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ABSTRACT

Through a combination of analytical, numerical, and experimental methods, we study a three-dimensional metamaterial with the ability to
attenuate both airborne sound and mechanical vibrations, simultaneously, and in all directions. In addition, due to the auxetic nature of the
design (i.e., having a negative Poisson’s ratio), the metamaterial can shrink (or expand) in a relatively uniform manner, without buckling.
We utilize an external load to cause a systematic shape change in the metamaterial and tune the attenuation frequency bands. The presented
design principles can be utilized in many applications related to acoustic and elastic wave manipulation as well as acoustic devices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0104266

Metamaterials are arrangements of basic building blocks (i.e., unit
cell) that repeat in space, giving rise to intriguing properties, such as
polar elasticity,1 non-reciprocity,2 and negative effective properties
(Poisson’s ratio,3 mass-density,4,5 and stiffness6,7), which are rare or not
possible for conventional materials. The literature of metamaterials
with remarkable properties can be loosely classified into three broad
categories of (1) mechanical metamaterials that display unusual quasi-
static performance such as resistance to shear,8,9 indentation,10 frac-
ture,11 and energy absorption;12 (2) acoustic metamaterials that can
manipulate a sound wave propagating within a fluid medium; or (3)
elastic metamaterials, which have the ability to control vibrations within
a solid domain.13 An intriguing direction in the design of metamaterials
is the integration of multiple functionalities at once, bringing the field
closer to practical applications. For example, metamaterials that can
manipulate both airborne sound and mechanical vibrations13–18 or
metamaterials with combined quasi-static and dynamic properties.19,20

Metamaterials have been proposed for potential applications in the
automotive sector,21 sensors,22 biomedical devices,23 textiles,24 sound
insulation,25–28 wave-guiding,29,30 focusing,31 and cloaking.32

In this study, we present an anisotropic auxetic (i.e., with a negative
Poisson’s ratio) metamaterial that can attenuate both elastic vibrations
and airborne sound waves, simultaneously, and in all directions
[Fig. 1(a)]. In addition, the attenuation frequency ranges (i.e., band gaps)

for both acoustic and elastic waves can be tuned (i.e., either widened or
vanished) by applying an external quasi-static load to the metamaterial
[Fig. 1(b)]. The design methodology is based on two attributes: (1) air-
chambers connected by narrow slits to control airborne sound and (2)
elastic regions connected by thinner features to control mechanical
vibrations.13 Both design attributes are included within a reentrant unit
cell frame, to ensure auxetic behavior and allow for tunability.

We start our analysis by considering the dynamics of a metamate-
rial unit cell that repeats infinitely in space. We utilize the finite ele-
ment method, using COMSOL Multi-physics (5.4), to analyze the
metamaterials. The unit cell dimensions are ax ¼ ay ¼ 24ðmmÞ and
az ¼ 20ðmmÞ. We implement Bloch solution in the form: uðx; j; tÞ
¼ ~uðx; jÞeiðj:x�xtÞ, where ~u is the Bloch displacement vector, j is the
wave number, t is time, x is the position vector, and x is the frequency.
By employing Bloch solution, we can solve the system’s equations of
motion as an eigenvalue problem in the form: ½�x2Mþ KðjÞ�u ¼ 0;
where M and K are the discretized mass and stiffness matrices using
the finite element method. We calculate the unit cell’s dispersion curves
for both wave types: elastic vibrations within the solid [Fig. 2(a)] and
airborne sound within the surrounding air [Fig. 2(b)]. Both dispersion
curves show a complete bandgap (highlighted in gray) along the high
symmetry path C� X �M � C� Z � R� A� C [Fig. 2(b), inset].
The symmetry points used are a result of the rectangular shape of the
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unit cell (i.e., in contrast to a simpler cubic unit cell).33 Figure 2(c)
shows six different vibrational mode shapes of the solid unit cell
highlighting (i) an out-of-plane seesaw movement of the plus-sign side
panel of the unit cell, (ii) an auxetic mode (all sides are expanding and
contraction in phase), (iii) a longitudinal mode, (iv) rotational mode of
the plus-sign panels, in addition to the two modes at the edge of the
bandgap (v) and (vi). Figure 2(d) shows six different vibrational mode
shapes of the air unit cell highlighting (i) and (vi) resonances of the
inside cube, (ii) a dipole resonance mode, (iii) a resonance mode of the
outside cube, (iv) an octopole mode, and a dipole mode (v).

Due to the embedded reentrant frame within the unit cell design,
an applied load, either in compression or tension, induces a systematic
change in the unit cell geometry. In other words, the unit cell expands
or shrinks as a whole under external load, preserving most of its fea-
tures. We capitalize on such systemic change in shape to tune the
attenuation region of the metamaterials. We consider the unit cell
under no external load as our baseline with a complete bandgap
between 8 and 9.2 kHz for acoustic waves and between 8.4 and
9.9 kHz for elastic waves, in all directions. First, we apply a prescribed
displacement on the unit cell sides in both x- and y-directions and
compute the deformation of the unit cell sides in the z-direction.

FIG. 2. Unit cell analysis. Dispersion curves of the auxetic metamaterial for (a)
mechanical vibrations and (b) airborne sound (bandgap regions are highlighted in
gray). (c) Elastic and (d) acoustic mode shapes of the corresponding unit cell at
select frequencies.

FIG. 1. Concept: (a) Auxetic vibro-acoustic metamaterial can attenuate both elastic
and acoustic waves. (b) By applying an external load to the metamaterial, we can
tune the attenuation frequency range for both airborne sound and mechanical vibra-
tions, in all directions.

FIG. 3. Band gap tuning. Change in the upper and lower bandgap frequency range
as a function of deformation (%). (b) Relative bandgap size as a function of defor-
mation (%). The upper and lower frequency mode shapes of the (c) solid unit cell
and (d) air unit cell.
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Then, we calculate a new dispersion curves for the emerging unit cell
(with an updated lattice constant in x, y, and z), while taking into
account the internal stresses that accumulates within the unit cell. We
track the evolution of the bandgap frequency range (i.e., both lower
and upper edge of the bandgap) as a function of the applied load
[Fig. 3(a)]. We also calculate the relative width of the bandgap
[Fig. 3(b)] as BG%¼ðx1�x2Þ=½ðx1þx2Þ=2�, where x1 and x2 are
the lower and upper frequency bounds of the bandgap, respectively. As
the unit cell gets stretched outwards, the bandgap frequency range
shrinks, until it vanishes at 8%ax deformation for acoustic waves and
14%ax deformation for elastic waves. In contrast, compressing the unit
cell increases the bandgap frequency range for acoustic waves and has a
minute effect on elastic waves (see the supplementary material for all
dispersion curves for both wave types under external applied loads).
The mode shapes for different x(s) are plotted in Figs. 3(c) and 3(d).

To validate the unit cell model (i.e., with infinite periodicity), we
consider a structural level analysis of the metamaterial (i.e., finite
model). We tessellate the unit cell (both solid and air, separately) in a
7 � 7 � 7 cuboid [Figs. 4(b) and 4(e)]. We apply a harmonic excita-
tion at the surface of the cuboid, shown as black (x-direction), red
(y-direction), and blue (z-direction) markers in Figs. 4(b) and 4(e).
We sweep through frequencies between 1 Hz and 11 kHz and record
the response amplitude at the opposite surface of the excitation point.
The transmission results show clear attenuation through the solid and
air cubes at the predicted bandgap regions as highlighted in gray in
Figs. 4(a) and 4(d). To visualize the transmission and attenuation of
exited waves within the metamaterial, we superimpose the response
amplitude as heat maps over the finite sample when excited at 4.5
and 9 kHz for both wave types in all directions [Figs. 4(c) and 4(f)].

At 4.5 kHz, a passband frequency, elastic waves propagate throughout
the structure when excited in any of the three principle axes x, y, or z.
However, at 9 kHz, elastic waves are attenuated in all directions. It is
worth noting that the wave is immediately attenuated when excited in
the z-direction, while there exists a line-like surface mode for both x
and y excitations. At 4.5 kHz, which is also a passband frequency for
airborne sound, the wave propagates freely within the lattice regardless
of excitation direction [Fig. 4(f), top]. At 9 kHz, a stop band frequency
exists for airborne sound as well, the wave is not allowed to propagate
through the medium [Fig. 4(f), bottom].

To validate our numerical simulations of the infinite and finite
structures, we fabricate a 3 � 3 � 3 cuboid using additive manufactur-
ing (3D printer Fromlabs 3) (Fig. 5). We characterize the material prop-
erties in-house using a dog-bone tension test (see the supplementary
material). The measured material properties are Young’s modulus
E¼ 1.22GPa, density q ¼ 1205 kg/m3, and Poisson’s ratio � ¼ 0:3.
We experimentally test the sample by mounting it on top of a mechani-
cal shaker (Br€uel and Kjær 4180) [Fig. 5(a)] and harmonically sweep
through frequencies from 1 to 11 kHz. We measure the metamaterial
response using a scanning laser Doppler vibrometer (Polytech-PSV-
500). We replicate the experiment numerically and plot the response of
both the numerical and experimental transmission as a function of fre-
quency [Fig. 5(b)]. The predicted bandgap frequency range (highlighted
in gray) using the infinite unit cell model matches well with the numeri-
cal transmission. The experimental transmission at 0% compression
matches fairly with the predicted frequency range. The discrepancy
might stem frommanufacturing tolerances or the small number of unit
cells. To experimentally validate the tunability of the transmission, we
compress a 3 � 3 � 3 cuboid (see supplementary material, Fig. S5)

FIG. 4. Finite structure analysis. Frequency response functions of (a) finite solid cube and (d) finite air cube. The bandgap regions are highlighted in gray. Excitation points are
marked with circles on the (b) solid and (e) air cubes. (c) Displacement heat maps of the solid cube at 4.5 kHz, a passband frequency (top) and 9 kHz, a stop band frequency
(bottom). (f) Acoustic pressure heat maps of the air cube at 4.5 kHz, a passband frequency (top) and 9 kHz, a stop band frequency (bottom).
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in both x- and y-directions, simultaneously, with �4:16%ax and
�8:33%ax and observe the transmission through the sample [Fig. 4(b)].
As predicted, the bandgap still exists, even after�8%a compression.

In this study, we present a design methodology, simulations, and
experiments of an auxetic, anisotropic metamaterial that can simulta-
neously attenuate both elastic vibrations and airborne sound in all
directions. Due to the auxetic nature of the metamaterial, an applied
load, either in compression or tension, causes a systematic shape
change within the unit cell. The resulting transformation in geometry
induces a shift in the attenuated frequency ranges for both sound and
vibrations, independently. Our results can open new avenues for the
design of tunable multi-functional metamaterials, with potential appli-
cation in vibration and sound control.

See the supplementary material for more information about the
material’s properties, unit cell feature sizes, effect of Poisson’s ratio,
dispersion curve evolution, and experimental methods.
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