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Energy Absorption Properties of Periodic and Stochastic 3D
Lattice Materials

Jochen Mueller, Kathryn H. Matlack, Kristina Shea,* and Chiara Daraio*

Architected lattices can be designed to have tailorable functionalities by
controlling their constitutive elements. However, little work has been devoted
to comparing energy absorption properties in different periodic
three-dimensional geometries to each other and to comparable foam-like
random structures. This knowledge is essential for the entire design process.
In this work, the authors conduct a systematic and comprehensive
computational study of the quasi-static and dynamic energy absorption
properties of various different geometries. They test compression loading over
strain rates varying from 1 to 104 s−1. The authors analyze geometries with
varying degrees of nodal connectivity, ranging from bending dominated to
stretching dominated, at different orientations, and compare their response to
equivalent stochastic lattices. Results show relatively high stress peaks in the
periodic lattices, even in bending dominated lattices at certain orientations.
Conversely, the stochastic geometries show a relatively constant stress
response over large strains, which is ideal for energy absorbing applications.
Still, results show that specific orientations of bending dominated periodic
lattice geometries outperform their stochastic equivalents. This work can help
to quickly identify the potential of different unit cell types and aid in the
development of lattices for impulse mitigation applications, such as in
protective sports equipment, automotive crashworthiness, and packaging.

1. Introduction

The prospect of using lattice materials for lightweight, mul-
tifunctional structures holds promise for many engineering
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applications, such as the automotive,
aerospace, biomedical, and safety equip-
ment. Since the mechanical response of
lattices can be controlled with geometric
variations of their structure, they offer the
ability to engineer specific properties such
as stiffness, strength, energy absorption,
vibration mitigation, and thermal con-
ductivity directly into the material. New
additive manufacturing techniques allow
the fabrication of increasingly smaller,
more complex, and multi-material struc-
tures, accelerating the ability to bring lattice
materials to commercialization.
Lattice materials are of particular inter-

est in energy-absorbing applications, such
as crashworthiness of vehicles or in pro-
tective sport and military equipment, be-
cause they can be engineered to control
and minimize peak stress during a crush-
ing event.[1] During a high strain-rate event,
such as an impact or crash, these materials
aim to decrease the peak stress transmitted
through the material to a more sensitive re-
gion and evenly distribute this stress over
a wide range of strains until the material
has densified.[2] While much prior work has

studied how to engineer lattice materials for enhanced energy
absorption properties, most applications primarily use stochas-
tic foams to achieve these functions, which, due to their random
structure, are not optimized and are difficult to simulate. Individ-
ual works have studied the benefits of engineered periodic struc-
tures compared to those of random foams in 2D.[3–5] However, a
comprehensive comparison of energy absorbing properties from
periodic to stochastic structures in 3D cellular materials remains
missing. This is necessary for the categorization and quantitative
comparison of existing and new unit cell designs (such as buck-
ling, negative stiffness, and multi-stable unit cells), and serves as
a future benchmark for new unit cell designs.
Previous research in the field of energy absorbing lattices

focuses predominantly on 2D honeycomb structures, due to
their simpler analytical and numerical models,[3,6–13] with fewer
studies available for 3D structures.[14–19] Some articles report dis-
crepancies on individual aspects between 2D and 3D structures
of the same unit cell type, suggesting that results are not simply
scalable and cannot be generalized.[3,6,8,9,16,17,20] For simplicity
or due to computational limitations, many studies focus on
linear-elastic material properties or deformations in the linear-
elastic regime,[6,8–10,16,17] and do not take larger deformations
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Figure 1. Strain rate ranges and typical applications. Strain rates from ap-
proximately zero to 106 s−1 are shown, covering the regimes of creep,
quasi-static, dynamic, and impact, each with their respective mechanical
test apparatus. This work covers strain rates ranging from quasi-static to
dynamic, where it is distinguished between intermediate and high strain
rates.

into account, which are required to draw conclusions on energy
absorption.[11,12,21] Other studies look individually at quasi-
static[3,6,8–10,14,15,22] or dynamic strain rates,[7,11] but do not provide
information on the validity of the results outside these ranges.
While all of these studies contribute a great deal to the funda-

mental understanding of individual aspects in cellular structures,
their biggest drawbacks are that they use different materials, dif-
ferent fabrication processes, different modeling procedures, dif-
ferent unit cell types, different relative densities, or other proper-
ties, whichmakes it hard to compare the results to one another in
a systematic way.[3,8–10,14–17,22–24] Results that aremore comparable
andmore generalizable are critically important for designers, en-
gineers, and scientists, to take full advantage of the potential and
create the most efficient parts.
Our work aims at accommodating all of these aspects in a sin-

gle comprehensive study. Specifically, we compare various 3D
lattice structures of unit cell types ranging from a connectivity,
Z, of four, which is well within the bending dominated regime,
to 14, which is well within the stretching dominated regime, in
periodic tessellations of different build angles and in stochastic
order, over a wide range of strain rates (Figure 1). The unit cells
encompass Voronoi decomposition (Z = 4), cubic (Z = 6), octet-
truss (Z = 12), and Delaunay triangulation (Z = 14) cells that
are tested for orientation angles of α = 0◦, 15◦, 30◦, 45◦ and com-
pared to stochastic structures (Figure 2). The strain rates stud-
ied range from quasi-static, typically defined between 10−6 s−1

and 100 s−1, to dynamic ranges of 104 s−1, where rates between
100 s−1 and 102 s−1 are characterized as dynamic intermediate
strain rates and rates between 102 s−1 and 104 s−1 as high strain
rates (Figure 1). We choose aluminum as the constitutive mate-
rial of the lattices in our computational model, to compare our
findings to those reported in prior publications.[3,25–28]

First, we present an overview of the parameter space tested
and the methodology used to generate and numerically test the
structures. Detailed results are presented for all unit cell types
and rotations as well as the stochastic structures for a strain rate
of 100 s−1. This includes stress–strain distributions as extracted
from the numerical analyses, the resulting stress–strain curves,

as well as overview graphs comparing the modulus and peak
stress to the volumetric energy. In the final section, we present
the effect of strain rate on the peak stress, energy absorption, and
energy absorption per peak stress for all tested scenarios.

2. Experimental Section

2.1. Lattice Generation

Four different lattice topologies are considered, that is,
Voronoi decomposition-based, cubic, octet-truss, and De-
launay triangulation-based, each categorized by their average
number of connectivity, that is, 4, 6, 12, and 14, respectively.
While Voronoi composition and Delaunay triangulation are
means to generate different lattice topologies, their connectivity
typically remains constant and, here, the focus is on this general
case.[29] According to Maxwell’s criterion, (3D) unit cells with
a connectivity of Z < 12 are bending dominated and Z ≥ 12
stretching dominated.[23] Of the four unit cell geometries,
the octet-truss sufficiently satisfies the Maxwell criterion for
rigidity and is topologically stretching dominated.[30–32] The cells
generated using Voronoi decomposition and cubic cells are
topologically bending dominated, space-filling polyhedra. The
Delaunay triangulation generates a redundant structure and
over-constrained, but also classified as topologically stretching
dominated. The cross-sectional shapes of the struts in each
lattice are circular with constant diameter.
Several rotated equivalents of the four different periodic lat-

tices are simulated to check for the degree of anisotropy between
each. The range of rotation angles are chosen such that the ro-
tated lattice geometry is not redundant due to symmetry. All unit
cell geometries have three fourfold symmetries, where a rotation
of 90°with respect to those axes will result in the same geometry.
All cells have at least three mirror symmetry planes. Thus, all the
cells only need to be rotated up to 45° before they repeat them-
selves in a mirrored equivalent. For example, rotating the cubic
lattice by +60° would be the same as rotating it by −30°.
In the scope of this work, both the Voronoi decomposi-

tion and the Delaunay triangulation use a body-centered cu-
bic (BCC) point grid, generated periodically in 3D for the peri-
odic structures.[29] The Delaunay-based lattices are generated by
a triangulation of the points in a periodic point cloud.[33] The
partitions of the Voronoi-based lattices are generated within a
bounding box encompassing all points in the point cloud.[34]

The edges of the partitions are extracted and defined as the
struts of the lattice. The periodic cubic and octet lattices are
generated by tessellating the respective unit cell in the three
dimensions.
To rotate the lattices, their edges are rotated around the

<0,1,0> axis. A bounding box of the desired dimensions is gen-
erated and all edges outside the box are trimmed. Struts that are
smaller than a specified tolerance, that is, equal to the diameter
of the strut, are merged. This is important for the simulations,
to avoid disproportionately small characteristic element lengths
that can be problematic for convergence. All struts that are not
connected to the body of the lattice are deleted.
For stochastic lattices generated using Voronoi decomposi-

tion, the displacements of all points in the cloud are randomized
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Figure 2. Test parameters and structures. Four different lattice types with unit cells of connectivity, Z, ranging from 4 (bending dominated) to 14
(stretching dominated) are investigated. For each structure, the effect of anisotropy is tested with periodic tessellations of load orientations, α, of 0◦to
45◦. Given by the unit cell architectures, this range covers all possible (in-plane) rotations, before the architecture repeats itself in a mirrored manner.
Lastly, the stochastic counterparts with identical numbers of connectivity are investigated.

within a unit cube using weights as a scaling factor. Seed num-
bers are used to generate a pseudo-random set of perturbations
from a continuous uniform distribution. This is to ensure that
the same random lattice structures are reproducible. The ran-
domization happens before the tessellation. The cell edges are
always bending dominated and have a connectivity of four, that
is, similar to the periodic versions. The only exception is when
the tessellation points are aligned as a cubic grid, which yields
a connectivity of six. For the stochastic lattices generated using
Delaunay triangulation, the average connectivity of the structure
is different for different sets of points. The average connectivity
of a periodic BCC Delaunay triangulation is 14. To generate
a stochastic structure with the same connectivity, the vertices

of the triangulated lattices are displaced randomly. The same
procedure is used for the stochastic equivalents of the cubic and
octet-truss lattices. The stochastic equivalents are not rotated
since it is assumed that stochastic foams are (quasi-)isotropic
and rotating a random geometry would yield another random
geometry.[35–37]

For the final design of the lattices, there are no boundary faces
along the surface of a bounding box for any lattice structure, that
is, the struts that are trimmed at the bounding box surface are
not connected to one another. This is common practice in lit-
erature since the number of interior cells would be sufficient
to characterize the structure and any boundary effects would be
minimized.[3,6,9,16] This is also similar to mechanical testing of
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open and closed cell foams where the experimenter would sim-
ply cut a specimen out of the bulk material.

2.2. Energy Absorption and Peak Stress

For this study, two main mechanical behaviors are investigated:
the energy absorption of the lattice to a specified strain and the
peak stress. The absorbed energy, U, is the strain energy of the
lattice, defined as the area under the stress–strain curve

U =
∫ ε f

εi

σ (ε) dε (1)

where εi = 0 and εf = 0.80. By integrating the stress–strain curve,
the energy is a volumetric measure independent of the size of the
lattice. This volumetric energy provides insight as to the amount
of dissipated energy due to different lattice deformation modes.

An additional measure of how an energy absorbing structure
performs is the peak stress, which for this study, amongst others,
will be defined as the transmitted stress that initiates crushing of
the lattice. The peak stress is important when designing protec-
tive liners because this is the stress transmitted to the protected
item. As shown by Gibson and Ashby, these two measures are
important for designers in selecting the appropriate foam prop-
erties for a specific application.[38]

2.3. Simulation

Abaqus/Explicit is used and all simulations are run on the ETH
Euler high-performance computing cluster utilizing amaximum
of 48 cores, with 8 cores and 2048megabytes of ram per core ded-
icated to each simulation. The lattices are strained to amaximum
of 80% for the energy absorption calculations and 3% for the
stiffness and peak stress calculations to have a higher resolution,

Figure 3. Stress distribution of Voronoi-based structures (ε̇ = 102 s−1). A front view of the von Mises stress distribution on straining the Voronoi unit
cell based lattices is shown for a strain rate of ε̇ = 102 s−1. The structures are strained in compression between two solid plates and the results are
shown for all periodic load orientations as well as their stochastic counterpart. A diagonally layer-wise failure of different degrees is seen for all but the
stochastic structure, in which seemingly arbitrary struts are progressively loaded until failure. Generally, a large amount of struts is equally strained to
almost the maximum, indicating a high plateau-strength without an initial peak stress.
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with 600 data points recorded in each simulation. Strain rates are
calculated based on the specimen dimensions as ε̇t = v(t)/L 0,
where v(t) is the difference in moving speed between the up-
per and lower plate, respectively, and L 0 the initial height of the
specimens. Quadratic Timoshenko beam elements (Abaqus ele-
ment type B32) with an approximate element length of 0.5 mm
are used. This yields a different number of elements per strut,
rather than a defined number of elements per strut, which is in
accordance with prior work.[6,9] For any given lattice, it also yields
at least three elements per strut, which has been found to be suf-
ficient to accurately capture linear and non-linear responses as
well as the failure behavior of struts.[6,9] However, it is important
to note that the required number of elements and element size
can be different for different strut aspect ratios, which range in
this study from about 4 to 16. To accommodate nodal effects of
the pin-jointed beams, the strut stiffness in vicinity of the nodes
has been increased. The results are in good agreement with a
solid model, both for low and high connectivities, but the overall
effect is found to be minor, likely due to the relatively high aspect
ratios of the struts. An element sensitivity analysis is carried out
to ensure that the results are not sensitive to the element size. To

maintain high accuracy across the different strain rates tested, no
mass scaling is used.
Aluminum alloy Al-6101 T6 material is modeled, which

is commonly used in literature to model Al foams and the
constituent material of the commercially available Duocel
foam.[3,25–28] Thematerialmodel is linear elastic-plastic with dam-
age evolution at a fracture strain of ε f = 19% and, due to the
strain-rate independence of Al-6101 T6, does not include strain
rate effects. The elastic modulus is E = 68.9 GPa, the yield
strength σy = 193 MPa, the ultimate tensile strength σUTS =
221 MPa, the Poisson’s ratio of ν = 0.33, and the density ρ =
2.7 g cm−3. Numerous studies have shown a lack of significant
strain rate effects, which allows us to isolate the effects of geom-
etry at different strain rates.[21,39–42]

The lattice is placed between two steel plates of E = 200 GPa
and ρ = 8 g cm−3, one stationary (bottom) and one crush plate
(top, Figure S1, Supporting Information). The plates aremodeled
with solid elements (Abaqus element type C3D8R) of size 2 mm.
The stationary plate is constrained in all degrees of freedom. The
crush plate is constrained in the in-plane degrees of freedom, X
and Y. The velocity of the crush plate is kept constant throughout

Figure 4. Stress distribution of cubic-based structures (ε̇ = 102 s−1). Von Mises stress distributions shown for different strain states of the cubic unit
cell based geometries, again for a strain rate of ε̇ = 102 s−1. Large discrepancies are seen between the different orientations. While α = 0 shows a high,
uniform loading at 2% strain, which catastrophically fails right after, the other orientations, including the stochastic structure, shows a more uniform
stress distribution across the different strains.
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the entire simulation and selected based on the impact strain
rate. Rotation boundary conditions for the top and bottom nodes
of the lattice are constrained from rotating around the in-plane
(X, Y) direction to reinforce the edges from local crushing at the
top and bottom surface. This is to avoid local deformations from
dominating the failure behaviors of the lattices, which is particu-
larly important for the rotated and stochastic structures, that pos-
sess incomplete unit cells.[6,9] Reaction forces at the bottom plate
are extracted to determine the mechanical response of the lattice.
The computational analysis incorporates self-contact of the

beam elements and general contact between the lattice elements
and that of the plate. All contacts use a penalty formulation. The
coefficient of friction between the steel plate and the aluminum
foam is set to μ = 0.61.

3. Results and Discussion

The von Mises stress distribution is shown for different (global)
strain levels of ε = 2%, 10%, 20%, 30%, 40%, 50%, 60% for
the different orientations and stochastic version of the Voronoi

structure (Figure 3). For α = 0◦, it can be seen that, at lower
strains, that is, strains of ε = 10% . . . 20%, the highest stresses of
about 250MPa occur diagonally and crosswise, where whole unit
cells, rather than individual struts, tend to have similar stresses.
These layers initiate a layer-wise failure at strains ε > 20%.Mul-
tiple collapses can be identified, potentially yielding local peaks in
the stress-strain response. At α = 15◦, a similar, crosswise stress
distribution is seen that is rotated by 15◦ and less pronounced.
No such stress distribution is seen at α = 30◦, but is again seen
at α = 45◦, which also exhibits a layer-wise failure behavior. In
the stochastic lattice, seemingly random struts are strained and
fail individually at all strains tested. In all Voronoi periodic and
stochastic lattices, the number of struts that are equally strained
does not vary significantly throughout the strains shown, in-
dicating that the load bearing capability does not significantly
change.Hence, a plateau is expected in the resulting stress–strain
curves within this range for all Voronoi-based lattices, up to the
densification.
For the cubic unit cell structures, significant differences be-

tween the build orientations are observed (Figure 4). Specifically,
at α = 0◦ the vertical struts are almost uniformly strained to the

Figure 5. Stress distribution of octet-truss-based structures (ε̇ = 102 s−1). Front view of vonMises stresses plotted at different strains for the octet-truss
based lattice, as obtained for a strain rate of ε̇ = 102 s−1. The uniformity of the stress distribution across different strain states is relatively high for all
but the 0◦ and 15◦ rotations, indicating that these exhibit a stretching dominated behavior, that is, a large, initial peak stress followed by multiple peaks.
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maximum observed von Mises stress of 250 MPa at small strain.
At a strain of ε = 10%, an internal horizontal layer fails com-
pletely, relaxing the other struts. This layer-wise failure repeats
itself after strain increments equivalent to the unit cell height
of the lattice until all layers have failed. This behavior implies a
stretch-dominated lattice with a high, initial peak stress, followed
by additional stress peaks due to the failure of each layer. The rea-
soning for a strong, layer-wise behavior is supported by the fact
that the stress distribution, in particular, at low rotation angles, is
non-uniform. For α = 15◦, the struts tilted 15◦ from the vertical
that touch both the top and bottom compression plates exhibit a
similar, yet alleviated behavior as seen for α = 0◦, likely due to the
influence of the orthogonal struts and out-of-plane forces. Simi-
lar to α = 0◦, a layer-wise failure is observed for α = 15◦. How-
ever, instead of the middle layer failing first, the top and bottom
layers now fail first, which are weakened by being incomplete lay-
ers, indicating that the initial peak stress should be significantly
lower when compared to the α = 0◦ lattice. The failures of the
top and bottom layers also trigger the failures of the consecu-
tive layers, again, indicating that the layer effects are alleviated.

This trend continues at higher rotations of α = 30◦ and α = 45◦,
where an even less pronounced layer-wise failure is observed. In
fact, the failure modes for α = 45◦ and the stochastic lattice are
comparable to those of the Voronoi lattice, indicating a bending
rather than stretching dominated failure mode, which we expect
will result in a relatively constant plateau stress throughout the
strain range.
The octet-truss lattice of α = 0◦ shows a crosswise stress

distribution (Figure 5), which is due to the absence of vertical
struts in the unit cell. In contrast to the Voronoi lattice, the stress
is distributed throughout the octet lattice already at ε = 2% and,
on failure, the stresses become concentrated in the center of the
structure (ε = 10%), and then stress becomes more distributed
again (ε = 20%). This pattern repeats with increasing strain,
indicating a non-uniform stress–strain curve with a pronounced
initial peak followed by smaller peaks in the range of about
the unit cell height. Octet-trusses rotated by α = 15◦ show
initial failure at the top and bottom layers, similarly to the same
rotation of the cubic lattice, that continues spreading until
densification is reached. No layer-wise failure of the internal

Figure 6. Stress distribution of Delaunay-based structures (ε̇ = 102 s−1). The front view of the von Mises stress distribution is shown for the Delaunay
based lattices tested at a strain rate of ε̇ = 102 s−1. A layer-wise failure is observed for α = 0◦, where the inner layers fail first. This is in contradiction
with the other orientations and the stochastic structure, where the top or bottom layers fail first due to partially incomplete unit cells. As the strain
distribution varies across the different strains, a stretching dominated behavior is expected.
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Figure 7. Stress–strain diagrams (ε̇ = 102 s−1). Stress-strain diagrams of the tested structures shown for a strain rate of ε̇ = 102 s−1. a) All Voronoi-
based geometries show a typical bending dominated behavior, as characterized by little to no initial peak stress, followed by a relatively constant plateau.
b) For the cubic based geometries, both bending and stretching dominated curves are found, depending on the unit cell orientation and periodicity. c,d)
Both the periodic octet-truss and Delaunay triangulation show an initial peak stress followed by multiple minor peaks, a typical indicator for stretching
dominated behavior. All stochastic structures exhibit bending dominated behavior, regardless of the unit cell type.

unit cells is observed. A layer-wise, yet less pronounced failure
is observed again at α = 30◦ and α = 45◦, where individual
elements are strained in tension, rather than compression, given
by the unit cell geometry. Layer-wise failure is then observed
along the longitudinal direction of these strained elements. The
octet-based stochastic lattice shows stress concentrated on the
top and bottom layers at small strains, which becomes more
distributed through the lattice as strains increase.
The Delaunay cell-based structure consists of elements

aligned at 0◦ and 45◦. Due to the high connectivity, the whole
α = 0◦ and α = 45◦ structures are stressed relatively uniformly
at small strains with higher stresses at struts in the vertical di-
rection (Figure 6). Similar to the cubic and octet-truss, the initial
failure of the Delaunay lattice occurs at ε = 10%, as opposed to
the bending dominated Voronoi structure where it occurs in the

range of ε = 20%. The α = 15◦ and α = 30◦ Delaunay structures
show increased stresses in the 15◦ rotated vertical elements with
failure occurring predominantly at the top and bottom ends,
similar to that of the rotated octet lattices. Similar behavior is ob-
served in the Delaunay-based stochastic structure, which shows
more members in the center failing throughout the strain range.
The resulting stress-strain curves corresponding to the defor-

mation modes shown in Figures 2–5 are shown in Figure 7 and
generally are in good agreement with the qualitative observations
made above. For the Voronoi structures (Figure 7a), typical bend-
ing dominated curves are observed for all rotation angles and the
stochastic structure. Specifically, a relatively constant plateau of
about σ = 5 MPa is reached without significantly higher peak
stresses before densification sets in at higher strains, that is, at
ε > 60%.

Adv. Theory Simul. 2019, 1900081 C© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900081 (8 of 11)



www.advancedsciencenews.com www.advtheorysimul.com

Figure 8. Modulus and peak stress versus volumetric energy (ε̇ = 102 s−1). As hypothesized from the stress distributions at different strain rates and
observed in the stress-strain curves, large variations exist among different structures, periodicities, and unit cell orientations. a) shows the modulus
plotted versus the volumetric energy, where the Voronoi-based and stochastic structures provide the lowest moduli to energy ratios, which is considered
advantageous for, for example, protective equipment. Structures that are stiffer, tend to exhibit less energy absorption capability. b) Similar trends are
seen for the peak stress versus volumetric energy ratio, where the Voronoi-based structures perform well. This is in accordance with literature, which
consistently reports this unit cell to be the first choice in energy absorption applications. However, if this ratio is the only parameter of interest, the cubic
cell at α = 45◦performs even better. The dashed lines indicate constant volumetric energy versus modulus or peak stress ratios.

Large differences between the curves are found for the
different rotation angles of the cubic structure (Figure 7b).
Specifically, α = 0◦ shows a typical stretching dominated curve
with a high initial peak stress of σ = 11.5 MPa, followed by
multiple peaks separated by the layer height of the unit cells,
in between which the load drops to σ < 2 MPa. A similar, yet
smoother curve is seen for α = 15◦, where the initial peak stress
reaches σ = 5 MPa, followed by peaks of about the same height,
and valleys of about σ = 3MPa. The structures with α = 30◦ and
α = 45◦, and the stochastic structures show a typically bending
dominated behavior with no initial peak and a plateau height of
around σ = 3 MPa. The sensitivity to the load orientation is in
accordance with existing literature.[43,44] The energy absorption,
that is, area under the stress–strain curve, is generally lower than
those of the Voronoi structures.
The octet-truss shows pronounced differences between the dif-

ferent rotation angles (Figure 7c), similar to the cubic unit cell.
At α = 15◦, an initial peak stress of σ = 9.4 MPa is observed fol-
lowed by peaks of around σ = 6 MPa and valleys of σ = 4 MPa.
The other orientations and the stochastic structures show no sig-
nificant initial peak and the stress plateaus around σ = 4 MPa.
The Delaunay based structures show a stretching dominated

behavior throughout the different unit cell orientations, with
peak stresses ranging from σ = 5 . . . 8 MPa and valley stresses
down to σ = 2 MPa.
In summary, the largest differences due to orientation and

periodic lattices versus stochastic lattices are seen for the cubic
structure, followed by the octet-truss and Delaunay structure
both for the modulus and peak stress (Figure 8). The Voronoi
structure shows a relatively consistent behavior across these
parameters, which is the reason it is commonly used for energy
absorbing applications, where an optimization for unit cell

orientation is not feasible. When relating the peak stress to
the volumetric energy, however, the α = 45◦ orientation of the
cubic lattice outperforms all Voronoi structures (Figure 8b). This
is particularly interesting for parts and structures where effi-
ciency is important and load orientation is known a priori. The
stochastic structures of all unit cell types show essentially the
same modulus and peak stress ranges, with the exception of the
Delaunay structure, which exhibits slightly smaller volumetric
energy values. These findings are in accordance with literature,
which states that, for stochastic structures, the relative density
is the key tuning parameter.[23] Local and global buckling, which
occurs predominantly in stretching-dominated regimes, is an
additional factor of influence for the described energy absorption
behaviors.
Besides the results presented in detail for a strain rate of

100 s−1, the study is also conducted for lower and higher strain
rates, ε̇, ranging from 1 to 10 000 s−1 in step sizes of one decade
(Figure 9). As for the peak stress, there is a little to no change
at quasi-static and intermediate strain rates of ε̇ = 1 . . . 100 s−1

(Figure 9a). At high strain rates, in particular, at ε̇ = 10 000 s−1,
a sharp increase in the peak stress is observed for all but the
Voronoi-based structures, which generally seem to be unaffected
by the strain rate range tested. This has also been seen in
previous work, where an increase in the initial peak stress has
only been seen at the top, that is, crush, side of the structure, but
not at bottom the support surface.[45] However, in these results,
we show this can also occur at the bottom or transmitted surface.
The increase has been attributed to the impact velocity of the
compression plates, creating a transition or shock mode.[38] The
energy absorption includes both elastic and plastic contributions
(Equation (1)), and increases with increasing strain rate up to the
strain rate of ε̇ = 10 000 s−1 (Figure 9b). This is also the strain
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rate where the peak stress increases significantly and where
dynamic effects, that is, transition or shock mode, set in. For the
bottom plate, this means that the top plate is crushing the lattice
at a rate faster than the shock wave, such that the impacting
plate reaches the subsequent layers of the lattice first, hence the
drop in energy absorption. Similar trends are observed for the
effective energy absorption to peak stress ratio, which increases
with increasing strain rate until it reaches the highest strain
rate of ε̇ = 10 000 s−1. Due to the strain-rate independence, the
material Al-6101 T6 is used. All strain rate effects are expected
to be due to inertia.

4. Conclusions

Here we present the first comprehensive study that compares
the full deformation behavior of unit cells in 3D periodic with
stochastic lattices with connectivities ranging from 4 to 14 un-
der identical, experimental conditions. Specifically, the results
confirm that relative density is the main tuning parameter for
stochastic foams and that the deformation mode is the dominant
parameter for periodic structures.[23,46] However, it is found that
the energy absorption properties not only depend on the nodal
connectivity, but also on the unit cell geometry and, in partic-
ular, the orientation of the load, which has been demonstrated
before on individual unit cells.[44,47] For example, a cubic unit
cell, which is defined as bending dominated according to its con-
nectivity, can exhibit stretching dominated behavior when loaded
along the horizontal or vertical directions. Further, it is found
that the energy absorption properties for quasi-static strain rate
loadings are generally applicable to low and intermediate strain
rates. At higher strain rates, the absolute performance of the lat-
tices drops significantly and their performancewith respect to the
load orientations changes. While the results cover a wide range
of discrete, 3D, and open-cell lattices, it is not easily possible to
compare the performance of all possible variations. For exam-
ple, multi-stable materials can provide higher energy absorption
than lattices, whereas lattices can outperform multi-stable ma-
terials in quasi-static conditions. Here, we focus on the study
of lattices envisioning them to be more applicable in scenarios
where specific load-bearing, static stiffness, and energy absorp-
tion properties are desired. However, the methodology can be
extended to other classes of lattice materials that, for example,
are 2D (honeycombs) or rely on (elastic) buckling or cell wall
bistability.[48–50]

The large variability in the resulting dynamic properties of 3D
unit cells and cellular structures due to the different parame-
ters highlights the potential for lattice structures to be optimized
for energy absorption properties. Specifically, cellular structures

Figure 9. Strain rate effect. The effect of strain rate on the mechanical
properties is shown for the periodic and stochastic lattices. a) At strain
rates between ε̇ = 100 . . . 103 s−1, all structures are relatively insensitive
to the strain rate. Depending on the build orientation, the Delaunay and
octet-truss show a significantly increased peak stress at higher strain rates.
b) Amixed effect is seen for the energy absorption, where the build orienta-
tion seems to have a stronger effect on the energy absorption than the unit
cell type. c) The ratio between the two previously reported values shows a
general decrease at strain rates of ε̇ > 102 s−1.
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monolithically composed of identical unit cells can be optimized
to maximize the performance, but further steps, such as com-
binations of unit cells, load orientations, and combining peri-
odic with stochastic microstructures, can unlock unprecedented
potential. The knowledge acquired in this comprehensive study
can play a significant role in exploiting this potential for a wide
range of applications, ranging from protective packaging of deli-
cate components to crash and blast mitigation in automotive and
aerospace structures, as well as multifunctional applications in
biomimetic structures.
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