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Growth rules for irregular architected materials with

programmable properties

Ke Liu%2, Rachel Sun't, Chiara Daraio®*

Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding
the role of irregularity in determining material properties offers a new path to engineer materials with superior
functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We
uncover fundamental, probabilistic structure—property relationships using a growth-inspired program that
evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set
of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in
functional properties starting from very limited initial resources, which echoes the diversity of biological
systems. We identify basic rules to control mechanical properties by independently varying the
microstructure’s topology and geometry in a general, graph-based representation of irregular materials.

he properties of materials depend both
on their chemical composition and on
the geometry of their microstructures.
Empowered by carefully engineered sub-
scale microstructures, architected mate-
rials (I-5) have been suggested for applications
in optics (6), electromagnetics (7, 8), acoustics
(9), and robotics (10-12). In mechanics (13),
architected materials have been designed to
exhibit negative thermal expansion (74), nega-
tive Poisson’s ratio (75), ultrahigh strength-to-
weight ratio (16, 17), tunable failure load (18),
vanishing shear modulus (79), and shear-normal
coupling (20). To reduce the complexity of
designing structures in a nearly infinite space,
human-made architected materials are mostly
designed by periodic tessellations of selected
geometric motifs. These motifs are either de-
rived empirically from a limited number of
known geometries, such as biomaterials, crys-
talline solids, and art (15, 16, 21), or com-
putationally generated within bounding boxes
discretized into pixels or voxels (22-25).
Materials with periodic microstructures are
special cases in the realm of architected
materials. Natural materials are usually char-
acterized by irregular and heterogeneous
microstructures, such as wood (26), nacre
(27), insect nests (28) (Fig. 1A), or human
bones (29). They present distinctive proper-
ties, such as the exceptionally white scales of
some beetles (30) or the functional stability
to perturbations of proteins (31). The geo-
metric irregularity of biomaterials is a natural
outcome of self-organized growth, which un-
folds through a distributed, stochastic build-
ing process that follows simple local rules
without a centralized plan (28).
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Understanding the independent role of
geometry and topology in irregular micro-
structures provides opportunities for the de-
sign and fabrication of advanced engineering
materials. However, current descriptions
of geometry used for periodic systems lead
to ambiguity in distinguishing the contribu-
tion of specific structural features, or their
repetition, on given functionalities. This
underlines the importance of developing
tools to define spatial characteristics in irreg-
ular materials.

Recently, computational methods have been
developed to design and characterize irregular
microstructures (32-36). For instance, the de-
sign of random, auxetic truss lattices revealed
important connections between Poisson’s
ratio and lattice connectivity (33, 34). How-
ever, these tools do not provide a general frame-
work to describe the geometry of architected
materials, for example, because they do not
include periodic designs in their descriptors.

A virtual growth program for microstructure
generation

To better understand the structure-property
relationships in irregular architected materials,
we created a tool that evokes the distributed
stochastic building process of natural growth,
which we call the virtual growth program. The
program is a graph-based method that builds
on the combinatorial space of basic building
blocks (Fig. 1B). These building blocks are local
structural elements that can be identified in
arbitrarily complex microstructures at a scale
that is smaller than the typical unit cells in
periodic designs. In the virtual growth process,
the building blocks are connected stochasti-
cally on an underlying network, in which each
pair of neighbors abides prescribed adjacency
rules (Fig. 1, C and D). In this framework, a
material’s microstructure can be both periodic
and nonperiodic. The framework also decouples
topology (the connectivity of the underlying
network) from the geometry (the shape of the

building blocks) and allows investigating
their independent influence on global mate-
rial properties.

In this work, we use the virtual growth pro-
cess to unravel structure-property relationships
in irregular architected materials. We show that
by starting from a very limited number of local
structures (i.e., the building blocks), it is possible
to generate a rich set of material microstruc-
tures with a wide range of functional properties.
Specific properties can be targeted, by selecting
adjacency rules and building blocks availability
during “growth.” These findings provide insight
into how to program material properties in
stochastic, self-assembly processes, and may
influence future manufacturing of engineer-
ing materials.

The virtual growth program relies on four
major inputs, which serve as the genome for
the generation of architected materials: (i) the
topology of the underlying network, (ii) the
geometry of building blocks, (iii) the adjacency
rules between building blocks, and (iv) the
availability of (or frequency hint for) building
blocks. The program can create materials with
different microstructures (Fig. 2). For example,
the same square network (Fig. 2A) can be used
to accommodate different building blocks (Fig. 2,
B to D), including their reflections and rota-
tions (fig. S1A). The adjacency rules define
whether and how the basic building blocks
can pair with each other (fig. S1B) by enforcing
geometrical compatibility at the interface and
avoiding unwanted geometric features. For
example, in the case of Fig. 2B, we forbid two
“L”-shaped building blocks from connecting to
avoid forming disconnected loops. The avail-
ability of building blocks resembles natural
resource limits and influences how many times
each building block appears in the final design
(fig. S1C). Infinite availability of building blocks
leads to constant frequency hints throughout
the “growth” process. Defects are likely to hap-
pen when the availability of a certain building
block is very low (fig. S1, D and E). To avoid
defects, in the rest of this study, we assume that
there is an infinite amount of building blocks
available for each “growth” process.

The virtual growth process (movie S1) imple-
ments a WaveFunctionCollapse algorithm (37).
In each step, the algorithm assigns a random
building block to the node on a predefined
network with minimal nodal entropy. Here,
nodal entropy is related to the number of build-
ing blocks that can be assigned to a given node.
For example, if only one building block can be
assigned to a given node to satisfy adjacency
rules, then its nodal entropy is zero. If a node
can be filled with any building block, its nodal
entropy is maximal. When the algorithm can-
not assign any building block to a node, a
defect forms. This process continues until all
nodes are assigned, and the nodal entropies
are updated after each step.
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Fig. 1. Schematic of the virtual growth process of irregular architected materials. (A) Termite nests have irregular internal structures that are optimized for
structural stability and ventilation (28). (B) Abstraction of the “growth” process, which assigns building blocks on an underlying graph. (C and D) lllustration of the
virtual growth process (C) in 2D (movie S1) and (D) in 3D (movie S2). The physical models in (C) and (D) are 3D printed.

Clustering and convergence of material properties
We constrain the underlying network to be a
squared grid, without loss of generality, and
use the building blocks in Fig. 2B and fig. S1.
The nondeterministic assignment of building
blocks leads to a diversity of architected ma-
terials. Even given the same building blocks,
adjacency rules, and frequency hints, the program
generates different material microstructures
every time. After generating the microstruc-
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tures, we evaluate their linear elastic proper-
ties, Young’s modulus, and Poisson’s ratio in
the ¥ and y directions. To obtain these prop-
erties, we perform numerical homogenization
(38) using the statistical volume element (SVE)
approach (39). The convergence of linear elas-
tic properties is tested on three different sample
sizes for the SVE and compared to the results
of direct simulations on larger patches (40 by
40 squared grid) of materials. As observed

in Fig. 3A, when the SVEs are of grid size 20
by 20, their properties are close enough to
that of the large 40 by 40 samples. Therefore,
for each particular set of inputs to the virtual
growth program, we generate 100 material
samples on a grid with 20 by 20 nodes and
obtain the distribution of mechanical proper-
ties by evaluating these 100 samples.

We evaluate 11 groups of architected mate-
rials generated by different frequency hints,
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Fig. 2. Irregular materials generated by the
virtual growth program. (A) Typical output
of the virtual growth program, which is a
symbolic graph. The letters and numbers

are indexes that refer to the basic building blocks
and their orientations. (B) Lattice-like design,
which is the focus of this article. The “—" “T
“L" and “+" symbols represent the building
blocks in the box. (C) Spinodal pattern-like
design. (D) Multimaterial composite. We note
that the building blocks are not limited to
square shapes as long as the interfaces
between building blocks are compatible.
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Fig. 3. Mechanical properties of the 2D irregular architected materials.
(A) Numerically evaluated Young's modulus (E,./Es) and average Poisson's
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ratio (va,g) values for different sizes of materials samples as a function of the
dimension of the underlying networks. The first three groups are evaluated by
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homogenization (SVE), and each point with error bars contains 100 samples.
The (last) reference group contains 10 samples and is evaluated by a direct
simulation, with boundary condition as shown in the inset of (D). The error bars
extend minimal and maximal values. Num, numerical; Ref, reference. (B) Plot
of Eag/Es Vs. vayg for 11 sample groups generated by using different frequency
hints, each containing numerical 100 samples. The insets use pie plots to show
the resultant probabilities of appearance of the basic building blocks. Experiments
are performed for seven groups, each with five samples. The error bars extend to
one standard deviation. The arrows indicate trends of property changes. Exp,

experimental. (C) Smoothed distributions of v,,q and E,/Es, based on the
numerical samples. The color code follows (B). P, probability density function.

(D to G) Representative designs and their experimental stress (—o)-strain (—¢)
curves under compression along both x and y directions (movie S3). The stresses
(—o) are calculated as effective stress for the bulk volume, in units of megapascals.
The stress and strains are effective values with respect to the bulk dimension of
architected materials. The colors of the designs refer to the different sample groups.
The inset shows the boundary conditions. The thin black lines show our definition of
Young's modulus as a secant modulus between 0.005 and 0.015 strain.

but with the same basic building blocks and
adjacency rules (Fig. 3B). The experimental
samples are manufactured by three-dimensional
(3D) printing that uses a stiff rubbery ma-
terial [Semiflex, NinjaTek (38)]. In the exam-
ples shown in Fig. 3B, the generated materials
exhibit nearly tetragonal symmetry (not iso-
tropic) with similar effective Young’s moduli
and Poisson’s ratio when loaded along the x
and y directions (38). Hence, we use their aver-
age values, i.e., E,, (average effective Young’s
modulus) and v,y (average Poisson’s ratio), to
compare performance of different architected

A

materials’ groups. To obtain a dimensionless
measurement, E,, is normalized by the Young’s
modulus of the constituent material (Eg). From
the numerical samples (fig. S2), irregular ar-
chitected materials of the same group tend
to cluster together, in different patterns. The
marginal distributions of E,,, and v,,, are
shown in Fig. 3C. The experimental samples also
follow similar trends in properties’ distribution,
in agreement with numerical simulations.

To study the structure-property relation de-
termined by the presence of different building
blocks, we focus on analyzing the mean values

of the clusters (Fig. 3B). We observe that the
probabilities of appearance of different build-
ing blocks have a distinctive impact on the
mechanical properties. For example, a higher
probability of the “T”-shaped building block
yields a decreasing Poisson’s ratio toward neg-
ative values but has minimal influence on the
material’s average Young’s modulus. A higher
probability of “+”-shaped building block yields
a larger Young’s modulus, but it has negligible
effects on the Poisson’s ratio. In addition, a
higher probability of both “T”- and “+”-shaped

building blocks leads to materials with a
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value of a group of 100 samples, with fractions of the pie showing probabilities of
appearance of the corresponding building blocks. The insets show the
geometries of the basic building blocks and their reference colors in the pie
plots. (E) Typical designs from each of the three databases are shown, with the
background colors matching the colors of the corresponding database.

Fig. 4. Decoupled effect of topology and geometry on material properties.
(A) Ranges of properties covered by three different databases of samples, each
obtained with different variants of building blocks. The dashed boundary of each
cloud reaches to the extremal values of individual samples. (B to D) Zoom-in

distribution of samples in each database. The pie plots are located at the mean
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Fig. 5. Redirection of stresses and deformations. (A and B) Stress
distribution in a piece of material compressed by a prescribed displacement,
with and without the presence of a hole. (A) Piece of continuum material that
has the same elastic properties as the homogenized properties of the irregular
sample in (B). (B) Piece of irregular architected material. For all four cases in (A)
and (B), the boundary condition and the color scale of Von Mises stress (oy)
are shown on the left. Insets show a zoom-in view of stress near the hole.

relatively high Young’s modulus and relatively
large negative Poisson’s ratio, displaying an
additive influence of building block probabil-
ities on mechanical properties. Such trends are
robust and remain consistent in both numerical
and experimental results. We note that the re-
sultant probabilities of appearance of the build-
ing blocks in the generated material samples
are slightly different from the input frequency
hints. This is due to the constraints imposed by
the adjacency rules, as compatibility require-
ments override the frequency hints (fig. S3).
‘We observe some hysteresis effects from the
experimental stress-strain curves (Fig. 3, D to
@G). This is likely due to the constituent mate-
rial’s viscoelasticity and large deformation-
induced contacts and frictions between nearby
elements (fig. S4). Nevertheless, we only focus
on the linear regime of the experimental load-
ing curves and extract the value of the Young’s
modulus in a particular direction, as the se-
cant modulus between 0.005 and 0.015 strain.
We use a digital image correlation system to
track the deformations and obtain the values
of Poisson’s ratio (38). The discrepancies
between the numerical and experimental re-
sults (Fig. 3B) are possibly caused by imperfect
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boundary conditions (e.g., friction), manufac-
turing error, and local nonlinear effects. In
particular, the group of samples with a high
probability of the “—” building block (Fig. 3G)
experiences strong nonlinear effects, as the
long beams buckle immediately after being
loaded. In fact, our experiments show that not
only the linear elastic properties but also the
nonlinear responses of the samples from the
same group tend to behave similarly (fig. S3).

Construction of material databases

The virtual growth program efficiently gen-
erates materials that cover a wide range of
linear elastic properties (Fig. 3). Hence, it can
be used as a tool to explore the design and
property space of architected materials by vary-
ing inputs. We demonstrate how changing both
the topology and geometry of material micro-
structures (Fig. 4) results in three databases
that contain 54,000 samples of architected
materials.

The three clouds in different colors refer to
the material samples that were generated by
using three geometric variants of the building
blocks. Each cloud consists of 180 groups of
samples generated by 180 different combina-

(C and D) Face that “smiles” under lateral compression, owing to its
heterogeneous microstructures. (C) 3D printed structure before compression.
The false color shades refer to regions generated by different frequency hints
that lead to different mechanical properties. The zoomed-in views show the
smooth transition between different regions of the microstructure. (D) Structure
during compression. The right half shows the stress distribution from numerical
simulation. The arrows show the direction of loading.

tions of frequency hints (38). The angles of
the “T”-shaped and “L”-shaped building blocks
are changed from an acute angle to a right
angle and to an obtuse angle (Fig. 4, B to D).
The red shaded cloud is occupied by the ma-
terial samples that were generated by using
the first set of variants. Because these mate-
rials are rich in the “T”-shaped building blocks
with a re-entrant acute angle, they mostly ap-
pear to be auxetic. As we change the geometries
of the building blocks (Fig. 4, C and D), the
range of the average Young’s modulus remains
almost the same, but the Poisson’s ratio of the
entire cloud shifts toward the positive range
(Fig. 4A). An obvious negative correlation is
observed between the average Poisson’s ratio
and the probability of the appearance of the
“T”-shaped building block (fig. S5). In gen-
eral, the growth rules and mechanical proper-
ties present nontrivial yet clear correlations
(fig. S5). Typical materials from each of the
three clouds of samples are shown in Fig. 4E.
Despite the different geometries, these three
samples share the same topology because they
have the same underlying network, only filled
with different building blocks, similar to the
examples in Fig. 2.
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Fig. 6. Extension to 3D irregular microstructures. (A) Basic building blocks.
(B) Three geometric variants of selected building blocks. (C) Ranges of
properties covered by the generated architected materials. Each cloud
corresponds to the database that was generated by using different variants of
building blocks in (B). (D) Zoom-in distribution of samples in the first database.
The pie plots are located at the mean value of a group of 100 samples, with
fractions of the pie showing probabilities of appearance of the building blocks

With the virtual growth program, we can
obtain a wide range of irregular, yet program-
mable, architected materials. The program-
mable properties result from the nontrivial
probability distribution of the stochastic top-
ologies and geometries. The property space
can be further expanded. For example, we can
introduce directional preferences of the build-
ing blocks, which drives the current nearly
tetragonal elasticity to orthotropic. Moreover,
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by adding new building blocks, we can sub-
stantially improve the overall shear modulus of
the generated materials [see (38) and fig. S6 for
elaboration].

One advantage offered by irregular mate-
rials is that they offer redundant load paths:
When one part of the material is damaged,
the stress within the irregular architecture
is redistributed through the complex micro-
structural network. This redistribution ensures

06 07

within the bounding box of the corresponding color in (A). (E and F) Influence of
the probability of appearance of certain basic building blocks (insets) on different
mechanical properties. (G and H) Directional Young's modulus (E, normalized by
Es, the Young's modulus of the constituent material) and shear modulus

(G, normalized by Gs, the shear modulus of the constituent material) of the group
of samples marked a diamond box in (D). (I) Digital rendering of a material sample
in the marked group in (D).

that the maximum stress anywhere within
material remains almost the same, before and
after damage, which prevents a cascading
failure. We compare the stress distribution in
a continuum and in an irregular architected
material, before and after punching a hole in
the sample (Fig. 5, A and B). Results of com-
pression tests show that, although the uniform
sample shows classical stress concentration
near the hole, the irregular material shows no

6 of 7



RESEARCH | RESEARCH ARTICLE

such stress concentration. Rather, the stress in
the sample with a hole is redistributed through-
out the entire sample without drastic varia-
tions in peak stress, compared with peak stress
values of the sample without a hole.

Irregular microstructures can be designed
to present heterogeneous distributions of local
elastic properties (4¢0). For nonperiodic archi-
tected materials that are designed from a
database of unit cells (24), tessellating differ-
ent structures and constituent materials while
ensuring connectedness and compatibility is
challenging (25, 40, 41). By using the virtual
growth program, designing materials with
inhomogeneous properties is possible with a
single, continuous process by assigning dif-
ferent frequency hints to different regions of
the sample. With this approach, connectedness
and compatibility are automatically guaranteed
by the adjacency rules. For instance, we show
how it is possible to design an inhomogeneous
microstructure that can concentrate deforma-
tions in selected areas of a sample. We high-
light this ability by designing a “face” that
“smiles” when being compressed from the sides
(Fig. 5, C and D). To change the deformation
characteristics, we assigned different frequency
hints to the different regions on the “face” (Fig.
5C). These sets of frequency hints are extracted
from our databases (Fig. 4 and fig. S6).

By defining 3D building blocks (Fig. 6A) and
adjacency rules, the virtual growth program
can be extended to produce 3D irregular ar-
chitected materials. Similar to the 2D case, we
constructed a database of 33,000 material sam-
ples that were based on three different geo-
metric variations on selected building blocks
(Fig. 6B) and 110 different frequency hints (Fig.
6, C and D). Each material sample is generated
on a 10 by 10 by 10 cubic grid. Each building
block is enclosed in a cube of size 5 mm by
5 mm by 5 mm, and the lattice (beam) mem-
bers are assumed to be circular, with a radius of
1 mm. We observe interesting correlations be-
tween the probabilities of appearance of build-
ing blocks and the mechanical properties (Fig.
6, E and F, and figs. S7 to S9). The anisotropy
of the generated materials can be seen from
the directional Young’s modulus and shear
modulus (Fig. 6, G and H) as a result of our
particular selection of basic building blocks. A
rendered image of a typical sample highlights
the 3D irregular architecture (Fig. 61).
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Discussion and outlook

We describe fundamental, probabilistic rules
that control the overall mechanical response
of irregular materials. Our approach establishes
a general, graph-based representation of mate-
rial microstructures, which we use to create
architected materials with functionally graded
properties and to demonstrate robustness
against damage. In the future, the approach
could be further extended to design materials
with prespecified properties by incorporating
optimization approaches in the selection of
building blocks and/or in the adjacency rules
for growth. The basic building blocks could
also be selected to have more geometries (e.g.,
learned from data), different constitutive ma-
terials, and dimensional scales (e.g., to realize
hierarchical materials). The underlying graph,
which in this work is represented as squared
or cubic grids, can be extended to have more
complex connectivity. Because the virtual growth
program is independent from any particular
material properties, it is readily applicable to
discover nonlinear and multiphysical proper-
ties of materials.
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