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A B S T R A C T

In this work, we construct an effective continuum model for architected sheets that are
composed of bulky tiles connected by slender elastic joints. Due to their mesostructure, these
sheets feature quasi-mechanisms — low-energy local kinematic modes that are strongly favored
over other deformations. In sheets with non-uniform mesostructure, kinematic incompatibilities
arise between neighboring regions, causing out-of-plane buckling. The effective continuum
model is based on a geometric analysis of the sheets’ unit cells and their energetically
favorable modes of deformation. Its major feature is the construction of a strain energy that
penalizes deviations from these preferred modes of deformation. The effect of non-periodicity is
entirely described through the use of spatially varying geometric parameters in the model. Our
simulations capture the out-of-plane buckling that occurs in non-periodic specimens and show
good agreement with experiments. While we only consider one class of quasi-mechanisms, our
modeling approach could be applied to a diverse set of shape-morphing systems that are of
interest to the mechanics community.

. Introduction

Advanced manufacturing and synthesis technologies have given engineers the ability to design media with complex micro- and
esostructures that strongly influence bulk constitutive properties (Schaedler et al., 2011; Ware et al., 2015; Moestopo et al., 2020).

or example, the micro/mesoscale geometry can be designed to attain extreme or unconventional global mechanical behaviors such
s high stiffness-to-weight ratios (Schaedler et al., 2011) and bistable auxeticity (Rafsanjani and Pasini, 2016). These fabrication
rocesses have considerably expanded the design space for shape-shifting media (Klein et al., 2007; Gladman et al., 2016; Plucinsky

et al., 2018) and deployable structures (Schenk et al., 2014; Boley et al., 2019). In this context, mesoscale design has been used to
create compliant features that replace conventional hinges, extensional elements and flexures (Greenberg et al., 2011; Celli et al.,
2020; Ferraro and Pellegrino, 2021), or to create structures whose mechanical behaviors can be tailored by adjusting the geometry
of a pattern (Guest and Pellegrino, 1994; Dudte et al., 2016; Wang et al., 2017; Celli et al., 2018; Hawkes et al., 2010; Shang et al.,
018; Siéfert et al., 2020; Guseinov et al., 2020; Agnelli et al., 2021).

In structured media, the mesoscale geometry can be designed to energetically favor desired local modes of deformation (Bertoldi
t al., 2017; Singh and van Hecke, 2021). We refer to these behaviors as ‘‘quasi-mechanisms’’ when they accompany a non-
egligible change in the system’s energetic state. This distinguishes quasi-mechanisms from pure mechanisms, which are zero-energy
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kinematic modes. We emphasize that quasi-mechanisms are local behaviors: these energetic preferences can be spatially modulated
by designing non-uniform mesostructures.

Within this context, origami (Greenberg et al., 2011; Dudte et al., 2016; Liu et al., 2019; Callens and Zadpoor, 2018),
kirigami (Castle et al., 2014; Wang et al., 2017; Tang and Yin, 2017; Jiang et al., 2020) and auxetic motifs (Grima et al., 2007;
Bertoldi et al., 2010; Konaković et al., 2016; Rafsanjani and Pasini, 2016; Konaković-Luković et al., 2018; Celli et al., 2018) are
the most popular classes of mesostructures that lead to quasi-mechanisms. However, demonstrations of shape-shifting materials
have also been achieved using thermally responsive bilayer lattices (Guseinov et al., 2020) and in 3D structures such as snapology
origami (Overvelde et al., 2017). Quasi-mechanisms can be used to attain non-homogeneous strain field objectives (even under
uniform loading conditions) by relying on non-uniform internal structures that spatially modulate local effective material properties.
Morphing from a planar state to a doubly curved 3D geometry is an example of where this non-uniformity is important: Gauss’
Theorema Egregium tells us that changing a surface’s Gaussian curvature requires a non-isometric mapping (Gauss, 1828), which in
turn requires mesostructural non-uniformity if the actuation is driven by a spatially uniform stimulus (Boley et al., 2019; Guseinov
et al., 2020).

However, optimally designing non-uniform micro/mesostructures that lead to desired global behaviors can be challenging. The
presence of geometric features at disparate length scales means that conventional finite element approaches become computationally
expensive due to the need for meshes that resolve the finest features and yet span the entire structure. Homogenization theory
provides a way to determine effective properties of periodic structures (Allaire, 2012), but in practice it is often only viable in the
limited context of linear elasticity, as the presence of non-linearity and instabilities significantly complicates the methods (Müller
et al., 1993). In light of this, engineers have used a variety of reduced order modeling techniques to investigate forward elastic
equilibrium and stability problems, as well as to inversely design non-uniform mesostructures at a lesser computational expense.
These techniques range from bar-and-hinge (Schenk and Guest, 2011; Filipov et al., 2017; Liu and Paulino, 2017) and structural
frame (Hayakawa and Ohsaki, 2020) models that capture the mechanics of folded sheets, to representations of structural element
networks that are based on effective springs (Coulais et al., 2018), equivalent lattices (Leimer and Musialski, 2020), Chebyshev
nets (Baek et al., 2018), discrete elastic rods (Baek et al., 2018; Lestringant and Kochmann, 2020) and Kirchhoff rods (Yu et al.,
2021).

Despite the above-mentioned advancements in modeling using networks of reduced order elements, there are limitations to the
existing approaches. They can be computationally expensive in cases where the structure is much larger than the mesoscale unit
cell size and a reduced order element (such as a discrete elastic rod) is needed for every constituent of the physical network (e.g., in
hierarchical systems). Additionally, some of these models lack the generality needed to make themselves useful to the study of
other systems. For example, bar-and-hinge origami models would not be suitable for extensional spring networks. It can also be
challenging to calibrate constants such that accurate results are achieved using these models.

For these reasons, the mechanics community has pursued the development of effective continuum models. These models are
powerful approaches to capturing the behavior of structures with internal geometric patterns in instances where there is a sufficient
separation of length scales between the local geometric parameters and the global behaviors (Reis et al., 2018). When this separation
of scales exists, an energy density function can be constructed to capture the mechanical behaviors of the structure as if it were a bulk
material, thus removing the need to resolve the geometric features at the smaller length scales with a fine mesh. This coarse meshing
allows for significantly faster finite element simulations of complex physical behaviors. To this end, effective continuum models have
been used to understand the behavior of periodic structured media that display quasi-mechanism behaviors (Bar-Sinai et al., 2020)
and can capture their responses to non-uniform loading conditions (Czajkowski et al., 2021; Khajehtourian and Kochmann, 2021).
However, these effective continuum modeling frameworks have not been applied to modeling the quasi-mechanism behaviors of
graded media.

This article demonstrates how geometric analyses of unit cells can be used to construct effective continuum models for architected
sheets with graded mesostructures. We illustrate this approach by studying generalizations of the auxetic sheets introduced by Grima
et al. (2007) to spatially varying distributions of diamond-shaped cuts (Celli et al., 2018; Choi et al., 2019; Jin et al., 2020). The
tessellated unit cells consist of bulky tiles connected by slender joints, and display two elastic regimes: a soft regime that occurs
when the tiles rotate about the joints (as shown in Fig. 1a–b), and a stiff regime when the joints are subjected to tension. We design
heterogeneous cut patterns to provoke in-plane kinematic incompatibilities under simple point-loading scenarios, which leads to
out-of-plane buckling in a region of the structure (Celli et al., 2018) (shown in Fig. 1e).

This article is organized as follows. In Section 2, we discuss our effective continuum model for non-periodically patterned sheets
that display quasi-mechanism behaviors. Our modeling approach entails first performing a geometric analysis of unit cells to derive
their energetically favorable kinematic modes. Specifically, we derive the effect of geometric parameters on the rotational behavior
of the tiles about the joints. Next, we begin constructing our strain energy density function by attributing an energy penalty to
deviations from the above-mentioned kinematic modes, which may occur due to kinematic incompatibilities between neighboring
regions of the sheets. Since the joints are not ideal pins, the rotation of tiles is an elastic process, albeit softer than deviations from
this preferred local behavior. We use a common constitutive model for elastic materials to approximate the elastic energy associated
with the tile rotations. We extract the value of a few non-geometric constants from tensile experiments on periodically patterned
structures and these parameters are then used to simulate the non-periodic structure. This type of effective material modeling enables
us to use a coarse mesh to solve for pre-buckled equilibrium, the onset of instabilities, and post-buckled equilibrium. The numerical
approach is discussed in Section 3, and we compare these numerical results to a new set of experiments in Section 4, highlighting
the good agreement between coarse mesh finite element simulations and experiments. Our concluding remarks and perspective for
future work are presented in Section 5. While our modeling method is demonstrated for the class of quasi-mechanisms discussed
above, we believe it would be straightforward to apply it to many other quasi-mechanisms that are of interest to the mechanics
community, such as origami tessellations (Callens and Zadpoor, 2018) and shape-shifting bilayer lattices (Guseinov et al., 2020).
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Fig. 1. (a–b) A sheet with a periodic cut pattern that displays a quasi-mechanism mode of deformation: rotation of tiles about slender elastic joints. As the tiles
rotate, the unit cell dimensions change from 𝐿𝑖

𝛼 to 𝐿𝑓
𝛼 . Although tile rotations are low-energy kinematic modes compared to other deformations, the energetic

cost associated with the deformation of the joints is not negligible. (c) Introducing a gradient in the cut pattern modulates the quasi-mechanism kinematics over
the sheet. The scale bar represents 3 cm. (d) The mesostructural non-uniformity shown in (c) affects the extent to which tiles can rotate in different regions
of the sheet, creating kinematic incompatibilities between the quasi-mechanism behaviors of different regions. Here, 𝜆𝑥 is the maximum stretch a unit cell can
attain in the direction of loading through quasi-mechanism behaviors. (e) These in-plane kinematic incompatibilities lead to out-of-plane buckling. The design
of the buckling sheets shown in (c–e) was first discussed in our prior work (Celli et al., 2018).

2. Modeling approach

In this section, we discuss how a strain energy density function can be extracted by modeling the effect that mesoscale geometric
features have on a structure’s energetically favorable local modes of deformation. Our approach is presented for modeling effective
continua within the context of initially flat sheets with diamond-shaped cut patterns, although it could be generalized to other types
of 2D or 3D architected media.

2.1. Quasi-mechanism kinematics

Our aim is to create an effective continuum model that captures the quasi-mechanism kinematics of sheets with diamond-shaped
cut patterns (Fig. 2a). These sheets are tessellations of unit cells that are composed of four bulky tiles connected by slender elastic
joints (Fig. 2b). The structures may be either periodic or non-periodic tessellations of unit cells (as in Fig. 2a or Fig. 1c, respectively).
In either case, the quasi-mechanism local modes of deformation can be derived from a simple geometric analysis relating unit cell
geometry to the rigid body rotations of the bulky tiles about the joints (Fig. 2b–c).

Five spatially varying geometric parameters constitute a geometry vector field 𝝓(𝑥𝛼) and define the quasi-mechanism kinematics
of our sheets. Namely 𝝓 = {𝑙1, 𝑙2, 𝛿, 𝑤1, 𝑤2}, where 𝑙1(𝑥𝛼) and 𝑙2(𝑥𝛼) are the lengths of the unit cell grid spacing in the 𝐞1 and 𝐞2
directions, 𝛿(𝑥𝛼) is the width of the slender joints, and 𝑤1(𝑥𝛼) and 𝑤2(𝑥𝛼) are the half-widths of the two diamond-shaped cuts that
define the tiles’ inclinations. These parameters are illustrated in Fig. 2d. A few geometric parameters that are functions of the five
mentioned above are also shown in Fig. 2d and will be discussed below.

We seek to identify a function 𝑔(𝐂,𝝓) such that the local quasi-mechanisms are described by the implicit relation 𝑔(𝐂,𝝓) = 0.
Here, 𝐂 is the right Cauchy–Green strain tensor. To do so, we first define a unit cell as a 2 × 2 arrangement of quadrilateral tiles.
Due to the symmetry of the unit cell, we can fully describe its quasi-mechanism kinematics by analyzing the geometry and rotation
of a single tile. We use the bottom left tile in the unit cell, such as the one boxed in Fig. 2b–c. For a unit cell located at 𝑥𝛼 with
geometry defined by 𝝓(𝑥𝛼) = {𝑙1(𝑥𝛼), 𝑙2(𝑥𝛼), 𝛿(𝑥𝛼), 𝑤1(𝑥𝛼), 𝑤2(𝑥𝛼)}, the respective lengths 𝑑ℎ and 𝑑𝑣 of the diagonals illustrated in
Fig. 2d in red and blue are

𝑑ℎ(𝝓) =
√

𝑙21 + (𝑙2 − 2𝑤2 − 𝛿)2 and 𝑑𝑣(𝝓) =
√

𝑙22 + (𝑙1 − 2𝑤1 − 𝛿)2 . (1)

The angle 𝛾 between these two diagonals is given in terms of the geometric parameters 𝝓 as

𝛾(𝝓) = 𝜋
2
− arctan

(

𝑙2 − 2𝑤2 − 𝛿
𝑙1

)

− arctan
(

2𝑤1 + 𝛿 − 𝑙1
𝑙2

)

. (2)

As the tile rotates about the joint, the angle 𝜃 between the diagonal 𝑑ℎ and the 𝐞1 direction varies, as shown in Fig. 2b–c. During
this tile rotation, the projected lengths of the tile diagonals on the fixed orthogonal frame 𝐞𝑖 change, and the unit cell will have
effective stretches 𝜆1 and 𝜆2 of

𝜆1(𝜃) =
𝑑ℎ cos 𝜃 and 𝜆2(𝜃) =

𝑑𝑣sin(𝛾 + 𝜃)
. (3)
3
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Fig. 2. (a) An example of a sheet with a uniform pattern of diamond-shaped cuts. (b) A unit cell (shaded) consists of four tiles (boxed). (c) The quasi-mechanism
kinematics consists of tile rotations about the slender elastic joints. This deformation mode can be entirely described by the projection of the tile diagonals onto
the fixed orthogonal coordinate frame. This rotational mode has a non-negligible energetic cost, but one that is still much lesser than deformations where the
joints are under tension or shear. (d) The reference configuration of the boxed tile shown in (b). Five parameters define the geometry of a unit cell: 𝑙1 and 𝑙2
are the reference configuration lengths of the unit cell grid spacing in the 𝐞1 and 𝐞2 directions, 𝛿 is the width of the slender joints, and 𝑤1 and 𝑤2 are the
half-widths of the two diamond-shaped cuts that define the tiles’ inclinations. The diagonals 𝑑𝑣 and 𝑑ℎ and the angle 𝛾 between these two can be computed
from those parameters. Finally, 𝜃 is the angle between the red diagonal, 𝑑ℎ, and the 𝐞1 direction. As the tile rotates from one configuration to another, this
angle varies (as shown in b–c). The projected lengths of the tile’s deformed configuration in the 𝐞1 and 𝐞2 directions are 𝑑ℎcos(𝜃) and 𝑑𝑣sin(𝛾 + 𝜃), respectively.
This allows us to compute the unit cell stretches: only the rotation of one tile about a joint needs to be analyzed to determine the quasi-mechanism kinematics
of the unit cell.
Source: (a–d) Adapted from Celli et al. (2018) by permission of The Royal Society of Chemistry.

We can invert the function for 𝜆1(𝜃) to obtain 𝜃(𝜆1) as

𝜃(𝜆1) = arccos
(

𝜆1𝑙1
𝑑ℎ

)

. (4)

Substituting (4) into the expression for 𝜆2(𝜃) in (3) leads to the following explicit formula for 𝜆2(𝜆1):

𝜆2(𝜆1) =
𝑑𝑣
𝑙2

sin
[

𝛾 + arccos
(

𝜆1𝑙1
𝑑ℎ

)]

. (5)

We first derived this explicit function for the quasi-mechanism kinematics in our prior work (Celli et al., 2018). Through
trigonometric identities and algebraic manipulation, this can be written in implicit form:

(

𝑙1𝜆1
𝑑ℎ

)2

+

(

𝑙2𝜆2
𝑑𝑣

)2

− 2sin(𝛾)
𝑙1𝜆1
𝑑ℎ

𝑙2𝜆2
𝑑𝑣

− cos2(𝛾) = 0 (6)

In our reference frame, the implicit function (6) can be rewritten using the components of 𝐂, since 𝐶11 = 𝜆21 and 𝐶22 = 𝜆22:

𝑔(𝐂,𝝓) =
𝑙21𝐶11

𝑑2ℎ(𝝓)
+

𝑙22𝐶22

𝑑2𝑣 (𝝓)
− 2sin

(

𝛾(𝝓)
) 𝑙1𝑙2
𝑑ℎ(𝝓)𝑑𝑣(𝝓)

√

det 𝐂 − cos2
(

𝛾(𝝓)
)

= 0 (7)

The quasi-mechanism kinematics expressed in (7) describe the unit cells’ preferred modes of local deformation as a function of
geometric parameters. We emphasize that a unit cell may not deform according to this function. For example, this may occur if
neighboring unit cells have a different geometry and cause kinematic incompatibility or if global loading conditions make these
modes of deformation energetically unfavorable. In these cases, 𝑔(𝐂,𝝓) ≠ 0. In Section 2.3, we will model the stiffening that occurs
when (7) cannot be satisfied by embedding this kinematic description as a penalty term in our strain energy function.

2.2. Kinematics of a thin elastic plate

Our aim is to embed the quasi-mechanism behavior described by (7) into an effective continuum model. We consider a thin
elastic plate whose material particle positions of the mid-plane in an initially flat reference configuration are 𝐗 = 𝑥𝛼𝐞𝛼 . The indices
𝛼 and 𝛽 in this subsection relate to the mid-plane of the plate (we use the Einstein summation convention for repeated indices), and
the index ‘3’ corresponds to the direction normal to the reference surface. The coordinate frame {𝐞𝑖} is fixed and orthonormal. The
domains for the material coordinates 𝑥𝛼 are 𝑥1 ∈ [0, 𝑎] and 𝑥2 ∈ [0, 𝑏], where 𝑎 and 𝑏 are constants. The thickness 𝑡 is much smaller
than the other material domain dimensions, and we seek the mid-surface mapping 𝝌(𝑥𝛼):

𝝌(𝑥𝛼) =
(

𝑥𝛼 + 𝑢𝛼(𝑥𝛽 )
)

𝐞𝛼 +𝑤(𝑥𝛽 )𝐞3, (8)

where 𝑢𝛼 and 𝑤 are the in-plane and out-of-plane components of the mid-plane displacement vector, respectively. The deformation
gradient tensor 𝐅̃ = ∇𝝌 can be expressed in terms of the gradients of 𝑢 and 𝑤. We label 𝐅 as the in-plane component of the
4
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deformation gradient tensor (𝐅 ≡ 𝐈 + ∇𝑢𝛼). Since we have two material coordinates embedded in three spatial dimensions, the
deformation gradient assumes the following form:

𝐅̃ =
⎡

⎢

⎢

⎣

1 + 𝑢1,1 𝑢1,2
𝑢2,1 1 + 𝑢2,2
𝑤,1 𝑤,2

⎤

⎥

⎥

⎦

=
[

𝐅
∇𝑤

]

(9)

We use the right Cauchy–Green deformation tensor, 𝐂, as our measure for in-plane strain. We address moderate deflections and
use a linear bending model. In this linear setting, bending can be described using a single strain measure, the Laplacian of the
out-of-plane deflections, 𝛥𝑤 (Audoly and Pomeau, 2010):

𝐂 = 𝐅̃𝑇 𝐅̃ = 𝐅𝑇𝐅 + ∇𝑤⊗ ∇𝑤, 𝛥𝑤 = 𝜕2𝑤
𝜕𝑥21

+ 𝜕2𝑤
𝜕𝑥22

(10)

.3. Strain energy

Now that we have an implicit function (7) describing the quasi-mechanism behavior and a formulation of thin plate kinematics,
e can construct a strain energy density function for our sheets. The first step is to attribute an energy penalty 𝛹𝑝 for deviations

rom the quasi-mechanism behavior. For the unit cells in question, the quasi-mechanism behavior entails the rotation of tiles about
oints, so 𝛹𝑝 will penalize joint stretching or shearing, capturing the energy from frustration. As discussed in Section 2.1, 𝑔(𝐂,𝝓) = 0
hen local deformations correspond to quasi-mechanism behaviors, and 𝑔(𝐂,𝝓) ≠ 0 when there is a deviation from these energetic
references. Therefore we can write our energy penalty 𝛹𝑝 as

𝛹𝑝 =
1
2𝜂

𝑔2(𝐂,𝝓) , (11)

here 𝜂 is a small parameter. For our perforated sheets, 𝑔(𝐂,𝝓) is given in (7). Therefore,

𝛹𝑝 =
1
2𝜂

(

𝑙21𝐶11

𝑑2ℎ
+

𝑙22𝐶22

𝑑2𝑣
− 2sin(𝛾)

𝑙1𝑙2
𝑑ℎ𝑑𝑣

√

det 𝐂 − cos2(𝛾)

)2

. (12)

For elastic bodies, deforming according to these preferential modes will still entail non-zero energy. Because the function 𝑔
ssumes rigid tiles connected by perfectly flexible hinges, we must also assign a soft elastic energy density 𝛹𝑠 to this scenario to
apture the in-plane bending energy of the joints (this softness is relative to the energy expense of deviating from quasi-mechanism
ehaviors). A compressible Neo-Hookean model provides the flexibility to approximate our experimental data from tensile tests well
hile using only two material parameters. Therefore, the total membrane strain energy density function 𝛹𝑚(𝐂,𝝓) = 𝛹𝑝(𝐂,𝝓)+𝛹𝑠(𝐂)

s

𝛹𝑚(𝐂,𝝓) = 𝛹𝑝(𝐂,𝝓) +
𝜇
2
(𝐼1 − 2) + 𝜆

2
(𝐽 − 1)2 , (13)

where 𝐽 =
√

det(𝐂), 𝐼1 = tr(𝐂)𝐽−1, 𝜇 and 𝜆 are the Lamé parameters and 𝛹𝑝 is given in (12). Our bending energy density function
s

𝛹𝑏 =
𝐵(𝛥𝑤)2

2
. (14)

The bending energy 𝛹𝑏 uses a single bending modulus 𝐵. It is equivalent to a widely used alternate expression for the bending
energy that involves two moduli and two bending strain measures, in the sense that both predict the same net bending force in the
interior of the domain. Indeed, as shown in Audoly and Pomeau (2010), the only place where two bending moduli are required is in
the calculation of the bending force on the edge of the plate, a subtlety which is ignored here. Our strain energy per unit thickness
is the sum of 𝛹𝑚 and 𝛹𝑏, integrated over the 2D domain spanned by the mid-plane of the sheet, 𝛺:

(𝐮, 𝑤) = ∫𝛺

(

𝛹𝑚(𝐂,𝝓) + 𝛹𝑏(𝛥𝑤)
)

𝑑𝐴 (15)

All of the parameters in the energy function are either geometric or can be extracted from three simple tensile experiments:
one on a dogbone specimen of the bulk rubber with no cut patterns, and two (conducted in orthogonal directions) on a sheet with
periodic but anisotropic cuts.

To apply this modeling framework to media that are composed of other types of unit cells (e.g. generalized miura-ori
tessellations (Dudte et al., 2016) or perforated sheets whose soft modes involve shear), one would first need to perform a geometric
analysis similar to what was shown in Section 2.1 to find an appropriate implicit function 𝑔 that connects unit cell geometries to
their quasi-mechanism kinematics, then construct an energy function similar to (15) that appropriately captures the elasticity of the
medium.
5
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Fig. 3. An example of a domain and of a set of boundary conditions used in our simulations. In-plane displacements are prescribed on a portion of the boundary
nd in-plane traction-free edges are observed on the remainder. Additionally, we constrain out-of-plane displacements and have no applied moments on the
ntire boundary. This drawing displays the boundary conditions used to model the sheet with non-uniform cut patterns shown in Fig. 1c–e.

.4. Contact model

The non-uniformly perforated sheet shown in Fig. 1c–e buckles out of plane from an initially flat state due to the effect of in-plane
oading. This instability only occurs when the sheet rests upon an underlying rigid surface. Otherwise, it will sag prior to in-plane
oading due to the effect of gravity. In the case where the sheet lies on a rigid surface, we wish to enforce the contact condition
≥ 0. While techniques such as the active set method directly impose this constraint, we opt to relax this condition and instead use
rather simple penalty-based contact model. Thus, for problems where the sheet is lying on a flat surface, we consider a contact

enalty energy for negative out-of-plane deflections:

𝛹𝑐 (𝑤) = 𝑃
2
(𝑑𝑤−)2, 𝑑𝑤− = min(0, 𝑤 + 𝜀), (16)

where 𝑃 is the penalty stiffness and 𝜀 > 0 is a small tolerance length. Notice that the contact energy is nonzero only when 𝑤 < −𝜀.
his ensures that the contact condition does not interfere with the stability of the initially flat, unbuckled plate, and only becomes
ctive post-bifurcation. We add this contact energy onto (15) to give the total energy functional

(𝐮, 𝑤) = ∫𝛺
𝛹𝑚(𝐂,𝝓) + 𝛹𝑏(𝛥𝑤) + 𝛹𝑐 (𝑤) 𝑑𝐴. (17)

e will discuss the variations of this energy to compute equilibrium and stability in Section 3. Removing this contact energy yields
imulated buckled shapes that are similar to the results shown later in this paper, although some regions of the sheet display a
small) negative displacement that is not possible in experiments that include a rigid substrate.

. Finite element implementation

In this section, we present the equilibrium conditions for the system. Using a mixed formulation, we compute the solution using
tandard first order Lagrange polynomial finite elements. More details for our solution procedure and stability analysis are provided
n the appendices. We implement this formulation in the deal.II open source finite element library (Arndt et al., 2021).

We consider a rectangular domain in a displacement-controlled setting. The in-plane displacements 𝐮 are prescribed on 𝜕𝑢𝛺 ⊂ 𝜕𝛺
nd we have in-plane traction free edges on the remainder, 𝜕𝑓𝛺 = 𝜕𝛺∖𝜕𝑢𝛺. Additionally, we constrain out-of-plane displacements

and have moment-free edges on the entire boundary. Fig. 3 shows an example of a domain and of a set of boundary conditions
sed in some of our simulations. While the boundary conditions may be altered for a more general case, the mixed formulation
iscussed in Section 3.1 may not be appropriate for situations such as clamped boundaries.

.1. Equilibrium and mixed formulation

The equilibrium condition is the stationarity of our energy functional from (17) in both 𝐮 and 𝑤,
d
d𝜅

[

(𝐮 + 𝜅𝛿𝐮, 𝑤 + 𝜅𝛿𝑤)
]

𝜅=0
= 0 for all 𝛿𝐮 ∈ 0, 𝛿𝑤 ∈ 𝐻2

0 (𝛺), (18)

where 0 is the set of kinematically admissible in-plane displacement variations

0 =
{

𝐮 ∈
(

𝐻1(𝛺)
)2 , 𝐮 = 0 on 𝜕𝑢𝛺

}

, (19)

and we search for solutions 𝐮 ∈  and 𝑤 ∈  where

 =
{

𝐮 ∈
(

𝐻1(𝛺)
)2 , 𝐮 = 𝐮0 on 𝜕𝑢𝛺

}

,  =
{

𝑤 ∈ 𝐻2(𝛺), 𝑤 = 𝑤0 on 𝜕𝛺
}

. (20)

A common issue for plate problems is the bi-harmonic operator on 𝑤 that arises from the Gateaux derivative of the bending energy.
In this case, the weak form contains a product of the second derivative of 𝑤 and its variation, so that the usual Galerkin finite element
6
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method with even quadratic Lagrange polynomial shape functions is not appropriate.1 Therefore, we turn to a mixed formulation
that is widely used for linear biharmonic problems (Boffi et al., 2013). We introduce a scalar function 𝑣 ∈ 𝐻1

0 (𝛺) and set it equal
to 𝛥𝑤 by considering an augmented energy

̂(𝐮, 𝑤) = sup
𝑣∈𝐻1

0 (𝛺) ∫𝛺
𝛹𝑚(𝐂) + 𝛹𝑐(𝑤) − 𝐵

(

∇𝑤 ⋅ ∇𝑣 + 1
2
|𝑣|2

)

𝑑𝐴. (21)

tationarity of ̂ in both 𝐮 and 𝑤, along with the suprema condition on 𝑣, gives the weak form of equilibrium

0 = ∫𝛺

(

2𝐅
𝜕𝛹𝑚
𝜕𝐂

)

∶ ∇𝛿𝐮 𝑑𝐴 ∀𝛿𝐮 ∈ 0,

0 = ∫𝛺

(

2
𝜕𝛹𝑚
𝜕𝐂

∇𝑤
)

⋅ ∇𝛿𝑤 +
𝜕𝛹𝑐
𝜕𝑤

𝛿𝑤 − 𝐵∇𝑣 ⋅ ∇𝛿𝑤 𝑑𝐴 ∀𝛿𝑤 ∈ 𝐻1
0 (𝛺),

0 = ∫𝛺
−𝐵∇𝑤 ⋅ ∇𝛿𝑣 − 𝐵𝑣𝛿𝑣 𝑑𝐴 ∀𝛿𝑣 ∈ 𝐻1

0 (𝛺).

(22)

he first two lines in (22) are the equilibrium relations for in-plane and out-of-plane displacements, respectively. The final line is
he constraint that 𝑣 = 𝛥𝑤 weakly. The strong form of these relations can be found in Appendix A. Notice that (22) only contains
irst derivatives of the displacements and their variations. It is shown in Boffi et al. (2013) that we may now consider 𝑤 ∈ 𝐻1(𝛺).
herefore, we use a Galerkin finite element formulation with p = 1 shape functions for the fields 𝐮, 𝑤 and 𝑣. We solve the nonlinear
ystem with typical Newton–Raphson iterations. Details on the finite element formulation and solution procedure can be found
n Appendix B.

.2. Stability analysis

To probe the stability of an equilibrium configuration, it is common practice to calculate the eigenvalues of the tangent stiffness
atrix. A negative eigenvalue implies an instability, and the equilibrium solution can then be perturbed in the direction of the

orresponding eigenvector to explore the buckled solution. However, the mixed formulation complicates this procedure. To assess
tability, we must restrict the eigenvectors to the subspace upon which the constraint 𝑣 = 𝛥𝑤 is satisfied. To this end, we consider
n effective stiffness matrix on this subspace. By solving the linear constraint explicitly, we can condense 𝑣 out of the system
atrix. Then, we calculate eigenvalues of this reduced stiffness matrix to assess stability. We use the linear constraint to map the

orresponding eigenvector back to the full variable set and perturb the system. The magnitude of the perturbation is chosen to be
n the same order as the displacement increment. The direction of the perturbation is decided such that the 𝑤 component at the
iddle of the sheet is positive. The full details of the stability analysis can be found in Appendix C.

. Results

In this section, we discuss the extraction of effective material model constants from experiments on sheets with uniform
ut patterns and we compare experimental and numerical results on the post-buckling behavior of sheets with non-periodic
esostructure.

.1. Extracting model constants from experiments on sheets with uniform cut patterns

As discussed in Section 2.3, our energy given in (17) requires the extraction of four parameters from experiments: the Lamé
oduli (𝜆 and 𝜇), the energy penalty parameter (𝜂), and the bending stiffness (𝐵). We obtained 𝜆, 𝜇 and 𝜂 from tensile tests on

he specimen with uniform cut patterns shown in Fig. 2a, where 𝑙1 = 𝑙2 = 6 mm, 𝛿 = 𝑙1∕8, 𝑤1 = (𝑙1 − 𝛿)∕2, and 𝑤2 = 0 mm. The
heets have a thickness of 𝑡 = 1.55 mm, width dimensions of 108 mm in each direction and are made of natural rubber gum. The
iamond-shape cuts were made using a laser cutter.

The specimen was placed on a custom apparatus that grips the edges with roller pins, thus allowing free sliding in the direction
erpendicular to the tension. To obtain 𝜆 and 𝜇, the sheet was loaded in the direction that induces quasi-mechanism behavior
rotation of the tiles about the elastic joints). Since the sheet’s cut pattern is uniform, no kinematic incompatibilities arise and only
he soft elastic mode is present. The values of 𝜇 = 17 kPa and 𝜆 = 0.1 kPa provided a good fit to our data, as shown in Fig. 4. To
xtract 𝜂, the sheet was loaded in the perpendicular direction, where tiles do not rotate because their diagonals are aligned in the
irection of loading and the elastic joints are in tension. We attain a good match between the effective continuum model given by
17) with experimental and fine grain simulation data by setting 𝜂 = 0.002 kPa−1 in the coarse mesh simulations. Fig. 4 shows a
omparison of effective continuum simulations of the in-plane elastic behaviors with experiments and Abaqus/Standard simulations
rom prior work (Celli et al., 2018), where the mesh fully resolves the fine features of the specimen geometry.

1 Standard Lagrange polynomial shape functions have discontinuous first-derivatives at the boundaries of elements. This would result in integrating the
7

roduct of two Dirac delta functions, which is undefined.
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Fig. 4. Effective stress vs. stretch for a sheet with a periodic cut pattern. The insets show four unit cells of this structure, see Fig. 2a for an image of the entire
sheet. We compare our effective continuum model (solid red and blue lines) represented by (17) to experiments (solid black lines) and fine-grain finite element
simulations (gray dashes) that fully resolve the small geometric features in our sheets. These experiments and the fine-grain simulations (using Abaqus/Standard)
were conducted in our prior work (Celli et al., 2018). The experimental curve for the soft loading direction does not start at 𝜆 = 1 due to the effect of gravity
in a vertically loaded tensile testing machine. The inset on the bottom left of the figure shows a small region of the mesh used in the Abaqus simulations to
capture the geometry of the elastic joints. The large number of elements needed for these fine grain simulations motivates the usage of effective continuum
models.
Source: The insets in this image were adapted from Celli et al. (2018) by permission of The Royal Society of Chemistry.

We adjust the classic bending stiffness for a Kirchhoff–Love plate (Timoshenko and Woinowsky-Krieger, 1959) by including a
scaling factor 𝛼 that accounts for the reduced bending stiffness of a porous sheet (Shrimali et al., 2021). Therefore, the bending
stiffness of the patterned sheet can be written in the following form:

𝐵 = 𝛼𝐸𝑡2

12(1 − 𝜈2)
. (23)

Here, 𝐸 = 2 MPa is Young’s modulus (obtained from linear regime tensile tests on a 55 mm × 9.2 mm × 1.5 mm dogbone sample of
natural rubber), 𝑡 is the sheet thickness, and 𝜈 = 0.5 is Poisson’s ratio. We adopt a fitted scaling value of 𝛼 = 0.25. Again, (17) is the
strain energy per unit thickness, hence the scaling of 𝐵 with 𝑡2.

4.2. Out-of-plane buckling of sheets with graded mesostructure

We now consider a more interesting pattern of cuts that is non-periodic, and where spatial variations in the local quasi-
mechanism behavior lead to kinematic incompatibilities. To model the behavior of these sheets, we update the geometry vector
𝝓(𝑥𝛼) = {𝑙1(𝑥𝛼), 𝑙2(𝑥𝛼), 𝛿(𝑥𝛼), 𝑤1(𝑥𝛼), 𝑤2(𝑥𝛼)}. We have three specimens of equal thickness 𝑡 = 1.55 mm, but varying aspect ratios.
Now, 𝑙1 = {4.5 mm, 6 mm, 7.5 mm} for the three sheets (the overall width dimensions of the square sheets scale linearly with 𝑙1 to
162 mm, 216 mm, and 270 mm, respectively). The other parameters are 𝑙2 = 2𝑙1, 𝛿 = 𝑙1∕8, 𝑤1 = (𝑙1−𝛿)∕2, and 𝑤2(𝑥𝛼) =

𝑙1−𝛿
2

(

1−sin 𝜋𝑥2
18𝑙2

)

.
The non-uniform geometry is accounted for by considering spatially varying 𝑤2(𝑥𝛼) in the finite element formulation. We note that
although the geometric parameter 𝑤2(𝑥𝛼) is non-uniform, we still use a uniform soft elastic energy density, 𝛹𝑠, because it represents
the energetic cost of the non-ideal mechanism and the joint density is still uniform.

The geometric gradation of the mesostructure leads to variations in the local quasi-mechanism behavior over the extent of the
sheet. This causes in-plane kinematic incompatibilities, which lead to out-of plane buckling after each sheet’s critical stretch is
reached, as shown in Fig. 5a–b. We show the buckled mode nucleation and the evolution of the post-buckled height of the central
point in the sheets as a function of boundary point displacement in Fig. 5c. We compare simulations of our effective continuum model
(computed using the deal.II finite element library Arndt et al., 2021 on a 36 × 36 uniform quadrilateral mesh) to measurements of
he physical samples (using a level-calibrated mounted caliper) and see excellent agreement between the two, especially at larger
oundary displacements. As expected, the stretch at which buckling occurs is delayed by increasing the thickness-to-width ratio.
he difference between the computational predictions and experimental measurements of buckling nucleation and height at lower
tretch values can be partially attributed to the fact that our simulations do not account for friction with the table or gravity. These
wo physical processes are important since the material is soft and bending is a low-energy deformation for shells with small gaussian
urvature. As the dome height increases, the structure becomes less susceptible to the effect of gravity. A similar analysis of how
he parameter 𝛿 affects the buckling response of the sheets is shown in Appendix D.
8
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Fig. 5. Buckling behavior of sheets with non-uniform cut patterns. (a) Up to a certain stretch 𝜆, point displacements lead to in-plane deformations. (b) Following
a critical value of 𝜆, the in-plane kinematic incompatibilities will lead to out-of-plane buckling. The scale bar represents 3 cm. (c) Comparison of dome height
between effective continuum simulations (solid lines) and experiments (dots) for sheets of three aspect ratios. Here, ℎ𝑚𝑖𝑑 is the height of a sheet’s center point,
𝜆 is the stretch of the sheet’s center line in the 𝐞1 direction, 𝑡 is the sheet thickness, and 𝑙1 is the length of the unit cell grid spacing in the 𝐞1 direction.

Fig. 6. Post-buckling behavior of sheets with three thickness-to-width ratios. These are the same three sheets represented in Fig. 5c. Here, ℎ is the height field,
𝑡 is the sheet thickness, 𝑙1 is the length of the unit cell grid spacing in the 𝐞1 direction, and 𝜆 is the applied stretch at the midpoint of the sheet edge. In each
entry of the stretch vs. aspect ratio grid, the laser scans are plotted directly above the simulated deformed meshes. As expected, we see that sheets with higher
thickness-to-width ratios will nucleate at larger stretches and will buckle into wider domes relative to the overall sheet width.

Finally, to better visualize how the post-buckling behavior evolves and is affected by the aspect ratio of the sheet, we show
laser scans of the physical specimens and deformed simulation meshes at three different boundary point displacements in Fig. 6.
Accurate quantitative comparisons are challenging due to the manual stitching process that follows the acquisition of laser scan
data patches, which introduces slight distortions and puts certain regions of the scanned sheet at an inclined plane relative to the
rest of the structure. As expected, the post-buckled domes are wider (relative to the overall width of the sheets) for specimens that
have larger thickness-to-width ratios, showing good qualitative agreement between experiments and simulations. Furthermore, the
onset of buckling occurs at greater stretches as 𝑡∕𝑙1 increases.

These results show that this effective continuum modeling framework is a powerful tool for understanding the physics of quasi-
mechanisms in non-periodic media. In our previous work (Celli et al., 2018), we only captured in-plane deformation mappings using
standard, fine-grained finite element procedures since the large number of elements needed to resolve the small mesostructural
9
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t

features (in the range between 105 and 106 elements depending on the structure being simulated) caused the calculation of out-of-
plane buckling modes to have an inviable computational cost. Using the effective continuum approach we can get accurate results
merely using a 36 × 36 uniform quadrilateral mesh, a reduction of two to three orders of magnitude in the number of elements used.
Each of the bifurcation curves in Fig. 5 took roughly 5 min to compute running on a single core of a Intel® Xeon® 5218 processor.
Meanwhile, we could not make simulations for the post-buckling behavior of our sheets converge in a reasonable amount of time
using a standard fine-grained FEM approach. A discussion of mesh convergence is presented in Appendix E.

5. Conclusions

We present an effective continuum modeling framework for architected media that display quasi-mechanism behaviors and
demonstrate its validity on sheets that are patterned with diamond-shaped cuts. The model incorporates a penalty for deviations
from quasi-mechanism behaviors and relies on material model parameters extracted directly from experiments. We show that the
approach correctly predicts the mechanical behavior of non-periodic media, even when the model’s parameters are derived from
experiments on periodic specimens. Our approach permits accurate and efficient simulations of mechanical behaviors that would
otherwise be impractical to model using fine-grained simulations that fully resolve the material’s small geometric features.

We note that the implicit relation (7) does not define the function 𝑔(𝐂,𝝓) uniquely, implying that other choices of the functions
𝛹𝑝 from (12) and 𝛹𝑚 from (13) are possible. A good agreement with experiments is still attained, suggesting that the buckling
behavior of the sheet is robust with respect to the choice of the function 𝑔. In principle, the effective elasticity parameters 𝜆, 𝜇, 𝜂
and 𝐵 are functions of the geometric parameters and would vary in space if not for the fact that 𝑙1, 𝑙2 and 𝛿 are constant throughout
the sheets, yielding a uniform spatial distribution of joints. This allows us to determine the values of the elasticity parameters by
fitting experiments. Alternatively these values could be extracted using a homogenization approach.

There are a few limitations to this approach. First, it requires a sufficient separation of length scales between the global
deformation mode dimensions and the unit cell size. Therefore, it would not be able to capture the local buckling modes observed
in some kirigami sheets (Rafsanjani et al., 2018) or handle the dome kinking that occurs in our systems if they are fabricated from
extremely thin sheets (Celli et al., 2018). Furthermore, although we believe that this modeling approach could be applied to a broad
range of architected media that display quasi-mechanisms, extracting the material model constants from experiments may be more
challenging in other systems in comparison to the perforated sheets we have discussed. Finding a suitable soft elastic energy density
𝛹𝑠 that is appropriate for the quasi-mechanism regime also requires the modeler to have an intuition for which constitutive models
can be appropriately tailored to fit experimental data attained from experiments on their system.

In the future, this modeling framework could be adapted to 3D media and materials with temporally varying mechanical
properties, provided that they also display quasi-mechanisms.
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Appendix A. Strong form of equilibrium

The strong form of the equilibrium relations under the mixed formulation are

−∇ ⋅
(

2𝐅
𝜕𝛹𝑚
𝜕𝐂

)

= 0 in 𝛺,

−∇ ⋅
(

2
𝜕𝛹𝑚
𝜕𝐂

∇𝑤
)

+
𝜕𝛹𝑐
𝜕𝑤

+ 𝐵𝛥𝑣 = 0 in 𝛺,

𝐵(𝛥𝑤 − 𝑣) = 0 in 𝛺,

(A.1)

with boundary conditions
(

2𝐅
𝜕𝛹𝑚
𝜕𝐂

)

⋅ 𝐧 = 0 on 𝜕𝑓𝛺,

𝐮 = 𝐮0 on 𝜕𝑢𝛺,

𝑤 = 𝑤0, 𝑣 = 0 on 𝜕𝛺.

(A.2)

The first two equations in (A.1) are the in-plane and out-of-plane momentum balance equations, respectively. The last equation is
he constraint that 𝑣 = 𝛥𝑤.
10
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Appendix B. Finite element formulation and solution procedure

The fields 𝐮, 𝑤, and 𝑣 are 𝐻1(𝛺), so we may consider a Galerkin finite element formulation with p = 1 shape functions for them.
herefore,

𝐮 =
𝑛𝑢
∑

𝑖=0
𝑢𝑖𝜱𝑢

𝑖 , 𝑤 =
𝑛𝑤
∑

𝑖=0
𝑤𝑖𝛷

𝑤
𝑖 , 𝑣 =

𝑛𝑣
∑

𝑖=0
𝑣𝑖𝛷

𝑣
𝑖 , (B.1)

here {𝜱𝑢
𝑖 } is the set of vector-valued shape functions for the in-plane displacements. {𝛷𝑤

𝑖 } and {𝛷𝑣
𝑖 } are the scalar-valued sets of

hape functions for 𝑤 and 𝑣, respectively. Because we assume homogeneous boundary conditions for both of these fields, we can
hen consider {𝛷𝑤

𝑖 } = {𝛷𝑣
𝑖 }. Then, using these shape functions for the variations in (22), the discrete equilibrium equations can be

ritten as

⎡

⎢

⎢

⎣

𝐑𝑢

𝐑𝑤

𝐑𝑣

⎤

⎥

⎥

⎦

= 𝐑 = 𝟎 , (B.2)

here

𝑅𝑢
𝑖 = ∫𝛺

(

2𝐅
𝜕𝛹𝑚
𝜕𝐂

)

∶ ∇𝜱𝑢
𝑖 𝑑𝐴,

𝑅𝑤
𝑖 = ∫𝛺

(

2
𝜕𝛹𝑚
𝜕𝐂

∇𝑤 − 𝐵∇𝑣
)

⋅ ∇𝛷𝑤
𝑖 +

𝜕𝛹𝑐
𝜕𝑤

𝛷𝑤
𝑖 𝑑𝐴,

𝑅𝑣
𝑖 = ∫𝛺

−𝐵 𝑣𝛷𝑣
𝑖 − 𝐵∇𝑤 ⋅ ∇𝛷𝑣

𝑖 𝑑𝐴.

(B.3)

To solve for this equilibrium, we use Newton–Raphson updates of the form

𝐊(𝐱)𝛥𝐱 = −𝐑(𝐱), (B.4)

where 𝐱 = [𝑢0,… , 𝑢𝑛𝑢 , 𝑤0,… , 𝑤𝑛𝑤 , 𝑣0,… , 𝑣𝑛𝑣 ] is the vector of degrees of freedom, 𝛥𝐱 are their updates, and 𝐊 is the tangent stiffness
matrix

𝐊 =
⎡

⎢

⎢

⎣

𝐊𝑢𝑢 𝐊𝑢𝑤 𝟎
𝐊𝑤𝑢 𝐊𝑤𝑤 𝐊𝑤𝑣

𝟎 𝐊𝑣𝑤 𝐊𝑣𝑣

⎤

⎥

⎥

⎦

, (B.5)

where

𝐾𝑢𝑢
𝑖𝑗 = ∫𝛺

∇𝜱𝑢
𝑖 ∶

𝜕2𝛹𝑚
𝜕𝐅𝜕𝐅

∶ ∇𝜱𝑢
𝑗 𝑑𝐴,

𝐾𝑤𝑤
𝑖𝑗 = ∫𝛺

∇𝛷𝑤
𝑖 ⋅

𝜕2𝛹𝑚
𝜕∇𝑤𝜕∇𝑤

⋅ ∇𝛷𝑤
𝑗 𝑑𝐴,

𝐾𝑣𝑣
𝑖𝑗 = ∫𝛺

−𝐵𝛷𝑣
𝑖 𝛷

𝑣
𝑗 𝑑𝐴,

𝐾𝑢𝑤
𝑖𝑗 = 𝐾𝑤𝑢

𝑗𝑖 = ∫𝛺
∇𝜱𝑢

𝑖 ∶
𝜕2𝛹𝑚
𝜕𝐅𝜕∇𝑤

⋅ ∇𝛷𝑤
𝑗 𝑑𝐴,

𝐾𝑤𝑣
𝑖𝑗 = 𝐾𝑣𝑤

𝑗𝑖 = ∫𝛺
−𝐵∇𝛷𝑤

𝑖 ⋅ ∇𝛷𝑣
𝑗 𝑑𝐴.

(B.6)

The displacements 𝐮0 on the boundary are incremented, and Newton–Raphson is used to reach an equilibrium configuration. The
previous equilibrium configuration is used as an initial guess for the subsequent iterations.

Appendix C. Stability analysis with mixed method constraint

To probe the stability of an equilibrium configuration, it is common practice to calculate the eigenvalues of the tangent
stiffness matrix. A negative eigenvalue implies an instability, and the equilibrium solution can be perturbed in the direction of the
corresponding eigenvector to explore the buckled solution. In our case, we must restrict ourselves to eigenvectors in the subspace
where the constraint 𝑣 = 𝛥𝑤 is satisfied. To this end, we consider an effective stiffness matrix from the quadratic form, upon which
the constraint is satisfied. Consider the discrete constraint equation:

𝐑𝑣 = 𝐊𝑣𝑤𝐰 +𝐊𝑣𝑣𝐯 = 𝟎. (C.1)

This can also be written in the following form:

𝑣𝑣 −1 𝑣𝑤
11

𝐯 = − (𝐊 ) 𝐊 𝐰. (C.2)
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We can then use a reduced variable set 𝐱𝑟 under which the constraint is satisfied, as

𝐱 =
⎡

⎢

⎢

⎣

𝐮
𝐰
𝐯

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐈𝑛𝑢×𝑛𝑢 𝟎
𝟎 𝐈𝑛𝑤×𝑛𝑤
𝟎 − (𝐊𝑣𝑣)−1 𝐊𝑣𝑤

⎤

⎥

⎥

⎦

[

𝐮
𝐰

]

= 𝐏𝐱𝑟. (C.3)

hen, the quadratic form gives

𝐱𝑇𝐊𝐱 = 𝐱𝑇𝑟 𝐊̃ 𝐱𝑟, (C.4)

here

𝐊̃ = 𝐏𝑇𝐊𝐏 =
[

𝐊𝑢𝑢 𝐊𝑢𝑤

𝐊𝑤𝑢 (

𝐊𝑤𝑤 −𝐊𝑤𝑣 (𝐊𝑣𝑣)−1 𝐊𝑣𝑤)

]

. (C.5)

o assess stability, we probe the eigenvalues of this effective stiffness matrix 𝐊̃. An eigenvalue passing through zero along the
rinciple deformation path implies an instability. The corresponding eigenvector can then be used to produce a perturbation, using
to map back to the full variable set. The magnitude of the perturbation is chosen to be on the same order as the displacement

ncrement. The direction of the perturbation is decided such that the 𝑤 component at the middle of the sheet is positive.

ppendix D. The effect of the parameter 𝜹 on the buckling response of the sheets

The effect of joint slenderness 𝛿∕𝑙1 on the buckling behavior of the sheets with graded unit cell geometry is shown in Fig. D.7.
ere, 𝑙1 = 6 mm, 𝑙2 = 2𝑙1, 𝑤1 = (𝑙1 − 𝛿)∕2, 𝑤2(𝑥𝛼) =

𝑙1−𝛿
2

(

1− sin 𝜋𝑥2
18𝑙2

)

, 𝑡∕𝑙1 = 0.260, and 𝛿 = {𝑙1∕8, 𝑙1∕10, 𝑙1∕12}. Decreasing the value
f 𝛿 lowers the membrane energy at a faster rate than the bending energy, delaying buckling.

Fig. D.7. Buckling behavior of sheets with the same graded geometry shown in Fig. 1c, but with varying joint width 𝛿. Using smaller values of 𝛿 lowers the
membrane energy at a faster rate than it affects the bending energy, thus delaying buckling.

The elasticity parameters used for these simulations were extracted from experimental data shown in the Supplementary
Information Fig. S8 of Celli et al. (2018):

• For 𝛿∕𝑙1 = 0.125 ∶ 𝜇 = 17 kPa, 𝜆 = 0.1 kPa, 𝜂 = 0.002 kPa−1

• For 𝛿∕𝑙1 = 0.100 ∶ 𝜇 = 11 kPa, 𝜆 = 0.1 kPa, 𝜂 = 0.002 kPa−1

• For 𝛿∕𝑙1 = 0.083 ∶ 𝜇 = 6 kPa, 𝜆 = 0.1 kPa, 𝜂 = 0.002 kPa−1

Appendix E. Mesh convergence

Fig. E.8 shows the results of a mesh convergence analysis performed for a buckling sheet with the following geometric parameters:
𝑙1 = 6 mm, 𝑙2 = 2𝑙1, 𝛿 = 𝑙1∕8, 𝑤1 = (𝑙1 − 𝛿)∕2, and 𝑤2(𝑥𝛼) =

𝑙1−𝛿
2

(

1 − sin 𝜋𝑥2
18𝑙2

)

. Here, we examined the energy  of the final buckled
configuration at a stretch of 𝜆 = 1.17 for meshes varying from 12 × 12 to 64 × 64, and compared it to the energy 𝑚𝑖𝑛 of the system
in an identical loading scenario when using an 84 × 84 mesh.

The slope of the linear fit of log(| − 𝑚𝑖𝑛|∕𝑚𝑖𝑛) plotted against log(𝑙2∕𝐻) (where 𝐻 is the element length) gives us a convergence
ate of 1.54. Standard linear elasticity (for first order elements) has a convergence rate of energy with mesh size of 2. However,
stimating the convergence rate for linear biharmonic problems using mixed method when using linear elements becomes quite
omplicated (Scholz, 1978). Attaining a rate of 1.54 for (large) deformations well into the non-linear regime is very good.

The fully resolved simulations were obtained from Celli et al. (2018). The Supplementary Information from that paper states
hat the error from doubling the mesh size was under 1%.
12
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Fig. E.8. Mesh convergence analysis.  is the energy of buckled sheet at a stretch of 𝜆 = 1.17 for meshes varying from 12 × 12 to 64 × 64. 𝑚𝑖𝑛 is the energy
of the sheet when using an 84 × 84 mesh. 𝐻 is the element length and 𝑙2 is the characteristic unit cell length. The slope of the linear fit shown in the figure
corresponds to the convergence rate.
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