiple-scale expansion [92].
Therefore, we use the ansatz

ū(x̄,t̄) = εφ0(x̄,t̄) + ε2φ1(x̄,t̄) + ε3φ2(x̄,t̄) + O(ε4), (27)

where |ε| � 1 is a small characteristic length scale. For the
current problem, the expansion is restricted to third order,
since this approximation demonstrates sufficient accuracy for
the medium amplitude regime; cf. Sec. II D. Suppose that in
addition to variables x̄ and t̄ the solution depends on multiple
scales of position and time. Then new scaled variables can be
defined by

Xi = εi x̄, Ti = εi t̄ . (28)

Again, we limit scales to order 3. Consequently, we now seek
solutions

φi(x̄,t̄) = φi(X0,X1,X2,T0,T1,T2). (29)

Derivatives with respect to the primary variables become

∂

∂t̄
=

2∑
i=0

εiDi,
∂

∂x̄
=

2∑
i=0

εiDXi, (30)

where we introduced operators

Di = ∂

∂Ti

, DXi = ∂

∂Xi

. (31)

Substitution of the chosen representation of the displacement
field (27) into the governing equation (23) and inspecting the
equation at O(ε) leads to

Lφ0 = 0 with L = D2
0 − c̄2

0D
2
X0 + ω2

0. (32)

Hence, the solution for the first-order expansion is of the form

φ0 =A(X1,X2,T1,T2)ei(q̄X0−ω̄T0) + c.c. (33)

Here and in the following c.c. stands for the complex conjugate
(for conciseness we do not write out both terms; the complex
conjugate terms follow analogously). Frequency ω̄ and wave
number q̄ are related by the first-order dispersion relation for
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small amplitudes discussed above. At O(ε2), the governing
equation reads

(D0 + εD1)2(εφ0 + ε2φ1) − c̄2
0(DX0 + εDX1)2(εφ0 + ε2φ1)

+ 2

1 + d2
(εφ0 + ε2φ1) − 3d2

(1 + d2)2
(εφ0 + ε2φ1)2 = 0,

which can be algebraically reduced to the simpler form

Lφ1 = −(2D0D1 − 2c2
0DX0DX1)φ0 + 3d2

(1 + d2)2
φ2

0 . (34)

Substitution of (33) into (34) and defining σ = q̄X0 − ω̄T0

results in

Lφ1 =
(

2iω̄
∂A

∂T1
+ 2iq̄c̄0

2 ∂A

∂X1

)
eiσ

+ 3d2

(1 + d2)2
A2ei2σ + 3d2

(1 + d2)2
|A|2 + c.c. (35)

For simplicity the overbars on c2
0, q, and ω will be dropped

henceforth. Because σ is the eigenfrequency of the operator
L, the coefficient of the resonant term cancels, implying

ω
∂A

∂T1
+ qc2

0
∂A

∂X1
= 0. (36)

By introducing the group velocity vg = qc2
0/ω (which can be

verified from the dispersion relation), we know that function
A must be of the form

A(X1,X2,T1,T2) = A(X1 − vgT1,X2,T2). (37)

Therefore, (35) reduces to

Lφ1 = 3d2

(1 + d2)2
A2ei2σ + 3d2

(1 + d2)2
|A|2 + c.c. (38)

The inhomogeneous solution is determined from the ansatz

φ1 = B(X1,X2,T1,T2)e2iσ + C(X1,X2,T1,T2)

+ c.c., (39)

which is substituted into (38). As A does not depend on X0

and T0, the nonoscillating terms corresponding to the absolute
value cancel on both sides. Hence, only the resonant terms
remain: (−4ω2 + 4c̄0

2q2 + ω2
0

)
Be2iσ + ω2

0C

= 3d2

(1 + d2)2
A2ei2σ + 3d2

(1 + d2)2
|A|2 + c.c. (40)

Solving for B and C (ignoring complex conjugates) results in

B = − d2

2(1 + d2)
, C = 3d2

2(1 + d2)
|A|2, (41)

which implies that

φ1 = − d2

2(1 + d2)
A2ei2σ + 3d2

2(1 + d2)
|A|2 + c.c. (42)

Similarly at O(ε3), we have

(D0 + εD1 + ε2D2)2(εφ0 + ε2φ1 + ε3φ2)

− c2
0(DX0 + εDX1 + ε2D1 + ε3φ2)2(εφ0 + ε2φ1 + ε3φ2)

+ω2
0(εφ0 + ε2φ1 + ε3φ2)

+ d2(d2 − 4)

(1 + d2)3
(εφ0 + ε2φ1 + ε3φ2)2

− 6d2

(1 + d2)2
(εφ0 + ε2φ1 + ε3φ2)3 = 0, (43)

which, after canceling appropriate terms, reduces to

Lφ2 = − d2

1 + d2

(
2A

∂A

∂T1
(−iω) − c2

02A
∂A

∂X1
(iq)

)
ei2σ

−
(

2
∂A

∂T2
(−iω) − 2c2

0
∂A

∂X2
(iq) + ∂2A

∂T 2
1

− c2
0
∂2A

∂X2
1

)
eiσ

+ 12d2

(1 + d2)2
|A|2Aeiσ − 4d2(d2 − 1)

(1 + d2)3
A3ei3σ . (44)

Due to (36), the coefficient of the ei2σ term vanishes. To
ensure finite amplitudes, the resonant term proportional to
eiσ must not contribute to the solution. Consequently, the only
remaining term gives

Lφ2 = −4d2(d2 − 1)

(1 + d2)3
A3ei3σ , (45)

with the solution

φ2 = −d2(d2 − 1)

4(1 + d2)2
A3ei3σ . (46)

Since the coefficient of the resonant term in (44) must vanish,
we also have

2
∂A

∂T2
(−iω) − 2c2

0
∂A

∂X2
(iq) + ∂2A

∂T 2
1

− c2
0
∂2A

∂X2
1

− 12d2

(1 + d2)2
|A|2A = 0. (47)

Let us introduce the following new variables:

ξ1 = X1 − vgT1, η1 = T1,
(48)

ξ2 = X2 − vgT2, η2 = T2.

Substitution into (47) and simplification finally yields (with
overbars for the final solution)

i
∂A

∂η2
+ c̄2

0 − v̄2
g

2ω̄

∂2A

∂ξ 2
1

+ 6d2

ω̄(1 + d2)2
|A|2A = 0. (49)

Equation (49) is a nonlinear Schrödinger (NLS) equation
for the unknown function A. Therefore, A scales with ε2 in
time and with ε in space. In general, a NLS equation of the
form

i
∂A

∂η2
+ P

∂2A

∂ξ 2
1

+ Q|A|2A = 0 (50)

with coefficients P,Q ∈ R has two types of solutions [89,93]:

PQ > 0 ⇒ envelope solitons,

PQ < 0 ⇒ dark solitons. (51)

In the current case, one can verify that

PQ =
(

c̄2
0 − v̄2

g

2ω̄

) (
6d2

ω̄(1 + d2)2

)
= 3c2

0ω
2
0d

2

ω̄4(1 + d2)2
> 0 (52)
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for all admissible values of ω̄. Therefore, the solution of the
displacement field in this regime can be characterized as an
envelope soliton [94], which is caused by a Benjamin-Feir
modulational instability [93,95] of the wave as it propagates
through the system for PQ > 0. A similar kind of mod-
ulational instability was observed in Sine-Gordon and φ4

problems [72]. The NLS equation can be solved exactly for
function A [96], giving

A = Vmsech

(√
Q

2P
εVm(x̄ − vgt̄)

)
exp

(
i(εVm)2 Q

2
t̄

)
,

(53)

where Vm is the characteristic amplitude of the wave and

Q

2P
= 6d2ω̄2

c̄2
0ω

2
0(1 + d2)2

,
Q

2
= 3d2

ω̄(1 + d2)2
. (54)

Therefore, at O(ε) the displacement field can be expressed as

ū(x̄,t̄) = εA(x̄,t̄) exp(iσ ) + c.c. (55)

2. Numerical results

We use the same numerical setup as before to simulate
the wave propagation behavior in this regime, but we expand
the number of nodes to 200 (to ensure sufficient level of
detail to compare with the continuous solution). In order to
see the formation of an envelope soliton due to modulational
instability, a sinusoidal plane wave is imposed by the boundary
conditions at the first node, viz., by enforcing

ū1(t̄) =
{
û cos(ω̄t̄) for 0 � t̄ � τ̄

0 otherwise
(56)

and

ū1,t̄ (t̄) =
{−ûω̄ sin(ω̄t̄) for 0 � t̄ � τ̄

0 otherwise.
(57)

Instead of fixing the displacement at the first node for t̄ /∈ [0,τ̄ ],
one can leave the first node traction-free without significantly
affecting the solution. The boundary node at the other end of
the chain is kept traction-free for all times.
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FIG. 7. (Color online) Snapshots of the propagating wave (travel-
ing from left to right) at different instances of time show the evolution
of the envelope soliton. The sech-type envelope begins to form due
to self-modulation, as the wave passes through the lattice.
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FIG. 8. (Color online) Discrete Fourier transform of the spatial
variation of the waveform at a chosen instant of time.

Figure 7 illustrates numerical results for the specific choices
of û = 0.3, ω̄ = 3, and τ̄ = 10. Results clearly confirm the
propagation of a soliton, yet they show a variation of the
envelope soliton as it moves through the lattice. The envelope
of the waveform is seen to oscillate at a different frequency
than the applied frequency at the first node. In order to verify
the nature of the waveform, we show the Fourier spectrum in
Fig. 8. In avoidance of spectral leakage due to the limitations of
a discrete Fourier transform, Hann, Blackman, and Hamming
windows are used to determine the spectral content of the
signal. The resulting peak frequency corresponds to the spatial
wave number of the applied frequency. However, side lobes
form, which can be explained by the modulational instabil-
ity [93] caused by the weakly nonlinear effects discussed
above. Hence, wave propagation in this regime can indeed be
explained by the nonlinear Schrödinger and the cubic nonlinear
Klein-Gordon equations and numerical results confirm the
theoretical prediction of an envelope soliton. The envelope
appears to vary as it moves along the chain, yet the waveform
preserves it localized nature, leaving behind small-amplitude
high-frequency oscillations.

C. Large amplitude: Strong nonlinearity

1. Analytical solution

For the case of large amplitudes, we use the exact nonlinear
form of the potential energy. Therefore, the governing equation
in the continuum limit is

ūt̄ t̄ − c̄2
0ūx̄x̄ − F̄ (ū) = 0. (58)

For convenience, the overbars are omitted in the following.
We seek a traveling-wave solution of the form u(x,t) = u(x −
vt) = u(z), where v is the propagation velocity and z = x − vt

a reduced variable. Substitution into (58) gives(
v2 − c2

0

)
uzz − F (u) = 0. (59)

Multiplication by du
dz

and integration leads to

v2 − c2
0

2

(
du

dz

)2

+ ψ(u) = C1, (60)
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where C1 is a constant of integration. The value of C1 can be
computed from the initial conditions

lim
z→∞ u(z) = 0, lim

z→∞
du(z)

dz
= 0, (61)

which translate into

C1 = 0. (62)

Therefore, after some rearrangement (60) becomes√
c2

0 − v2

2

∫
du√
ψ(u)

= z − z0, (63)

where z0 is another constant of integration. Performing the
integration results in

2√
1 + d2

ln

(
a(u) + a(u)

b(u)

√
1 + d2

)

+ ln

(
1 − a(u)

1 + a(u)

1 − b(u)

1 + b(u)

)
=

√
2

c2
o − v2

(z − z0) (64)

with the abbreviations

a(u) = u − 1, b(u) =
√

1 + d2(u − 1)√
(u − 1)2 + d2

. (65)

In summary, the solution in the large-amplitude case is indeed
a propagating wave of type u(x,t) = u(x − vt). From (64) we
conclude that c0 > v, which implies that the wave speed is
subsonic. Although (64) cannot be inverted to solve for u(z)
explicitly, the relation shows that u(z) → 0 as z → ∞ and
that u(z) → 2 as z → −∞. In addition, the function can be
plotted parametrically for u ∈ (0,2), which is shown in Fig. 9.
Obviously, the wave front is localized and of kink soliton type,
which can be physically explained by the snap-through effect
of each spring from one stable configuration to the other. The
shape of the kink depends on the velocity of propagation with
higher velocity kinks having steeper slopes.

Numerical Result

Theoretical Result
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FIG. 9. (Color online) Comparison of the theoretical large-
amplitude solution and numerically determined wave profile (for
parameters d = 1, z0 = −93.2, and v = 2.812).

FIG. 10. (Color online) The x-t contour diagram of the numerical
solution for the large-amplitude regime. The red straight line is the
best-fit line corresponding to the leading edge characteristic.

2. Numerical results

We use the same numerical setup as before to simulate a
chain of 100 bistable spring elements. We apply to the first node
an initial velocity sufficiently high to make the first mass snap
to its other stable branch. The other end of the chain is kept free
at all times, i.e., zero tractions are enforced on that boundary.
A comparison of the numerically determined wave profile
and the theoretical exact solution propagating with the same
velocity is shown in Fig. 9. The perturbations in the numerical
solution with respect to the theoretical solution are caused due
discreteness effects [97,98]. To allow for a direct comparison,
the velocity of propagation in the numerical example is found
by linearly fitting the position of the leading edge in the x-t
contour plot in Fig. 10. The linear fit is shown in Fig. 11, which
shows that the velocity is not constant, but variations with
time are marginal, so we may assume the wave is traveling
at almost constant speed. Inserting the propagation velocity
into the theoretical solution shows an excellent match with
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Characteristic curve
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FIG. 11. (Color online) The characteristic curve corresponding
to the leading edge of the wave is shown in comparison with the
best-fit solution at t = 250. The slope of the line determines the
initial speed of the propagating wave. This speed is used to compute
the exact solution in the kink soliton propagation. The kink slows
down toward the end due to the energy radiated by the oscillatory
tail.
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the numerical wave profile, which confirms the accuracy of
the aforementioned analytical solution for the large-amplitude
regime. The propagating wave is of antisoliton nature with a
topological charge of −1.

3. Energy of the kink soliton

Bistable elements have been shown to produce twinkling,
which results in energy dissipation; see, e.g., Ref. [75] and
references therein. Here we disregard just oscillations and
focus on the propagating kink soliton whose energy can be
determined by integrating the Hamiltonian spatial density over
the complete lattice at any given time. The Hamiltonian density
per unit spacing in the continuum limit is given by

h(x,t) = u2
t + 1

2c2
0u

2
x + ψ(u). (66)

In the large-amplitude case as derived in Sec. III C 1, we have
u(x,t) = u(x − vt) = u(z). Substitution into (66) gives

h(z) =
(

v2 + c2
0

2

)
u2

z + ψ(u). (67)

Replacing the value of ψ(u) by using (60), we arrive at

h(z) =
(

v2 + c2
0

2

)
u2

z +
(

c2
0 − v2

2

)
u2

z = c2
0u

2
z. (68)

Therefore, the total energy is computed by integrating h(z)
over the complete lattice, which results in

E =
∫ ∞

−∞
h(z)dz

= c2
0√

2
(
c2

0 − v2
)

[
d2 ln

(
1 + √

1 + d2

√
1 + d2 − 1

)
− 2

√
1 + d2

]
.

(69)

Consequently, (69) implies that the energy increases with the
propagation speed of the soliton. In combination with results
from Sec. III C 1, we thus conclude that faster moving solitons
have a steeper slope and have higher energy.

D. Effect of precompression

For the linear, weakly nonlinear, and strongly nonlinear
regimes, we have shown how the wave characteristics (includ-
ing the dispersion relations, wave speeds, and wave profiles)
can be fine-tuned by changing the geometric parameter d. In
addition, the nonlinearity of the bistable spring elements ad-
mits tailoring of the dynamic response of the chain by applying
initial preloads. Specifically, assume identical constant forces
F0 are applied to all masses in their direction of motion (e.g.,
by arranging the chain of springs vertically and letting the
point masses predeform the bistable spring elements under the
action of gravity, while the connecting linear springs remain
unstretched in equilibrium). Consequently, all masses exhibit
an initial equilibrium displacement u0 that satisfies

F0 = −ψ ′(u0). (70)

Wave solutions are obtained by approximating the nonlinear
force-displacement relation about this new initial equilibrium
configuration. Let u denote the displacement from the new

equilibrium state so that the total force on a bistable spring
element becomes

F (u) = −ψ ′(u0 + u). (71)

By using the dimensionless definitions of Sec. II B, we arrive
at the equations of motion in the presence of preloads, viz.,

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) − F̄ (ū) + F̄0 = 0 (72)

or, after substitution of (70) and (71),

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) + ψ̄ ′(ū0 + ūi) − ψ̄ ′(ū0) = 0.

(73)

For small amplitudes (ū � 1) we take

ψ̄ ′(ū0 + ūi) 
 ψ̄ ′(ū0) + ψ̄ ′′(ū0)ūi , (74)

which again leads to a linearized Klein-Gordon equation, viz.,

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) + ψ̄ ′′(ū0)ūi = 0. (75)

Therefore, the same solution derived above applies when
defining

ω2
0 = ψ̄ ′′(ū0) = 2

[
1 − d2

√
1 + d2

[d2 + (ū0 − 1)2]3/2

]
, (76)

which naturally reduces to (16) when choosing ū0 = 0.
Therefore, predeformation u0 can be utilized to manipulate the
dispersion relation (19). We note that the amount of precom-
pression is limited before snapping occurs. Specifically, (76)
only yields real-valued wave speeds if

u0 � 1 − d
√

(1 + d−2)1/3. (77)

Next let us consider moderate amplitudes. The applicability of
this regime now depends on the predeformation. Here ψ ′(ū +
ū0) − ψ ′(ū0) = 0 generally has two solutions {ū∗,ū∗∗} with
ū∗ < ū∗∗. In the following, we assume moderate amplitudes
that satisfy ū∗ + ū0 < ū∗∗ to prevent snapping. A third-order
Taylor expansion of the nonlinear spring force turns (73) into

ūi,t̄ t̄ + Kr (−ūi+1 + 2ūi − ūi−1) + ψ̄ ′′(ū0)ūi

+ 1
2 ψ̄ ′′′(ū0)ū2

i + 1
6 ψ̄ ′′′′(ū0)ū3

i = 0. (78)

A multiple-scale expansion approach again leads to a nonlinear
Schrödinger equation, which in turn gives rise to a wave profile
of envelope soliton type as derived in Sec. III B, the details of
which are omitted here due to the close analogy to the previous
analysis.

Finally, in the case of large amplitudes we use the exact
forcing function, which gives rise to the governing equation in
the continuum limit of the following form:

ūt̄ t̄ − c̄2
0ux̄x̄ + ψ ′(ū + ū0) − ψ ′(ū0) = 0. (79)

The application of a preload F0 results in a change of the total
potential energy landscape due to the work performed by F0.
In particular, the two energy wells are no longer symmetric but
exhibit different energy levels (depending upon the direction
and magnitude of F0). Figure 12 shows the total potential
energy

E(u) = ψ(u + u0) − ψ ′(u0)u (80)

for positive and negative predeformation u0.
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FIG. 12. (Color online) Energy landscape E(u) with positive and
negative predeformation as well as without preloads.

When the force F0 points away from the direction of
snapping, it leads to an unstable kink that disintegrates into
ripples about the initial equilibrium point and does not show
interesting wave propagation phenomena (yet it allows for the
absorption of impact energy). However, when the preload is
in the direction of snapping, the energy landscape becomes
negative near its second well. To date, all models of the
Frenkel-Kontorova type have dealt with potentials that are
either fully positive or negative in the transition region. In
contrast, the mechanical system studied here produces a
potential that is partially positive and partially negative in the
transition region. Even for a small amount of precompression
(cf. Fig. 13) the stability of the kink increases and the
effect of discreteness (i.e., phonon radiation) to lower the
wave speed is reduced [97,98]. The x-t contour plot for
the wave propagation shown in Fig. 13 confirms that the
kink characteristic is now linear and hence the kink has
stabilized as compared to the case without precompression; cf.
Fig. 10.

Increasing the precompression creates a combination of a
kink and trailing oscillations that are localized as the wave
moves through the chain. After attaining a certain width

FIG. 13. (Color online) The x-t contour diagram of the numerical
solution for a precompression ū0 = 0.03. The kink characteristic is
straighter than the characteristic without precompression.
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FIG. 14. (Color online) (a) Wave profiles for ū0 = 0.3 and
t3 > t2 > t1. (b) The x-t contour diagram of the numerical solution
for a precompression of ū0 = 0.3.

of localization, the oscillations acquire a steady shape and
propagate with the kink velocity. Figure 14 illustrates a typical
wave profile and an x-t contour diagram for the case of
precompression (both have been obtained numerically). The
oscillations forming in the wake of the kink are bounded
by an envelope as in the case of the envelope soliton
forming under medium amplitudes; see Sec. III B. This can
be explained by the reduction in potential energy as each
spring transitions from one energy well to the other. As
shown in Fig. 12, a preload into the direction of snapping
results in the snapped potential well having lower energy.
Consequently, after snapping every mass has residual kinetic
energy. This energy, however, is insufficient for a spring to
snap back since part of the energy is carried away by the kink
soliton. Hence, the masses oscillate in the snapped well with a
medium amplitude giving rise to localization by modulational
instability as seen in the envelope soliton case in Sec. III B.
For these reasons, the predeformation results in a combination
of the two modes of kink and envelope soliton propagation
with an envelope solitonlike wave created behind the kink.
As may be expected, the velocity of the propagating wave
front increases with increasing precompression for a constant
input of energy as shown in Fig. 15. There is a sharp rise in the
velocity of propagation for small precompressions followed by
a fairly linear increase for large precompressions, ultimately
becoming supersonic.
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FIG. 15. (Color online) Variation of the kink propagation veloc-
ity with precompression for an initial (normalized) velocity of the
first node of v0 = 4. The dotted line shows the characteristic sound
speed c̄0 of the medium for comparison.

IV. CONCLUSION

We have shown that mechanical chains of bistable
nonlinear-elastic elements offer a rich dynamic response with
distinct regimes of wave propagation depending on the excita-
tion amplitude. For small amplitudes, the chain propagates
elastic waves in the linear regime characterized by wave
dispersion. For moderate amplitudes, owing to modulational
instability, an envelope soliton forms and propagates. For large
amplitudes, the strongly nonlinear chain shows topological
kink solitary waves. In all three regimes, we have derived
analytical solutions of the displacement field in the continuum
limit and we have demonstrated excellent agreement with the
numerical solution obtained from a discrete chain of bistable
elements. Wave propagation characteristics can be controlled
by fine-tuning the geometric details of the bistable elements.
Moreover, precompression brings the bistable elements closer

to their snapping instability and hence can be used to
control the wave propagation. We discussed the influence of
precompression in all three amplitude regimes.

Our results highlight opportunities to design periodic
mechanical structures and metamaterials containing bistable
(negative-stiffness) elements that give rise to beneficial dy-
namic performance. This closes a gap between previous
research on composite systems with (static) negative-stiffness
phases and the nonlinear dynamics of structures undergoing
large elastic deformation. Here the negative-stiffness effect
(i.e., the unstable branch of the force-displacement curve)
is utilized to create and propagate solitary-wave packages,
which presents a way to achieve controllable metamaterial per-
formance through negative-stiffness elements, while previous
research in negative-stiffness materials mainly focused on their
elastic and viscoelastic effective properties well within the
realm of linearized kinematics. We deliberately chose a simple
(possibly the simplest) elastic system to show the sought
effects while allowing for closed-form analytical solutions, a
rare find in nonlinear dynamics. The same qualitative response
can be expected from various structural systems that allow
for practical implementation. For example, the bistable spring
elements can be replaced by buckled columns or membranes
and the elastic springs connecting the bistable elements by
compliant fillers. Current research explores possibilities to
demonstrate the reported findings experimentally. Further,
extensions to two and three dimensions by using bistable or
multistable elements (having two or more stable equilibrium
configurations, respectively) are left for future work.
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