
Looking at the rippled surface of a pond, we hardly 
expect water rings to shrink and converge to their centre. 
It could seem that the growth of water rings with time is 
an unshakable law of physics; it is not. Under the right 
circumstances, converging rings can appear, for example, 
by carefully placing a circular rim on the water surface 
or, more dramatically, by switching off gravity for a split 
second1. Wave motion usually abides by this principle of 
time-​reversal symmetry: all possible motion, reversed  
in time, is equally possible. A subtler law of symmetry in 
wave motion is known as the law of reciprocity (Box 1). 
This law states that, in the presence of a vibration source, 
the signal received by a receiver remains the same when 
source and receiver are interchanged. For instance, 
two water striders floating on the surface of the pond 
are equally vulnerable to the ripples generated by the 
other: if the first shakes its legs with a given force send-
ing ripples that displace the water under the second by 
a given amount, the second can reciprocate by displac-
ing the same amount of water under the first by applying  
the same force. What is remarkable about these two 
symmetries, time reversal and reciprocity, is that they 
are typically oblivious to composition and geometry. 
In particular, they hold in the presence of any amount 
of elastic scattering and reflection by arbitrarily shaped 

heterogeneities and boundaries. Accordingly, they have 
been leveraged to enable a number of widely applicable 
techniques in experimental characterization and numer-
ical modelling, such as time-​reversed acoustics and the 
boundary-​element method2–9. Perhaps more extraordi-
nary is that, although the wave equation is not invariant 
under time reversal in the presence of dissipation, as is 
the case in viscous fluids, the fundamental property of 
reciprocity remains unchanged10,11.

Reciprocity can also be seen as a hindrance. For 
instance, under reciprocity, there is no way to tune trans-
mission to two different levels in opposite directions. As 
a result, the creation of acoustic and elastic wave devices 
that exploit unidirectional transmission, such as acoustic 
diodes12, is impossible in the presence of reciprocity. The 
ability to create materials and systems that enable non
reciprocal wave transport in acoustic and elastic media is,  
therefore, of substantial interest in broad areas of engi-
neering and science13,14. The purpose of this Review is to 
survey designs and strategies that overcome this funda-
mental limitation of classical acoustic and phononic sys-
tems, and enable purposeful and tunable nonreciprocal  
wave propagation.

Reciprocally exchanged vibrations do not only have 
the same amplitude but also identical time profiles.  
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In particular, their spectra feature the same frequency 
and phase content. Accordingly, the frequency shift 
observed in the Doppler effect is fundamentally non-
reciprocal. Indeed, if, in the original configuration, a 
source communicates to a receiver through a barrier 
moving with the sound, then, in the flipped configura-
tion, the barrier moves against the sound. This means 
that the Doppler shift changes signs when the source 
and receiver are swapped, contradicting reciprocity. We 
should, therefore, expect reciprocity to fail in systems 
with mean flow15 or external biasing, such as magnetic 
fields applied to ferromagnetic materials16 or Coriolis 
forces17, all of which break time-​reversal symmetry. Time 
reversibility and reciprocity are physical analogues, but 
their opposites are not necessarily equivalent. Examples 
of time-​irreversible mechanisms include both external 
biasing and energy-​dissipation effects such as viscosity. 
Both are associated with a loss of time reversibility, but 
in physically different ways. In particular, reciprocity 
is maintained in linear acoustics with viscous damp-
ing (Box 2). More generally, we anticipate the failure of 
reciprocity in the presence of mechanisms that gener-
ate harmonics, such as nonlinear and time-​dependent 
constitutive material properties.

This Review is organized around four research areas 
that have been explored to create nonreciprocal mate-
rials offering directional wave control: kinetic media 
(media with moving parts or circulating flows); activated 
media (media with time-​dependent properties); topo-
logically protected one-​way edge states (waves localized 
at the boundaries of some kinetic or activated media); 
and nonlinear media (media displaying nonlinear elastic 
behaviour).

It is worthwhile to stress that spatial symmetry and 
reciprocity, while interdependent, are fundamentally dif-
ferent (Box 3). Reciprocity is assured in configurations in 
which the source and receiver are interchangeable under 
spatial symmetry. Conversely, spatial asymmetry does 
not imply nonreciprocity, but it can enable it. Spatially 
asymmetric wave propagation can be useful, be it recip-
rocal or not, and has been increasingly investigated in 
recent years in an emergent class of media known as top-
ological insulators. These are materials that stop waves 
from propagating through their bulk, while favouring 
their transmission along edges and interfaces in specific 

directions. The interplay between spatial asymmetry and 
nonreciprocity in topological insulators constitutes one 
of the thrusts of the present Review. Another thrust is 
the physical consequences of spatial asymmetry com-
bined with nonlinear material properties: the departure 
from linearity opens up the possibility of nonrecipro-
cal dynamics in passive media, although the breaking 
of spatial mirror symmetry is a necessary and essential 
ingredient.

Nonreciprocity in kinetic media
All linear time-​invariant wave systems are inherently 
reciprocal, unless a quantity H0, external to the system, 
biases the motion by breaking time-​reversal symmetry 
on a microscopic scale (Box 2). To do so, H0 must be time 
odd, that is, it must flip sign under time reversal. For 
instance, elastic waves in ferromagnetic crystals can be 
nonreciprocal in the presence of an external magnetic 
field, although magnetoelastic phenomena tend to be 
very weak in natural materials16.

A simple example of a nonreciprocal linear time- 
invariant medium is a fluid in constant motion with 
velocity v0 smaller than the speed of sound c0. The 
motion, which is imparted by an external system (such 
as a pump) independently of the presence or absence of 
sound in the medium, imparts a mean momentum to the 
acoustic medium. This momentum can be interpreted 
as a time-​odd bias. If one imagines two points placed 
along the flow, it is clear that the speed of sound along 
the flow, c0 + v0, differs from that against the flow, c0 − v0, 
thus, the transmitted signals along or against the flow 
differ by a phase (assuming the absence of losses, Box 4). 
This simple idea can be exploited to build acoustic gyra-
tors18 in air pipes under steady flow and isolators19. If the 
length of the pipe is properly adjusted, waves excited 
along the flow accumulate a phase of 90°, whereas  
in the opposite direction, the phase is −90° (Fig. 1a). 
A 180° phase difference between forward and backward 
waves occurs for this specific waveguide length, for 
which the system acts as a gyrator (Fig. 1b). This exam-
ple allows us to point out another challenge in building  
nonreciprocal systems: because the bias v0 is generally 
small compared with c0, appreciable nonreciprocal trans
mission phases occur only after long distances, namely,  
for systems much larger than the wavelength. Using 
grating elements to slow down sound, it is possible to 
shrink the size of nonreciprocal devices and realize 
compact isolators and gyrators for guided and radiated 
waves19.

Interestingly, the effect of fluid motion on acoustic 
wave propagation can lead to similar phenomena as 
those observed for electrons in a magnetic field. For 
instance, an acoustic beam passing through a vortex 
acquires a nonreciprocal phase shift analogous to the 
Aharonov–Bohm phase for an electron going through 
a region of space with non-​zero magnetic vector poten-
tial20. An acoustic analogue of the Zeeman effect (the 
splitting of the electronic energy levels in an atom sub-
ject to a magnetic field) has also been demonstrated in a 
ring resonator subject to constant rotating air flow15. This 
design was then exploited to construct an acoustic circu-
lator whose resonant nature allowed the use of slow fluid 

Author addresses

1Department of Mechanical and Aerospace Engineering, University of Missouri, 
Columbia, MO, USA.
2Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 
Montreal, QC, Canada.
3Laboratory of Wave Engineering, Swiss Federal Institute of Technology in Lausanne 
(EPFL), Lausanne, Switzerland.
4Department of Mechanical Engineering, University of Colorado Boulder, Boulder,  
CO, USA.
5Advanced Science Research Center, City University of New York, New York, NY, USA.
6Division of Engineering and Applied Science, California Institute of Technology, 
Pasadena, CA, USA.
7Department of Mechanical and Aerospace Engineering, Rutgers, The State University  
of New Jersey, Piscataway, NJ, USA.
8Walker Department of Mechanical Engineering and Applied Research Laboratories,  
The University of Texas at Austin, Austin, TX, USA.

www.nature.com/natrevmats

R e v i e w s

668 | September 2020 | volume 5	



motion to achieve large nonreciprocal behaviour (Fig. 1c). 
At first, the cylindrical acoustic cavity, coupled to three 
external waveguides, contains air at rest. Consequently, 
reciprocity holds and the scattering matrix is symmet-
ric (waves incident at a given port split equally between 
the other two ports). By properly rotating the air fill-
ing the cylindrical cavity, it is possible to strongly break 
reciprocity and create an acoustic circulator. This idea 
was validated in a series of experiments using airborne 
audible sound and air motion implemented through 
standard fans.

Nonreciprocity in activated materials
Background. Activated materials modulate their con-
stitutive properties in space and time in response to 
an external stimulus. These materials violate time-​
invariance and can, thus, exhibit a wide array of nonre-
ciprocal wave phenomena. For example, in an activated 
two-​phase laminate, as time passes, the spatial phase 
profile is translated at constant speed (Fig. 2a); other pho-
nonic crystals are activated by varying the properties of 
a unit cell as a function of time (Fig. 2b). Rather than 
modulating bulk properties, an activated structure can 

Box 1 | Reciprocity

Early hints of reciprocity can be found in ‘Mécanique 
Analytique’ of Joseph-​Louis Lagrange175, as noted by Horace 
Lamb176. Afterwards, important particular cases were dealt 
with by Hermann von Helmholtz177 in an 1860 paper on 
sound in tubes and by Alfred Clebsch178 in his work of 1862 
on systems of rods. Clebsch noted that the coefficients  
of the dynamical matrix relating nodal displacements to 
external loads are symmetric, although he did not formulate 
that property as a statement of reciprocity. This was later 
done by James Clerk Maxwell179 while investigating the 
same topic in 1864. One of Maxwell’s theorems reads, for 
four arbitrary points (B, C, D, E) in a continuous medium: 
“The extension in BC, due to unity of tension along DE, is 
always equal to the tension in DE due to unity of tension in 
BC.” Enrico Betti extended the concept of reciprocity to the work done by static forces on an elastic body in 1872 (ref.180). 
In acoustics and elastodynamics, a reciprocal theorem, namely, that “the vibration excited at A will have at B the same 
relative amplitude and phase as if the places were exchanged,” was stated and proved by Lord Rayleigh181 in 1873. He seems 
to be the first to refer to the ‘reciprocal character’ of the property. Rayleigh appreciated the extent and generality of the 
reciprocal theorem and considered the presence of heterogeneities and of linear damping. The reciprocity theorems  
of Maxwell and Rayleigh are concerned with cases where the forces are concentrated at a single member or point, whereas 
Betti’s theorem is more general, in that it considers distributed forces. Various equivalent mathematical formulations of 
reciprocity exist182,183. The reciprocity theorem applies equally to media with linear mechanisms for wave attenuation, 
including viscous loss10,11, and media with distributed183 or moving loads184.

To provide a concrete example, we show how reciprocity is defined in linear scalar acoustics. We start from the general 
dynamic equations for an isotropic acoustic medium, written in the frequency domain as →ω= − +

→
μ∇p j f  and ωε→ = +∇ ⋅ v j qv , 

where j is the imaginary unit, ω the radian frequency, p the acoustic pressure, →v  the particle velocity, →μ  the momentum 
density, εv the volume strain, and q and 

→
f  are the volume source and body force source distributions, respectively.  

The constitutive relations are assumed to be of the Willis type, namely, → ρ η= → − →μ ⋅ v p and ε β γ= − + → →⋅p vv , where β is the 
compressibility, ρ the second-​order dynamic density tensor, and η→ and γ→ are Willis coefficients that couple momentum 
density to time-​varying pressure and volume strain to velocity, respectively58. These relations for time harmonic motion  
are based on the assumption that the medium is time-​invariant, that is, that its constitutive properties ρ η γ β→ →( , , , ) are 
independent of time. Reciprocity links two distinct excitation situations 1 and 2, in which the same medium is considered 
but the source distributions q1,2 and 

→
f1,2 are different, leading to distinct field solutions p1,2 and →v1,2. More specifically, 

reciprocity is defined11 for an infinite medium as the property <1,2> = <2,1>, where < > =
→ → −∭ ⋅V f v q p1, 2 d ( )1 2 1 2

. Using the 
dynamic equations and the constitutive relations, it is straightforward to apply Gauss’ theorem and show that, in general, 

ω η γ ρ ρ< > − < > = − → + → → − → + → − →∭ ⋅ ⋅ ⋅j V p v p v v v1, 2 2, 1 d [( ) ( ) ( ) ]1 2 2 1 1
T

2 . Note that this assumes a finite source distribution and 
infinite volume of integration, which eliminates surface contributions. This relationship shows that, in the absence of Willis 
coupling η γ→ = → =

→
( 0), reciprocity holds if the density is symmetric, ρ ρ= t, whereas in the presence of Willis coupling, it holds 

only if, additionally, η γ→ = − →.
Similar restrictions imposed by causality on the stiffness, coupling and density tensors in the context of Willis solids were 

derived185, namely, that breaking the major symmetries of any of those material-​property tensors violates the requirements 
for reciprocal wave motion. In the present example, the creation of acoustic media with ρ ρ≠ t or Willis media for which 
η γ→ ≠ − → are, therefore, two different ways to break reciprocity. As further discussed in Box 2, the relation η γ→ = − → is typically 
satisfied by most media, as it follows directly from the Onsager–Casimir relations, which generally hold for linear 
time-​invariant systems in the absence of external time-​odd bias.

The figure illustrates the reciprocity theorem in an inhomogeneous domain consisting of a background medium containing 
heterogeneities (darker regions). Specifically, it shows point-​like source forces (dipoles), 

→
F1 and 

→
F2, applied at different 

locations. In this case, the reciprocity condition <1,2> = <2,1> is equivalent to the equality of the virtual powers, namely,  → → =
→ →⋅ ⋅F v F v1 2 2 1. In linear, time-​invariant acoustic and elastic media, the theorem can only be invalidated if time-​reversal 

symmetry is broken at a microscopic scale. This can be achieved by introducing a momentum in the wave-​bearing medium, 
represented by 

→
H0, that is, through the use of a mean flow field that does not change direction under time reversal186.  

The only other way to violate reciprocity is to break the linearity or time-​invariance of the medium itself.
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also be obtained by modulating an interaction coeffi-
cient between the structure and, for instance, attached 
resonators or the ground (Fig. 2c), or, more generally, 
by modulating any boundary condition. In acoustics, 
metamaterials with time-​dependent effective proper-
ties may be obtained from time-​modulated meta-​atoms 
built from electro-​acoustic transducers, which have been 
successfully used to provide various advanced static 
functionalities, such as nonlinearity21,22 and acoustic 
gain23, and can, in principle, be reconfigured faster than 
the acoustic wave24.

From a modelling perspective, wave motion in 
activated materials is described by equations with 
time-​dependent constitutive parameters, such as  
the wave equation ∇ ̈c x t ϕ x t ϕ x t( , ) ( , ) = ( , )2 2 , where the  
modulated physical property c, the speed of sound, 

depends on both space and time variables. The empha-
sis here is on modulations in the form of progressive 
periodic waves, referred to as pump waves, for exam-
ple, ∼c x t c c x vt( , ) = + ( − )o  where ∼c  is periodic. Such 
progressive modulations create a space–time bias that 
enables nonreciprocal wave motion as a function of 
the modulation frequency fM and depth, | |∼c c/ o (Fig. 2d). 
Small-​amplitude, medium-​speed modulations lead to 
a Bragg scattering regime; faster modulations can be 
described by an equivalent medium with effective prop-
erties; and slower but higher-​amplitude modulations 
lead to an adiabatic regime.

One-​way Bragg mirrors. Waves incident on a phon-
onic crystal are scattered as they encounter geomet-
ric irregularities, boundaries and changes in material 
properties. Simply speaking, incident wavefronts are 
partially reflected by periodically spaced objects with 
acoustic impedance that differs from that of the back-
ground medium. What is remarkable is that, even when 
individual objects reflect weakly, strong reflection 
from the ensemble, known as Bragg reflection, can be 
observed under a condition of constructive interference 
dependent on the wavelength and angle of incidence. 
Conversely, destructive interference means that the 
wave is not effectively reflected and is transmitted unal-
tered. Either way, if the crystal is stationary, the incident, 
transmitted and reflected waves all have the same fre-
quency. By contrast, a Doppler-​like effect occurs when 
the crystal has properties that are modulated in space 
and time by the action of a pump wave. In this case, the 
frequency of the reflected wave is shifted up or down, 
depending on the relative motion of the incident wave 
and the pump wave25. The Doppler shift, in turn, mod-
ifies the condition for constructive interference, which 
acquires an extra parameter: the sense of propagation. 
A one-way Bragg mirror26–28 can, therefore, be conceived 
by tuning the Doppler shift to favour reflection when the 
incident and pump waves propagate, say, in the same 
direction, and favour transmission when they propagate 
in opposite directions. Other anomalous Doppler effects 
may be observed29 in a periodic acoustic medium when 
the sound source is moving. Thus, sound from a sta-
tionary source at a frequency inside the bandgap of the  
periodic medium cannot be heard by an observer in 
the far field (even if the observer moves), whereas the 
sound from a moving source can.

The first experimental evidence30 of nonreciprocal 
Bragg scattering in activated materials was observed in 
a structure of ring magnets sliding over a common axial 
rail and housed by grounded solenoids (Fig. 3a). Each 
ring repels or attracts its host solenoid by a force pro
portional to the current input of the solenoid. By modu-
lating the current with a frequency fM and a wavenumber 
qM, the structure effectively behaves as a grounded 
spring–mass chain with a modulated grounding stiff-
ness kg(x, t) = ko + δksin(qMx − 2πfMt). Inspection of the 
frequency-​response function shows that reciprocity 
breaks down at select frequencies fi,j at which the modu
lation favours co-​propagated signals over counter-​ 
propagated ones (Fig. 3b). These frequencies satisfy the 
Bragg condition fi − fj = nfM, where n is an integer.

Box 2 | Principle of microscopic reversibility and reciprocity

At first glance, reciprocity may appear to be a consequence of time-​reversal symmetry 
in the propagation medium. Indeed, when all terms in the wave equation are invariant 
under time reversal, solutions come in time-​reversed pairs; one for t and another for −t. 
This means that, if a wave can propagate in one direction, the time-​reversed wave, 
which propagates in the opposite direction, is also a viable physical solution. However, 
reciprocity is a more fundamental symmetry of the response function between two points 
in a medium. It compares the displacement or velocity at point B due to a perturbative 
force applied at point A to that obtained at point A when the same perturbation is 
imparted at point B. Specifically, a medium is reciprocal if the response functions αik 
(also known as generalized susceptibilities) governing the relation xi = αikfk between a 
quantity xi and a dual perturbation fk, potentially applied at a different location, satisfy 
the symmetry property αik = ±αki. Note that the plus and minus signs apply respectively 
to cases in which the susceptibility relates two quantities that are of the same or opposite 
parity upon time reversal (for example, the Willis coupling coefficients in Box 1 couple 
momentum, which is odd under time reversal and strain, which is even under time 
reversal; therefore, they must obey η γ→ = − →).

Lars Onsager187 and Hendrik Casimir188 proved that a linear time-​invariant medium, 
slightly perturbed away from thermodynamic equilibrium, and whose governing 
equations at a microscopic scale obey time-​reversal symmetry is necessarily a reciprocal 
medium. The latter hypothesis is known as the principle of microscopic reversibility.  
To illustrate this principle, consider the following example. Suppose that heat conduction 
in an anisotropic solid obeys Fourier’s law qi = −kij∂jT, where →q  is the local heat flux 
density vector, k the thermal conductivity of the material and T the temperature.  
It is well known that heat conduction is macroscopically irreversible: a temperature 
evolution reversed in time is not physically admissible, as it contradicts the second law 
of thermodynamics. However, heat conduction is microscopically reversible, because 
the equations governing the motion of particles on the microscopic scale obey 
time-​reversal symmetry. Consequently, in the linear regime, heat conduction is 
reciprocal and kij = kji. Note that Rayleigh’s reciprocity theorem, in its historical form, 
admits simple, direct proofs for the propagation of acoustic fields at the macroscopic 
scale, but can readily be obtained from the Onsager–Casimir theorem of reciprocity by 
letting xi be a component of the particle velocity and fk a component of the volume force. 
One can break reciprocity by lifting one or several of the assumptions behind the 
Onsager–Casimir theorem, such as linearity, time-​invariance and/or microscopic 
reversibility. For instance, microscopic reversibility is invalid in the presence of  
a magnetic field, Coriolis forces or of a mean flow. In each of these examples, a 
microscopic momentum bias, which does not change on time reversal, is imparted at the 
microscale, leading to a violation of reciprocity for macroscopically observable fields.

The possibility of locally breaking the Onsager–Casimir relations, as in fluids with  
odd viscosity189, biased piezoelectric composites190 or non-​reciprocal Willis media55,191, 
demonstrates that one does not necessarily need to compare transmission between a 
sender and a receiver to see the nonreciprocal effect, which is already apparent in the 
local constitutive relations of the medium. In summary, reciprocity is separate from  
and independent of the general notion of time-​reversal symmetry. Reciprocity holds  
in the presence of material dissipation, including viscous losses, which is not time 
reversible11,182, but it fails under conditions of mean flow or magnetic forcing in 
magnetosensitive materials.
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In a second experimental demonstration31, the sole-
noids were supported on a beam substrate using pairs of 
cantilevers. In this configuration, each solenoid oscillates 
coaxially with a permanent magnet directly bonded to 
the host beam. The structure is activated by electrically 
driving the magnetic coupling between the solenoids 
and the permanent magnets (Fig. 3c). This configuration 
allows direct measurement of the Doppler shift by com-
paring the transmission and reflection spectra (Fig. 3d).  

A dip in transmission at a frequency f1 is accompa-
nied by a peak in reflection at a frequency f2 such that 
f1 − f2 = fM. Thus, the structure operates as a one-​way 
mirror at the pair (f1, f2): if frequency f1 is transmitted 
when incident from the right, it is reflected into f2 when 
incident from the left and vice versa.

A closer look shows that a full, however, small, range 
of frequencies centred on f1 and f2 behave similarly. These 
define the mirror bandgaps, that is, the frequency bands 
over which signals cannot penetrate into the mirror. 
A one-way mirror is easily recognized through the band 
diagram, which features directional bandgaps that do not 
extend over the whole Brillouin zone and are restricted 
to regions of positive or negative incidence (Fig. 3e). 
Maximum one-​way reflection is obtained when the direc-
tional bandgaps do not overlay, that is, when the Doppler  
shift is larger than the bandwidth of the gap.

When the background supports multiple propagat-
ing modes, as in dispersive waveguides and metamate-
rials, the frequency shift from one-​way reflection can 
drastically modify the incident mode. For instance, in 
a resonant metamaterial, an incident acoustic mode 
can be directionally reflected into an optical mode32,33. 
Furthermore, one-​way mode conversion can be triggered 
in transmission34–37, although such nonreciprocal tran-
sitions are yet to be observed. Other platforms for acti-
vated nonreciprocity include 1D piezoelectric structures 
with space–time-​modulated electrical-​boundary condi-
tions38,39, linear piezophononic media under electrical 
bias40 and media with space–time-​modulated effective 
mass41 or effective stiffness42. Space–time modulation of 
related material properties can lead to other nonrecipro-
cal effects: for instance, a travelling-​wave modulation of 
thermal conductivity and specific heat capacity causes the 
heat flux to have different properties when it propagates 
in the same or opposite direction to the modulation43.

Nonreciprocal Willis coupling. Pump waves with larger 
amplitudes cause stronger scattering; propagated modes 
no longer contain a handful of components, but, rather, 
a complete spectrum of frequencies and wavenumbers. 
In this case, either full Floquet–Bloch analysis or time-​
domain simulations can be used to construct the band 
diagrams44–46. Simply put, the spatial profile of the mod-
ulation dictates the band structure; each band is then 
sheared, or tilted, by an angle that is a function of the 
modulation frequency47–49. Therefore, large-​amplitude 
fast modulations lead to directional gaps substantially 
wider than in the case of weak scattering. The conse-
quence is that one-​way total reflection can be ensured 
by modulating smaller regions. Conversely, however, 
one-​way total transmission is no longer possible owing 
to the large time-​varying impedance mismatch between 
the modulated region and the background.

Beyond directional gaps, strong scattering breaks 
reciprocity and time-​reversal symmetry within pass-
ing bands as well. Indeed, the modulation-​induced 
tilt favours, via acceleration, waves propagated either 
along or against the pump wave, while opposing their 
time-​reversed version through deceleration (Fig. 3f). 
Taken to extremes, supersonic modulations can ‘freeze’ 
propagation in a given direction, or even reverse it (Fig. 3g).  

Box 3 | Asymmetric and nonreciprocal wave propagation

It is useful to distinguish between asymmetric and nonreciprocal wave propagation 
because they are not generally equivalent. In systems with asymmetric wave 
propagation, the monitored output changes if the locations of the input and output are 
interchanged. In this sense, nonreciprocity can lead to asymmetric wave propagation, 
but the inverse is not necessarily true. For example, it is possible, in a reciprocal system,  
to excite an elastic wave at a source location and obtain a different wave type at the 
receiver owing to a linear mode-conversion mechanism192. This process, although 
intriguing and useful192–196, is reciprocal. Care should also be taken in the choice of the 
input and output parameters when checking for reciprocity. As a general rule, the input 
and output variables to be interchanged while verifying reciprocity should be dual, for 
example, their product should yield a power or an energy197. Thus, reciprocity ensures the 
invariance of the ratio of the output velocity to the input force; it does not say anything 
about the ratio of the input and output velocities or forces.

The reciprocity relation takes a statistical form (ensemble average) when it relates the 
radiation impedance of an elastic structure to the diffuse sound field generated by it198. 
Acoustical reciprocity does not hold if the medium is in motion when the propagation 
direction has some component orthogonal to the direction of mean flow, such as one may 
experience in a windy environment199. Loss of reciprocity was noted explicitly by Philip 
Morse and K. Uno Ingard when discussing the refraction of sound between two fluid 
media with differing mean flow velocities parallel to their interface200. For waves in a 
steady flow, reciprocity is restored176 if the direction of the flow is reversed when the 
source and receiver are interchanged; this is also known as the flow-​reversal theorem186. 
Another interesting scenario is when the boundary or supports of a linear acoustic 
medium move. The boundary conditions (the constraint equations) in a system with a 
moving boundary or support are explicit functions of time. Reciprocity does not hold 
under these conditions201. As a case in point, a spatially asymmetric waveguide with  
a prescribed harmonic displacement input can exhibit asymmetric end-​to-​end wave 
transmission202. Some relevant misconceptions regarding nonreciprocity and asymmetric 
propagation were addressed in the context of acoustic diodes and isolators12.

The figure shows examples of reciprocal but asymmetric wave transmission. Panel a  
is a schematic representation of linear asymmetric wave propagation in a plate with 
systematically arranged holes193. A wave incident from the left is reflected back (180°) 
after interacting with the two prismatic arrays of scatterers, whereas a wave incident 
from the right is transmitted with a 45° change in the direction of propagation. Panel b 
shows the wave transmission between two media with different speeds of sound, c1 > c2: 
whereas transmission at the interface can be highly asymmetric in a global sense, it 
remains reciprocal, as can be proved by considering the point-​to-​point signalling 
properties between points A and B. Panel a adapted with permission from ref.193,  
AIP. PC, photonic crystal.
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The modulated medium then appears to lack modes 
propagated in a given direction, while exhibiting an 
excess of modes propagated in the opposite direc-
tion50,51. This phenomenon is fundamentally different 
from one-​way Bragg reflection, but can still be lever-
aged for the purposes of one-​way mirroring, especially 
at low frequencies, where wide bandgaps are seldom  
available (Fig. 3h).

The bias between positive and negative group veloc-
ities admits an interesting interpretation in terms of 
constant effective material parameters valid when the 
wavelength of the pump wave is small in comparison to 
the typical wavelength of the propagated waves. Hooke’s 
law ceases to apply, as it systematically yields reciprocal 
behaviours, and is replaced by a constitutive law of the 
Willis type52,53; the Willis coupling coefficients in this 
case account for the nonreciprocal nature of the mod-
ulated microstructure. A constitutive law of the Willis 
form is characterized by an effective bulk modulus, 
κeff, an effective mass density, ρeff and a third parame-
ter, S, which couples stress, σ, to velocity, →v , as well as 
momentum, →μ , to strain, ε, namely, ⋅→σ κ ε S v= : +eff ; 
→ ⋅→μ S ε ρ v= − : + eff . Note that, here, we have written the 
Willis constitutive relations in ‘stress–momentum’ form, 
but this is equivalent to the ‘pressure–volume’ strain form 
used in the example of Box 1 (a one-​to-​one correspond-
ence exists between the two formulations). While being 
linear and macroscopically time-​invariant, this form of 
Willis coupling introduces a first-​order time derivative 
to the motion equation, thus, breaking time-​reversal 
symmetry and, consequently, reciprocity47,51,54,55. In the 
terminology of Box 2, such Willis media are nonrecip-
rocal because they break microscopic reversibility. Note 
that Willis coupling constants resulting from media 
with spatio-​temporally modulated material properties 
are analogous to emergent nonreciprocal bianisotropic 
electromagnetic Tellegen media that result from mod-
elling moving media in a static reference frame56–58. In 
this sense, this nonreciprocal Willis coupling has an 
influence similar to that of an externally applied mag-
netic field on the motion of charged particles. Note also 
that, whereas reciprocal Willis coupling has been exper-
imentally observed59, the experimental observation of 
nonreciprocal Willis coupling in a dynamic medium is 
particularly challenging, as it requires a fast, near-​sonic, 
strong modulation of both elastic and inertial properties.

As the modulation speed tends to infinity, the mate-
rial properties become solely time dependent and inde-
pendent of spatial position. A structure with material 
properties varying periodically in time can display band-
gaps in the wavenumber domain, that is, tilted by 90° in 
the frequency versus wavenumber band diagram. These 
vertical bandgaps produce wave motion with complex 
frequencies whose amplitude grows and/or decays 
everywhere in space exponentially in time. This amplifi-
cation effect has been of interest for at least 60 years, first, 
for electrical transmission lines with time-​varying capac-
itance60. Recent interest has turned to time-​dependent 
acoustic61 and elastic media62, and space–time check-
erboard patterns that lead to novel wave effects63. In 
practice, internal dissipation counteracts exponential 
parametric growth, with the result that the amplitude of 
the time-​dependent modulation must exceed a critical 
value if it is to produce parametric growth64.

Slow modulations and topological properties. Consider 
the scattering caused by slow pump waves, for which the 
phase shift ̇γ td  induced by the modulation over a small 
period of time dt is insufficient to trigger any transitions 
between dispersion branches. Accordingly, no significant 

Box 4 | Gyrators, isolators and circulators

Many nonreciprocal 
mechanical systems are built 
on analogies with multi-​port 
electronic devices. The 
reciprocity theorem applied 
to a multi-​port acoustical 
system in which the inputs 
are xi and the outputs fk 
implies that the scattering 
matrix Sik (xi = Sik fk) is 
symmetric: Sik = Ski. The most 
common linear devices that 
violate the reciprocity 
condition are gyrators, isolators and circulators. These systems are, therefore, described 
by an asymmetric scattering matrix ≠S Sik ki. Gyrators and isolators have two ports, 
whereas circulators have three ports. Let us first consider a general two-​port scattering 
system, described by a two-​by-​two scattering matrix S = [S11, S12; S21, S22] and ask whether 
there can be nonreciprocity in a lossless two-​port system. Because energy conservation 
implies unitarity for S, one can use the general parameterization of two-​by-​two unitary 
matrices, defining the angles θ, α, ϕ and Φ and write:

θ θ
θ θ

=
−

ϕ α

α ϕ− Φ − Φ











S e e
e e e e
cos sin
sin cos

i i

i i i i

This form of the scattering matrix implies that the off-​diagonal coefficients can differ  
in phase, but never in amplitude. This means that lossless two-​port scattering systems  
can only be nonreciprocal in the transmission phase. Gyrators are two-​port nonreciprocal 
systems that transmit the same power between their two ports, but achieve the maximum 
nonreciprocal phase difference of π between S12 and S21. However, when one wants to 
create a one-​way propagation device for waves, one needs a nonreciprocal response in 
the transmission amplitude.

Bernard Tellegen proved that any nonreciprocal response, in phase or amplitude, can be 
achieved with combinations of gyrators and other reciprocal elements203. In particular,  
to achieve nonreciprocity in amplitude in a two-​port system, we must simply relax the 
assumption of unitarity. For instance, ideal isolators correspond to a subunitary scattering 
matrix of S = [0, 0; 1, 0], which can only be obtained if absorption losses are present. We 
also note that the superunitary version of an isolator (S = [0, 0; 1, 1]) requires active systems.

Interestingly, the generalization of passive isolators to three-​port systems, known as 
circulators, corresponds instead to the unitary scattering matrix shown in the figure. 
Circulators transmit waves in a unirotational fashion, from port 1 to 3, 3 to 2 and 2 to 1, but 
never in reverse. They are capable of isolation, because one can use a circulator to build an 
isolator between, for instance, ports 1 and 2. In this case, the third port must be matched 
so that it acts as a perfect absorber, enabling passive two-​port isolation at ports 1 and 2. 
These devices are often used in electronic systems to isolate sources from unwanted  
back reflection that originates at loads, or separate the emission and reception channels 
in full-​duplex communication systems. They have been demonstrated in acoustical 
systems15, which are relevant in many imaging or underwater communication systems.

In the literature, isolators have sometimes been referred to as ‘diodes’, despite the 
possible confusion with electronic diodes, which possess a distinct functionality. A diode 
is a nonlinear electronic component that lets a positive current flow in response to a 
positive voltage, but blocks current from flowing when subject to a negative voltage. 
This leads to signal rectification: sinusoidal voltage signals, with zero average, are 
transformed into positive-​only current signals with a non-​zero static (d.c.) component. 
Conversely, isolators are not meant to distort a sinusoidal incident field but allow 
power to flow only in one direction. In this Review, we only use the terms isolators  
and isolation, to avoid confusion with the concepts of diode and rectification.
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nonreciprocal effects are expected to emerge over short 
observation periods. Remarkably, however, the phase 
shift ˙∫γ γ t= dT

0
 accumulated over longer periods on the 

order of a modulation cycle T = 1/fM need not vanish and 
can cause significant overall changes in frequency and in 
propagation velocity. The phase increment ̇γ is known as 
Berry connection, whereas γ is the Berry phase, a quan-
tity originally introduced by Michael Berry65 to explain 
nonclassical (quantal) interference phenomena induced 
by slowly changing environments, such as in the pres-
ence of externally applied magnetic fields and vector 
potentials66 (topological properties are discussed in more 
detail in the next section). In the present context, Berry’s 
phase, understood as slow but continual accumulation of 
Doppler shifts, can take opposite values for modes prop-
agating in opposite directions. It, therefore, explains how 
and why the bands of a periodic medium get sheared and  
tilted under the influence of a modulation, albeit a 
slow one (Fig. 4a). As a matter of fact, each infinitesimal 
segment of a passing band shadowing an element dq 
of the Brillouin zone gets rotated by an amount equal  
to the Berry’s curvature ̇γ∂ / 2πq ; the whole band tilts by 
an amount proportional to the total Berry’s curvature 

̇∈∫ ∫ γ t q∂ d dq
T

qBZ 0  (refs47,48). The total curvature is an 
example of a quantized topological invariant. Its value, 
an integer multiple of 2π, which is known as the Chern 
number, is immune to small perturbations affecting the 

pump wave and the background medium. Thus, a non-​
zero Chern number ensures the existence of a robust 
directional bandgap and constitutes one measure of 
nonreciprocity in a modulated medium.

Depending on applications, one-​way mirroring can 
be regarded as a type of immunity against backscattering 
by defects27. That is because, in a directional gap, waves 
are constrained to propagate in a unique sense, thus, 
defects can only scatter forward (in the direction of the 
incoming wave). A pump wave, therefore, usually guar-
antees consistently high levels of transmission in spe-
cific directions (Fig. 4b). In some instances, however, the 
transmission is halted by a phenomenon of localization 
at boundaries. The localized vibration is then pumped 
up or down in frequency until it reaches a passing band, 
at which time, it can be sent back as a form of backscat-
tering. In the position–frequency space, such vibrations 
manifest as edge modes circulating either clockwise or 
anticlockwise along the boundaries of the domain37,48,67 
(Fig. 4c). The difference between the number of clock-
wise and anticlockwise edge modes is also a topological 
invariant; in fact, by a principle of bulk–edge corre-
spondence68 that number is exactly equal to the Chern 
number. Consequently, a non-​zero Chern number, in 
addition to controlling band tilting, indicates an imbal-
ance between counter-​propagating edge modes in clear 
violation of time-​reversal symmetry.
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Fig. 1 | Acoustic reciprocity from fluid motion. a | In an acoustic pipe under constant air flow, sound propagates with 
different speeds, depending on whether it travels along or against the flow. Therefore, the transmission coefficients for 
forward and backward acoustic propagation can differ in phase. b | If the velocity of the flow and the length of the waveguide 
are adjusted to result in a 180° phase difference between forward and backward transmission, the system behaves as an 
acoustic gyrator18. c | A cylindrical cavity connected to three waveguides acts as a reciprocal power splitter at its dipolar 
resonance frequency (left). The system can be turned into a nonreciprocal circulator by rotating the air inside at a specific 
subsonic speed that depends on the total quality factor of the dipolar resonance (middle). Photograph of the first prototype 
of an acoustic circulator (top plate not shown), where fluid motion is realized using fans (right)15. Panels a and b adapted 
from ref.18, CC BY 4.0. Panel c adapted with permission from ref.15, AAAS. a.u., arbitary units.
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More generally, the Berry curvature and Chern 
number are straightforward to calculate for a given 
non-​degenerate dispersion branch when the correspond-
ing eigenmodes are functions of two parameters. Here, 
these two parameters are the 1D wavenumber and time. 
For 2D media, the two parameters can be the wavenum-
bers in the x and y directions. In that sense, two space 
dimensions are analogous to one space dimension plus 
time. The analogy permits to introduce similar concepts 
of topological invariants and bulk–edge correspondence, 
as well as potential connections with non-​reciprocity, for 
2D media, as discussed in the next section.

Nonreciprocity and topological edge states
Background. Wave motion supported by topologically 
protected edge states (TPESs)69–72 can be extremely 
robust to backscattering and capable of nonreciprocal 
behaviour under certain circumstances. TPESs appear 
at the interface between two different insulators and are 
typically immune to scattering by defects. In this context, 
topology does not refer to the shape or geometry of the 
underlying medium but, for crystals, to the topological 
features of the dispersion of Bloch eigenmodes over the 
Brillouin zone. In contrast to other properties such as 
phase and group velocities or the gap width, a topolog-
ical property is, by definition, insensitive to continuous 
perturbations, except those strong enough to close the 
bandgap71. In other words, the topology of an insulat-
ing crystal only changes when it is so perturbed that it 
stops being an insulator. Two insulators are then topol
ogically inequivalent if they exhibit different topologies. 
At an interface between two inequivalent insulators, the 
topology changes and therefore, the system is forced to 

close its bandgap locally, which means that it must sup-
port localized edge states, which are the TPESs. TPESs 
display an inherent robustness to perturbations, includ-
ing geometrical imperfections, structural disorder and 
impurities. This robustness is a result of the difference in  
the topology of the surrounding bulk insulators, inde-
pendent of the interface details, which can only be 
destroyed by modifying the entirety of the bulk insulator, 
namely, closing their bandgaps, which requires unlikely 
global and large perturbations.

Of particular relevance to this Review are nonrecip-
rocal TPESs that propagate along the interface in only 
one direction. Two classes of 2D topological insulators 
can be distinguished, depending on whether their edge 
modes are nonreciprocal or not: the Chern insulators, 
in which a non-​trivial topology is created by breaking 
time-​reversal symmetry and, as a by-​product, support 
unidirectional nonreciprocal TPESs; and the spin Hall 
insulators, which rely on preserved time, and sometimes 
space, symmetries, and for which the TPESs come in 
time-​reversed pairs (called spins) propagating in oppo-
site directions, hence, preserving reciprocity. We stress 
that only the first kind of edge modes break reciprocity 
and is the principal focus of this section. However, the 
two time-​reversed states of the second kind are decou-
pled; thus, they may be considered as featuring some 
form of one-​way propagation for a certain class of load-
ing restricted by the underlying preserved symmetry. 
For this reason, we also briefly mention works on recip-
rocal TPESs. The exceptional properties of both recipro-
cal and nonreciprocal TPESs have fuelled the interest of 
a wide community of researchers over the past few years, 
working on systems ranging from condensed-​matter 
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Fig. 2 | Examples of activated media. a | An activated two-​phase laminate: interfaces are moving at the modulation 
velocity cm (ref.47). b | An activated phononic crystal: bulk elastic moduli are periodically modulated in (x) space and (t) time, 
as indicated by the sinusoidal profiles below the spring–mass chain48. c | An activated metabeam: the elastic moduli  
are unchanged, but the stiffness (k) of the locally resonant attachments is modulated as a function of time and space33.  
d | Chart showing reciprocal and nonreciprocal regimes as a function of the modulation frequency and depth. Panel a 
adapted with permission from ref.47, Elsevier. Panel b adapted with permission from ref.48, APS. Panel c adapted with 
permission from ref.33, Elsevier. m, mass.

www.nature.com/natrevmats

R e v i e w s

674 | September 2020 | volume 5	



systems73 to photonic70, acoustic72, elastodynamic and 
mechanical systems69.

Starting from the work in condensed-​matter physics 
of Duncan Haldane73, who predicted the possibility of 

unidirectional electronic edge states, TPESs in quantum 
systems have been the subject of intense research owing 
to their potential in a number of technological areas. 
Nonreciprocal electronic propagation74, for example, 
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is based on breaking time-​reversal symmetry to pro-
duce one-​way chiral edge modes between bulk bands 
that are characterized in terms of their Chern number 
as a topological invariant. More recently, Charles Kane 
and Eugene Mele75,76 discovered reciprocal topological 
modes in systems with intrinsic spin orbit coupling 
that exhibit the quantum spin Hall effect (QSHE). 
These systems, whose unique behaviour was demon-
strated experimentally77, do not require breaking of 
time-​reversal symmetry and are, therefore, of particu-
lar interest as blueprints to establish analogies in other 
physical domains. In fact, these quantum-​mechanical 
phenomena have been pursued in diverse areas of phys-
ics as in the case of the work of Haldane and Srinivas 
Raghu78, who demonstrated boundary modes in elec-
tromagnetic systems following Maxwell’s relations. 
They have been subsequently investigated in acous-
tics79–81, photonics71,82 and mechanics83–87, as well as in 
coupled-​wave domains, such as optomechanics88. In all 
of these different domains, properties such as lossless 
propagation, existence of waves confined to a boundary 
or to an interface, immunity to backscattering and local-
ization in the presence of defects and imperfections are 
all related to band topology. Although the existence of 
TPESs does not necessarily imply nonreciprocal wave 
motion, reciprocity breaking is one way to induce top-
ological order in acoustics and mechanics. In addition, 
geometrical symmetry breaking, as in the case of chiral 
symmetries, while not breaking reciprocity, can be used 
to support topologically robust one-​way wave motion 
that does not backscatter in the presence of disorder, 
provided that this disorder does not couple opposite 

chiral states. In this section, we discuss nonreciprocal 
topological insulators, and we briefly review reciprocal 
systems supporting edge-​bound propagation of sound 
and elastic waves to provide a broader context.

QHE analogues. There are two broad ways to realize 
topologically protected wave propagation in acoustic 
and elastic media. The first one seeks to mimic the quan-
tum Hall effect (QHE) by breaking reciprocity through 
active components. Changing the parity of active devices 
or modulating the physical properties in time, for exam-
ple, has been shown to alter the direction and nature of 
edge waves27,47. Examples include the use of magnetic 
fields in biological systems89, lattices of gyroscopes90,91 
(Fig. 5a) and acoustic circulators operating on the basis of 
a flow-​induced bias80,92–97. In particular, edge modes were 
demonstrated in biological structures in which time-​
reversal symmetry is broken by Lorentz forces on ions 
produced by weak magnetic fields89. A systematic way 
to analyse eigenvalue problems that break time-​reversal 
symmetry by gyroscopic forces was also developed98, 
and a lattice of gyroscopes was experimentally realized90 
(Fig. 5a). Theoretical studies have investigated the exist-
ence of chiral edge modes in hexagonal and square gyro-
scopic lattices99 (Fig. 5b). Other proposals involved moving 
fluid to break time-​reversal symmetry at the inclusion 
level to induce topological order92,93 (Fig. 5c,d), a concept 
that has been demonstrated experimentally95, which is 
consistent with the use of Coriolis forces to manipulate 
Dirac cones by spinning the entire lattice17. Several sys-
tems supporting TPESs that rely on the modulation of the 
strength of the interactions (stiffness) in time have been 
proposed27,67,80,96,100. In general, this body of works pursues 
methods for breaking time-​reversal symmetry through  
the introduction of an external bias, which modula
tes the strength of interactions or the inertial properties  
of the system and provides the ability to produce chiral 
TPESs. As such, these states are associated with wave 
motion that is strictly nonreciprocal. For these reasons, 
QHE analogues can be considered as examples of media 
referred to in this manuscript as activated materials.

QSHE and QVHE analogues. The need for an external 
bias, and for the associated external source of power, has 
motivated the search for QSHE analogues that employ 
only passive components. This is particularly compelling 
for mechanical metamaterials, for which the need for an 
external bias to break reciprocity may pose a substantial 
challenge to the practical application of one-​way wave 
motion. For this reason, material platforms that are fully 
reciprocal and that feature both forward and backward 
propagating helical edge states have attracted substan-
tial interest. Owing to geometrical asymmetries, two 
oppositely propagating modes support opposite chiral-
ity, and can propagate with robust properties protected 
by topology, as long as disorder, truncations or lattice 
defects do not couple the two helicities. This is gener-
ally guaranteed as long as the entire system, including 
the defects, respects a given symmetry or an accidental 
spin degeneracy, in addition to time-​reversal symmetry 
itself. Examples of QSHE analogues are illustrated in 
several studies by way of both numerical83,84,101,102 and 

Fig. 3 | Experimental demonstrations of nonreciprocity in dynamic media.  
a | A magnetically activated phononic lattice, with its equivalent grounded spring–mass 
chain system: adjacent ring magnets of mass m repel each other with an equivalent 
stiffness kc; out-​of-​phase alternating currents I flowing through the coils generate  
an equivalent grounding stiffness kg with wavelength λmod and phase velocity Vmod.  
b | Measured end-​to-end frequency-​response function for the system in panel a. The 
forward (left-​to-​right) and backward (right-​to-​left) response functions are nonreciprocal 
near 20 Hz. The measured time series at the last moving mass shows that the forward 
configuration (shown from 0 to 1 s) has a different temporal character to the backward 
configuration (shown from 0 to −1 s). c | A magnetically activated metabeam31: resonators 
in the form of electrical coils supported by cantilevers oscillate coaxially around magnets 
bonded to the host beam; the coils’ out-​of-​phase electrical input generates a space–time 
pump wave. d | The measured transmission and reflection spectra for the system in panel c: 
frequency f1 is transmitted when the incident wave travels with the pump wave, but is 
reflected into f2 when it travels against it. e | A typical dispersion diagram of a weakly 
modulated medium featuring a pair of one-​way bandgaps (colour map: numerical 
simulation; dashed line: analytical approximation)28. One-​way bandgaps explain how a 
nonreciprocal one-​way mirror operates; frequencies about bandgap (1) are transmitted if 
incident in one direction (here, right-​to-​left), but are reflected into frequencies of bandgap 
(2) if incident in the opposite direction (here, left-​to-​right); the arrows illustrate these 
transmission/reflection transitions. f | Example of bias in group velocities of a strongly 
modulated medium47: CC(0) is the non-​modulated reference, CC c( )m  is modulated at velocity 
cm = c/10, where c is the phase speed of propagating acoustic waves in the non-​modulated 
medium when kL ≪ 1. g | Reversal of group velocities under a high-​frequency strong 
modulation47: group velocities c± are of the same sign; here, cm = 2c/3. h | Example of 
characteristic lines z − c±t = cst in a modulated medium with reversed group velocities: 
c± > 0 for z > 0 and vice versa, so that no signal can reach z = 0 (ref.51). Panels a and b adapted 
with permission from ref.30, APS. Panels c and d adapted with permission from ref.31, APS. 
Panel e adapted from ref.28, CC BY 3.0. Panels f and g adapted with permission from ref.47, 
Elsevier. Panel h adapted by permission from Springer International Publishing: Springer An 
Introduction to the Mathematical Theory of Dynamic Materials, by Lurie, A. K. ©2017 (ref.51).
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experimental87,103,104 investigations, which involve coupled 
pendulums103, plates with two scale holes83 and resona-
tors84,87, as well as electrical circuits104. Among these, one 
of the first experimental demonstrations of edge states 
was obtained103 in a square lattice network of double pen-
dulums connected by a network of springs and levers. 
Also, helical edge modes in perforated thin plates were 
numerically demonstrated83 by coupling symmetric and 
antisymmetric Lamb wave modes. Similar concepts were 
exploited for the realization of topological waveguides 
based on resonant spirals cut out from thin plates105. 
The results in ref.83 have also provided guidelines for the  
experimental demonstration of a QSHE analogue in  
the form of a continuous elastic plate106. In another exam-
ple, a mechanical analogue of the in-​plane QSHE was 
realized in a hexagonal kagome lattice using the Brillouin 
zone folding technique102. Chiral symmetries can also be 
used to induce topological order in acoustic systems97,107, 
a concept also extendable to higher-​order topological 
phases, such as robust corner states108.

A parallel line of work, again resulting in reciprocal 
systems, employs valley degrees of freedom (which are 
natural time-​reversed modes belonging to band extrema 
with opposite Bloch wavenumbers) and the topological 
differences generated by symmetry inversions within a 
unit cell to achieve TPESs in structures that emulate the 
quantum valley Hall effect (QVHE). Notably, the QVHE 
exploits valley states, which have the same frequency 
but different Bloch wavenumber, instead of spin states, 
which are perfectly degenerate time-​reversed states. The 
advantage is that each lattice site needs to have only one 
degree of freedom, which provides the opportunity to 
obtain configurations of reduced geometrical complexity. 
Valley degrees of freedom arise naturally in systems with 
time-​reversal symmetry and have been predicted theor
etically in graphene109,110, where wavefunctions at opposite 
valleys feature opposite polarizations and, thus, emulate 
spin–orbit interactions. This concept was extended111 
to a photonic crystal exhibiting topologically protected  
valley edge states, and valley modes have been predicted112  
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in photonic crystals with a hexagonal lattice of inclusions. 
More recently, this approach has been extended to acous-
tic waves propagating in a 1D phononic crystal, where 
the Zak phase is the topological invariant employed to 
assess the non-​trivial nature of the bulk gaps113. A sub-
sequent extension to 2D acoustic domains employed 
triangular stubs to break inversion symmetry by varying 
their orientation with respect to the lattice114–116. Initial 
studies in mechanical metamaterials include numer-
ical work117 and the experimental demonstration of a 
QVHE analogue in the form of a hexagonal lattice with 
lumped masses inserted at locations that break the C3v 
symmetry inherent to the hexagonal geometry, while 
preserving the C3 symmetry118. A similar approach was 
implemented in ref.119, while the idea of enlarging a unit 
cell to induce zone folding at the Γ point in reciprocal 
space, which leads to a double degeneracy, was proposed 
for nanoscale mechanical systems79 and realized through 
an array of resonators120. Also, topological Stoneley waves 
propagated along the edges of kagome lattices were inves-
tigated121 by using an asymptotic homogenization tech-
nique that transforms the discrete motion equation of the 
lattice into a continuum partial differential equation. This 
study was the first adaption of the QVHE to the in-​plane 
motion of mechanical lattices. As explained above, the 

edge modes of a quantum valley Hall insulator are strictly 
reciprocal, but apparent nonreciprocity can be observed 
for defects that do not couple valleys together, in  
particular, valley-​preserving interface turns122.

Nonreciprocity in nonlinear media
In elastic and acoustic media in which the effective mate-
rial properties do not change with time (passive media), 
the absence of reciprocity is, perhaps, most commonly 
associated with material nonlinearity. Although reci-
procity does not generally hold in nonlinear materials, 
these media do not always (or even necessarily) behave 
in a nonreciprocal fashion. Spatial asymmetry is a nec-
essary ingredient for breaking reciprocity and, even 
then, nonreciprocity is not guaranteed for all param-
eter ranges. We focus the discussion on the familiar 
point-​to-​point form of reciprocity as it applies — or not 
— to passive, nonlinear, non-​gyroscopic systems with 
time-​invariant properties and boundary conditions. 
Given that the vast majority of the literature in this topic 
concerns 1D waveguides, we emphasize systems that can 
be adequately modelled using a combination of scalar 
wave fields and coupled oscillators.

The salient feature of nonlinear media is that their 
dynamic behaviour depends on the amplitude of motion.  
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To operate, nonlinear, nonreciprocal devices rely on 
this dependence, which, itself, is a function of various 
parameters and can lead to different nonlinear pheno
mena (Fig. 6a). The most common mechanisms responsi-
ble for nonreciprocal dynamics are generation of higher 
harmonics, nonlinear resonances and bifurcation (a sud-
den change in the nature of the response due to a small  
change in a system parameter)123,124. Operating at relatively  

low amplitudes of motion, where the frequency of the 
nonlinear response is mostly preserved, may also lead 
to nonreciprocity both at finite frequencies125,126 and at 
zero frequency (static nonreciprocity127,128) (Fig. 6b). We 
note that other processes may also be utilized for vio-
lating reciprocity, such as solitary waves129 and acous-
tic radiation pressure130. We note also the possibility to 
trigger highly nonlinear responses at low amplitudes 
using feedback-​controlled electro-​acoustic elements21,22. 
Whether static or dynamic, two ingredients are neces-
sary for circumventing the constraint of reciprocity: 
nonlinearity and spatial asymmetry.

Before diving into a more systematic descrip-
tion of these approaches, it is worth stressing that 
nonlinearity-​based nonreciprocal systems hold a few 
fundamental limitations compared with the externally 
biased systems considered in the previous sections. 
First, a passive nonreciprocal device can support drasti-
cally different transmissions for oppositely propagating 
waves, but it cannot ensure isolation when the system is 
excited simultaneously from both sides131. In this sense, 
these devices cannot operate as conventional isolators 
to protect a source from back reflections, because these 
reflections can trickle through the isolated port in the 
presence of an outgoing signal. This is a result of the fact 
that the superposition principle does not apply to non-
linear systems. In addition, there is a trade-​off between 
the degree of nonreciprocity achievable in passive, 
nonlinear resonators and the magnitude of forward 
transmission132,133.

In the following, we provide an overview of the dif-
ferent strategies available to realize nonreciprocity based 
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on nonlinearities. We focus on a phenomenological 
description and comparison of these strategies, rather 
than on a detailed quantitative discussion.

Weakly nonlinear media. It is helpful to begin with 
examples of reciprocal nonlinear response. The most 
straightforward scenario is that involving a spatially 
symmetric system, for which exchanging the source 
and receiver has no effect on signal propagation. Any 
form of spatial symmetry guarantees reciprocal prop-
agation of waves, regardless of the type and degree of 
nonlinearity. An example would be a granular chain 
of identical, spherical beads with the input and output 
located at the two ends134.

Mirror symmetry of a reciprocal nonlinear medium 
may be broken in various ways. Examples include grad-
ually changing the properties of the medium135–137, using 
asymmetric unit cells in periodic waveguides138, incor-
porating nonlinear defects or interfaces139–148, breaking 
the symmetry of the functional form of the nonlinear 
internal forces126,128,149–151 or simply having the input and 
output points at asymmetric locations152. An asymptotic 
analysis may be adopted to demonstrate these results in 
a general form for a weakly nonlinear system subject to 
an impulsive load152. It can be shown, in this context, that 
even the boundary conditions can play a role in deter-
mining whether the response in a specific configuration 
is reciprocal.

A nonlinear medium can generate multiple harmon-
ics of a wave travelling through it. The amplitudes of 
the extra harmonics, and whether they are superhar-
monics or subharmonics, depend on the nature of the 
nonlinearity and the frequency of the incident wave. 
At low energies (weak nonlinearity), the dominant fre-
quency is typically the second harmonic, but it is the 
third harmonic if the nonlinear force is odd symmetric 
(as in the case of a cubic restoring force). Reciprocity is 
broken if the transmission of (some of) the harmonics  
are altered upon interchanging the source and receiver 
locations. This principle was used to operate an acoustic 
isolator141,153. The researchers attached a layer of a non-
linear medium to a linear periodic waveguide (Fig. 6c) 
and fixed the frequency of the incident wave within the 
bandgap of the linear medium such that its second har-
monic would fall within a pass band. By choosing the 
amplitude of the incident wave properly, they created 
a system in which, if the wave comes from the non
linear side, its second harmonic is generated and passes 
through the linear medium to the other side; if the 
wave comes from the linear side, it is filtered out before 
reaching the nonlinear medium and negligible energy is 
transmitted to the other side.

Another nonlinear phenomenon that can be used for 
nonreciprocal transmission is the energy dependence 
of resonance frequencies. For instance, consider wave 
transmission through a linear layered medium that con-
tains an asymmetric nonlinear portion123. It is relatively 
straightforward to set up the layers such that the wave 
amplitudes are different on the two sides of the nonlinear 
layer. For the near-​resonance dynamics, the combination 
of asymmetry and nonlinearity leads to different trans-
missions through the nonlinear layer when the source 

and receiver are interchanged. The appeal of this scenario 
is that the frequency of the input is mostly preserved. 
This phenomenon was experimentally demonstrated 
using granular chains125.

Whether the realization of nonreciprocity is based 
on the generation of extra (sub or super) harmonics or 
the shifts of resonances, the underlying principle is the 
same. We can regard both cases as 1:n nonlinear reso-
nances, where n denotes the dominant frequency of the 
response dynamics. We have n = 2 for second-​harmonic 
generation, for example, and n = 1 when relying on shifts 
occurring at the same frequency as the external driving. 
These principles work for both transient and steady-​state 
dynamics.

Bifurcation-​based nonreciprocity. Bifurcations are the 
points of departure from a weakly nonlinear behaviour, 
characterized by a qualitative change in the nature of 
the response in the phase space154,155. Different types  
of bifurcations can occur depending on the nature of  
the response (such as static equilibrium or periodic 
motion).

One familiar bifurcation in mechanics is the bista-
ble behaviour of elastic members in compression, for 
example, the buckling of a column. Bistability within the 
unit cell of a lattice material was used to demonstrate 
long-​range unidirectional transmission of waves156,157. 
The researchers incorporated asymmetry in the poten-
tial energy of each unit cell, such that different energies 
are required for transitioning from one energy well to the 
other (Fig. 6d). Provided that the initial configuration of 
the lattice is chosen appropriately, it becomes possible to 
transfer energy through the entire lattice in the direction 
of decreasing potential energy. This unidirectional trans-
mission occurs with minimal loss and dispersion (change 
in the waveform) because the underlying mechanism is a 
change in the static equilibrium of the unit cells.

A similar bistability can happen in a medium in peri-
odic motion, for example, in response to an external 
harmonic excitation. For instance, consider a 1D lay-
ered medium consisting of nonlinear unit cells, with an 
asymmetric potential-​energy function. The system can 
be assembled such that, when the excitation source is 
placed in different locations (for example, at either end 
of the medium), the information travels through different 
energy landscapes. Accordingly, as the driving amplitude 
increases, the response corresponding to one of the two 
source locations loses stability first124. As a result, the 
two outputs become markedly different. In this scenario, 
the response is understandably nonreciprocal, even before 
reaching the bifurcation point. If the bifurcation results in 
a significant change in the response, particularly in terms 
of energy transmission, then the post-​bifurcation nonrec-
iprocity is more pronounced. To achieve this, one strat-
egy is to use the supratransmission phenomenon158–160, 
in which bifurcation results in loss of time periodicity.

Consider a nonlinear periodic medium that is sub-
ject to harmonic excitations, with a frequency within 
the linear bandgap. No energy is transmitted through the 
medium at low driving amplitudes, owing to the disper-
sive property of the periodic medium. Beyond a critical 
driving amplitude, however, the low-​energy harmonic 

www.nature.com/natrevmats

R e v i e w s

680 | September 2020 | volume 5	



motion loses stability and a nonlinear wave with a broad-
band frequency content is generated. Thus, the amount 
of transmitted energy increases by orders of magni-
tude, and its spectral contents lie within the linear pass 
band of the medium (again, owing to dispersion). If the 
nonlinear medium is not symmetric, then the onset of 
supratransmission may depend on the location of the 
source. This principle was used to develop a rectifier 
for elastic waves by embedding a defective unit within 
a uniform granular chain to break the symmetry of the 
system161 (Fig. 6e). This enabled a very high contrast (four 
orders of magnitude) between the transmitted energies 
when the source and receiver were interchanged.

Relying on bifurcations for achieving nonreciproc-
ity is naturally more suitable when the device is oper-
ated near the bifurcation point. The performance of 
bifurcation-​based nonreciprocity depends on the driv-
ing amplitude, among other parameters. For example, 
there is a value of driving amplitude above which bifur-
cations occur for both the forward and backward con-
figurations. Although the response might still remain 
nonreciprocal in this case, the nonreciprocity is less 
marked. Additionally, the post-​bifurcation response is 
often quasi-​periodic or chaotic124,159,160, making it cum-
bersome to compare two such outputs in a reciprocity 
test. Even when the post-​bifurcation response remains 
time-​periodic (for example, owing to a period dou-
bling126), nonreciprocity is clearly more pronounced in 
the parameter range where bifurcation occurs for only 
one of the forward and backward configurations.

The post-​bifurcation behaviour of the response, as 
well as the instability mechanism, depends on various 
properties of the system, such as the type of nonlinearity, 
energy loss, structural imperfections, finite size effects 
and operating frequency. For supratransmission, these 
effects are discussed in refs160,162.

Nonreciprocity in bilinear media. Bilinearity is a special 
case of elastic nonlinearity characterized by a stiffness 
that transitions between two linear states at a critical 
load. When this transition occurs at zero loading, the 
effective stiffness depends on whether the local 1D 
deformation is in a state of compression or extension. 
In this case, unlike other nonlinear stiffness models, the 
bilinear relation is amplitude independent in the sense 
that, even for very small amplitudes of oscillations, the 
constitutive law is nonlinear: the nonlinearity enters 
only through the sign of the displacement. Bilinear, also 
known as bimodular, material response has been pro-
posed as a model for studying contact and for elastic sol-
ids containing cracks. Bilinear media can exhibit unique 
families of complex dynamic behaviour, owing to the 
non-​smooth nature of their constitutive material law155. 
Bilinearity may be regarded as the simplest departure 
from linearity that can produce nonreciprocal static and 
dynamic behaviour.

A single bilinear spring is spatially symmetric and 
is, therefore, a reciprocal system. Nonreciprocity can be 
obtained in two-​degrees-​of-​freedom spring–mass sys-
tems, with asymmetric, bilinear spring arrangements128.  
Bifurcation-​based nonreciprocity may be realized in  
lattice materials with bilinear elasticity126. Amplitude-​ 

independent nonreciprocal systems may be designed 
by combining multiple bilinear springs in 1D spring–
mass chains163. In this model, the indispensable ingre-
dient of asymmetry is achieved using spatially varying 
bilinear spring properties (Fig. 6f). A recent experimental 
study considered nonreciprocal propagation in a linear 
spring–mass system in which only one of the springs 
was bilinear151.

Figure 6 summarizes the different scenarios dis-
cussed for nonreciprocity in nonlinear media. Whether 
nonreciprocity is based on weakly nonlinear behaviour, 
bifurcation or sign-​dependent bilinearity, we emphasize 
that simultaneous presence of nonlinearity and spatial 
asymmetry are necessary, but not sufficient, conditions 
for the existence of nonreciprocal dynamics.

Nonlinear dynamic media. We have been careful so 
far in our discussion to avoid any overlap between 
passive nonlinear media and dynamic linear media. 
Unfortunately, it is not possible to make a general claim 
on whether nonlinearity intensifies the nonreciprocal 
bias of a modulated medium or pacifies it. Like any 
other nonlinear problem, the answer depends on a vari-
ety of different parameters, such as the type and strength 
of nonlinearity, the spatial and temporal nature of the 
excitations, the frequency, wavenumber and ampli-
tude of modulations, and the energy loss within the 
system. Conclusions can be made only on a specific,  
case-​by-​case analysis.

One scenario is that nonlinear forces monotonically 
intensify the nonreciprocal bias in a time-​modulated 
medium. This is very similar to how nonlinearity affects 
nonreciprocity in a passive medium, with the main dif-
ference being that the linear regime would no longer be 
reciprocal in a modulated medium (regime I in Fig. 6). 
The possibility of the existence of this scenario was ver-
ified numerically164 for the set-​up presented in ref.30, 
with the amplitude of modulations acting as the control 
parameter for nonlinearity (the horizontal axis in Fig. 6).

Conclusions and perspectives
As a principle of nature, reciprocity is remarkably tena-
cious. It persists in the presence of heterogeneity on any 
length scale (spatial asymmetry) and internal damping 
(time irreversibility). Reciprocal wave motion is guar-
anteed if the medium is time-​invariant, passive and lin-
ear with microscopic time reversibility, conditions that 
are realized for most materials in daily life. For these 
reasons, one can conclude that reciprocity is a robust  
fundamental principle that is hard to beat.

In this Review, we have presented many specific 
approaches that have been proposed and employed to 
purposefully violate one or more of the requirements 
for reciprocal wave motion in acoustic and elastic mate-
rials. The most familiar condition for breaking reciproc-
ity is the presence of mean flow. In this scenario, flow 
breaks the microscopic time reversibility, leading to  
nonreciprocal effects, resulting in a system analogous 
to a gyrator when the flow is parallel to wave motion, 
or a circulator otherwise (Box 3 and Fig. 3). The condi-
tion of time-​invariance is broken in activated media, in 
which material properties are varied in both space and 
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time. These materials can display strong nonreciprocal 
effects if the space–time modulation is large enough 
(Fig. 2). Various mechanisms are available to realize the 
level of active control necessary to modulate material 
properties, for example, those realized in piezoelectric 
materials and magnetic elements (Fig. 3), which make 
activated materials a practical and promising candidate 
for applications in elastic wave control seeking to make 
use of nonreciprocal signal transmission. The dynamics 
of space–time-​modulated materials can be explained 
in terms of new descriptors of physical states, such as 
the Willis dynamic effective medium equations and by 
topological invariants in the frequency–wavenumber 
domain (Fig. 4). Aside from activated materials, there is 
a deeper connection between one-​way wave propagation 
and the topological description of quasi-​periodic sys-
tems. Although this has analogies in electronic systems, 
the mechanical realizations are quite distinct (Fig. 5) and 
can exhibit robust one-​way propagation effects. Finally, 
material nonlinearity combined with spatial asymme-
try provides a distinct route to nonreciprocity (Fig. 6). 
Nonlinearity remains an important tool for realizing 
nonreciprocity in elastic and acoustic materials.

The optimal utilization of nonlinearity for opera-
tion of nonreciprocal devices is an active area of devel-
opment, despite the intrinsic limitations of passive, 
nonlinear materials in comparison to linear, externally 
biased materials. Even more remarkable outcomes are 
expected when nonlinearity is utilized in combination 
with another reciprocity-​breaking mechanism. For 
example, recent studies have focused on the nonlinear 
dynamics of topologically protected edge states165,166. The 
combined effects of nonlinearity and spatio-​temporal 
modulations have not yet received much attention in 
the literature. In the light of recent advances in model-
ling complex nonlinear and spatio-​temporally varying 
elastic materials46,167 and experimental realizations of 
dynamic elastic media30,31,42,168,169, we expect the study 
of nonreciprocity to extend to modulated nonlinear 
media in the near future. Beyond the innate appeal of 
the underlying physical phenomena, the interest in the 
dynamics of these media is partly motivated by the fact 
that nonlinear forces are inevitably present in experi-
ments. Another new perspective was recently presented 
by Denis Bartolo and David Carpentier170 in connection 
with the elasticity of surfaces with non-​orientable topol-
ogy, such as a Möbius strip. Despite having a linear con-
stitutive law, the deformation of a Möbius strip subject 
to shear stress is intrinsically nonlinear and the elastic 
response is not reciprocal. This counter-​intuitive prop-
erty of non-​orientable surfaces can potentially lead to yet 
another class of nonreciprocal elastic materials.

All of the techniques to elude reciprocity have 
their own benefits and drawbacks. Active materi-
als, which include systems with mean flow as well as 
spatio-​temporal modulation of effective properties, 
require constant sources of energy. Conversely, non-
linear materials are passive systems requiring no exter-
nal impetus. However, they use the input power of the 
source, which may come with other drawbacks and 
limitations on the isolation of simultaneous sources, 
isolation level or bandwidth, as previously noted in 

photonics131,171. Nonlinear materials also rely on more 
complicated constitutive relations that are not easily 
designed or created using existing fabrication technol-
ogies. Topological wave systems are inherently narrow-
band in frequency and wavenumber space and confined 
to the boundaries of engineered-​material domains. Yet, 
individual systems can take advantage of these hurdles 
in a constructive manner to effectuate nonreciprocal 
wave motion. The task before the materials designer is 
to consolidate all possible effects in order to generate a 
nonreciprocal response for a given application. Owing 
to the complexities listed above, many of the proposed 
examples found in the literature to demonstrate nonre-
ciprocal acoustic behaviour may not be easily realizable, 
with many requiring advances in fabrication capabili-
ties. Further, we anticipate that future approaches to 
violate reciprocity may combine mechanisms discussed 
in this Review or propose entirely new mechanisms or 
approaches that have not yet been considered. Some pos-
sible avenues include the use of transmission-​frequency 
windows via coupling of bandgaps with nonlinear fre-
quency shifting. A particularly interesting possibility172 
combines acoustic waves under the small-​on-​large 
effects of elastic prestress with nonlinearity in two dis-
tinctly different modes: dynamically to detune the signal 
frequency and statically to change the effective elastic 
stiffness. Other possible routes combine bilinearity as 
the frequency converter with a linear wave filter151.

This Review is focused on the direct problem of 
how to design materials with embedded nonrecipro-
cal mechanisms to add an additional degree of control 
to propagating waves. The inverse problems posed by 
nonreciprocity are also relevant and could lead to new 
techniques for assessing material properties. Just as one 
can “hear the shape of a drum” (ref.173), if one knows the 
modal frequencies, it may be possible to infer nonlinear 
material effects or modulation depth and frequency from 
measured violations of reciprocity. For instance, there 
have been reports (anecdotal) that the deviations from 
reciprocity for multiple point-​to-​point ultrasonic meas-
urements in concrete undergoing fatigue loading corre-
late with the duration and intensity of loading. Proposed 
mechanisms include increased nonlinearity due to the 
growth of microcracks. Unambiguous identification of 
nonreciprocity requires careful prior calibration of the 
acoustoelectric equipment, but if implemented prop-
erly, nonreciprocal data measurement could become a 
useful tool for ultrasonic non-​destructive evaluation, 
a multibillion-​dollar industry. This is but one practical 
example of the implications of the value in understanding 
and designing nonreciprocal acoustic and elastic materi-
als. This Review outlines many strategies, in theory and in  
practice, for achieving nonreciprocity of acoustic and 
elastic wave motion in materials. However, this is a highly 
active and rich area of study, and we anticipate substantial 
advances to be made in the years to come. There is cer-
tainly a need for greater one-​way transmission efficiency, 
frequency bandwidth and amplitude independence, and 
research with that focus will certainly be built upon the 
scientific principles and advances reviewed here.
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