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A B S T R A C T

When the elastic properties of structured materials become direction-dependent, the number
of their descriptors increases. For example, in two-dimensions, the anisotropic behavior of
materials is described by up to 6 independent elastic stiffness parameters, as opposed to
only 2 needed for isotropic materials. Such high number of parameters expands the design
space of structured materials and leads to unusual phenomena, such as materials that can
shear under uniaxial compression. However, an increased number of properties descriptors and
the coupling between shear and normal deformations render the experimental evaluation of
material properties more challenging. In this paper, we propose a methodology based on the
virtual fields method to identify six separate stiffness tensor parameters of two-dimensional
anisotropic structured materials using just one tension test, thus eliminating the need for
multiple experiments, as it is typical in traditional methods. The approach requires no stress
data and uses full-field displacement data and global force data. We show the accuracy of our
method using synthetic data generated from finite element simulations as well as experimental
data from additively manufactured specimens.

. Introduction

The advent of additive manufacturing has allowed the design and engineering of a new class of materials known as metama-
erials, or structured/architected materials. Mechanical metamaterials are a special branch of metamaterials that derive special
unctionalities from their peculiar deformation, dynamic motion and/or elastic energy distribution (Lee et al., 2012; Christensen
t al., 2015; Zadpoor, 2016; Bertoldi et al., 2017; Surjadi et al., 2019). Metamaterials derive their effective properties from both
he micro- and meso-structure and their constitutive material properties. They often exhibit mechanical properties that deviate from
hose of their constituent materials, showing unusual behaviors, such as negative Poisson’s ratios (Greaves et al., 2011), vanishing
hear moduli (Kadic et al., 2012), and negative refractive indices (Kaina et al., 2015).

By carefully selecting the geometry of the micro- and meso-structures with varying symmetries (Milton and Cherkaev, 1995;
adic et al., 2012; Wu et al., 2019; Kulagin et al., 2020; Mao et al., 2020; Bastek et al., 2022), metamaterial designers can explore
ovel anisotropy classes in the material responses. In turn, the presence of rich anisotropy expands the materials’ functionality space,
y exploiting coupled-deformation mechanisms that are non-existent in symmetric structures. Examples include metamaterials that
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twist under compression (Frenzel et al., 2017; Chen et al., 2018; Wu et al., 2019; Yuan et al., 2021), shear under thermal loading (Ni
et al., 2019) and shape-morph (Guseinov et al., 2020; Risso et al., 2021; Agnelli et al., 2022). In the dynamic regime, anisotropy
allows observing phenomena like conical refraction (Ahn et al., 2017) and control of broadband elastic waves (Zheng et al., 2019;
Yang et al., 2019; Zheng et al., 2020).

In a two-dimensional continuum, the elastic behavior of an anisotropic material is described using six independent elastic
arameters (Ting and Chi-Tsai, 1996). In experiments, characterizing these many independent elastic parameters is quite complex.
ndeed, the presence of shear-normal coupling makes it hard to measure even one of the six parameters from a single experiment.
rior work suggested different approaches to experimentally measure the elastic parameters for different anisotropy classes (Schittny
t al., 2013; Considine et al., 2014; Gras et al., 2015; Lee et al., 2016; Kim et al., 2020; Agnelli et al., 2021). However, most of
hese approaches focus on measuring the stiffness tensor components when the off-diagonal, shear-normal coupling, components are
bsent. In addition, several of these approaches require multiple experimental steps. For example, techniques based on the detection
f different acoustic wave speeds along different material directions involve multiple tests and assume a certain material symmetry
n predicting elastic parameters (Every and Sachse, 1990; François et al., 1998). To date, there are no experimental methods that
an measure the stiffness parameters of fully anisotropic structured materials from a single experiment.

Traditional material parameter identification methods rely on single-load experimental setups with homogeneous (constant)
train distributions within the tested specimen, which allow the derivation of closed-form stress–strain relations. However, the
mount of data that can be acquired through a one dimensional tension test, for example, is limited (e.g., one stress–strain data
air for each measurement). When characterizing complex materials, multiple experimental setups with different loading conditions
re needed. Full-field identification methods allow extracting additional information from single-load experiments. Measuring the
ull displacement field, e.g., through Digital Image Correlation (DIC), of arbitrarily shaped specimens under loading maximizes the
mount of data generated from a single experimental test. Such data can then be used to characterize the material by applying
nverse identification methods such as, among others, Finite Element Model Updating, the Equilibrium Gap Method or the Virtual
ields Method (VFM), see Avril et al. (2008), Roux and Hild (2020), Pierron (2023) for a review.

These methods have in common that they are used to calibrate the parameters of an a priori chosen material model, i.e., the
athematical functions and operations that describe the material response need to be fixed by means of the intuition or modeling

xperience of the user. However, the selection of inappropriate a priori assumptions about the model and its underlying mathematical
tructure can introduce errors. Recent research used full-field data to train machine-learning-models, whose versatile ansatz spaces
romise to mitigate modeling errors. Flaschel et al. (2021), for example, proposed the method EUCLID (Efficient Unsupervised
onstitutive Law Identification and Discovery) that uses sparse regression (Tibshirani, 1996) informed by full-field displacement
ata and net reaction force data, to automatically select interpretable material models from a potentially large predefined set
f candidate material models. EUCLID has been applied to hyperelasticity (Flaschel et al., 2021), elastoplasticity (Flaschel et al.,
022), viscoelasticity (Marino et al., 2023), and generalized standard materials (Flaschel et al., 2023), see Flaschel (2023) for an
verview. Further, EUCLID was formulated in a Bayesian setting by Joshi et al. (2022) to simultaneously perform model selection
nd quantification of uncertainty in the material parameters. In contrast to selecting interpretable material models through sparse
egression, full-field data may also be used to train black-box material model surrogates like neural networks, as shown by Man and
urukawa (2011), Huang et al. (2020), Liu et al. (2020) for small strain elasticity and by Thakolkaran et al. (2022) for hyperelasticity.
n the present work, it is assumed that the material response does not leave the realm of elasticity at infinitesimal strains. Thus, the
aterial model can be assumed to be known a priori, and its parameters are calibrated with the VFM.

The VFM, originally proposed by Grédiac (1989) (see also Grédiac et al., 2008; Pierron and Grédiac, 2012), employs the balance
f linear momentum in its weak form, to identify unknown material parameters. The VFM method assumes that the kinematic fields
n the specimen, as well as the reaction forces at the boundaries, are known from experiments. As such, material parameters remain
he only unknowns in the balance equations and can be calculated using standard linear or nonlinear solvers. In essence, the VFM
escribes the inverse problem to the classical Finite Element Method (FEM). The method has been applied in various cases, such as
mall-strain elasticity, elasto-plasticity (Grédiac and Pierron, 2006), and hyperelasticity (Promma et al., 2009), among others.

The accuracy of the VFM in identifying unknown material parameters and its sensitivity to noise is highly dependent on the
hoice of the functions for which the weak linear momentum balance is tested, also known as the virtual displacement fields. A
istinction can be made between global virtual fields that are defined over the whole specimen domain, such as polynomials, and
local virtual fields with compact support, such as in the Bubnov–Galerkin discretization with piecewise polynomial shape functions.
As the choice of the virtual fields is arbitrary and user-dependent, several attempts have been made to automate and optimize
it (Avril et al., 2004; Pierron et al., 2010; Marek et al., 2017).

In this article, full-field measurement based identification, and in particular the VFM, is explored in the context of anisotropic
structured materials and compared to traditional identification methods. We focus in particular on the identification of shear-normal
coupling parameters, notoriously complex to extract from conventional experiments. The rest of the paper is organized as follows. In
Section 2, we discuss the theory of anisotropic linear elasticity and introduce our model setup used for parameter identification. In
Section 3, we present our virtual fields method. In Section 4, we describe our experimental and numerical data acquisition methods.
In Section 5, we discuss our results, including experimental validation, and we draw our conclusions in Section 6.

2. Material model and geometry

In this section, we review the fundamental equations of linear elasticity at infinitesimal strains and introduce our model setup
2

used to identify the governing material parameters of anisotropic metamaterials.
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2.1. Anisotropic linear elasticity

Under the small strain assumption, the constitutive law for a general anisotropic solid, which relates the Cauchy stress tensor 𝝈
and the infinitesimal strain tensor 𝜺, is given by the generalized Hooke’s law (Rychlewski, 1984; Ting and Chi-Tsai, 1996),

𝝈 = 𝑪𝜺 or (𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙), (1)

where 𝐶 is a fourth-order tensor, known as the elasticity tensor or the stiffness tensor, and Einstein’s notation for summation over
repeated indices is followed. For a two-dimensional anisotropic solid, under plane stress conditions, Eq. (1) can be written using
Voigt notation as

⎡

⎢

⎢

⎣

𝜎11
𝜎22
𝜎12

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐶1111 𝐶1122 𝐶1112
𝐶1122 𝐶2222 𝐶2212
𝐶1112 𝐶2212 𝐶1212

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜀11
𝜀22
2𝜀12

⎤

⎥

⎥

⎦

, (2)

where 𝐶1111, 𝐶1122, 𝐶2222, 𝐶1112, 𝐶2212, 𝐶1212 are the elasticity tensor parameters in a given reference frame, 𝜀11, 𝜀22 are the axial
strains, 𝜀12 is the shear strain, 𝜎11, 𝜎22 are the axial stresses, and 𝜎12 is the shear stress. For readability, we combine the pair of
indices as follows: ()11 → ()1, ()22 → ()2, ()12 → ()6 and write Eq. (2) as

⎡

⎢

⎢

⎣

𝜎1
𝜎2
𝜎6

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜀1
𝜀2
2𝜀6

⎤

⎥

⎥

⎦

. (3)

Our objective is to identify these six material parameters 𝐶11, 𝐶12, 𝐶22, 𝐶16, 𝐶26, 𝐶66 from experimental measurements while
fulfilling certain constraints. From thermodynamic constraints, the elasticity tensor has to be positive definite, which implies

𝐶11 > 0, 𝐶22 > 0, 𝐶66 > 0, (4a)

𝐶11𝐶22 − 𝐶2
12 > 0, 𝐶11𝐶66 − 𝐶2

16 > 0, 𝐶22𝐶66 − 𝐶2
26 > 0. (4b)

The stiffness parameter 𝐶12 represents the extension-to-extension deformation coupling. The stiffness parameters 𝐶16, 𝐶26 repre-
sent the extension-to-shear coupling, also known as shear-normal coupling, which induces shear stress from axial strains, and axial
stresses from shear strains. Shear-normal coupling has been explored in the context of structured materials by Karathanasopoulos
et al. (2020), Dos Reis and Karathanasopoulos (2022). As a result of these anisotropy-induced couplings, the experimental
identification of the material parameters becomes non-trivial because a constant state of strain is hard to achieve, even in a standard
uniaxial tension test.

Note that the parameters 𝐶16 and 𝐶26 will be zero if the material has symmetry planes along the 𝑥1 and 𝑥2 axes. Thus, the
existence of shear-normal coupling and the maximum number of independent stiffness tensor parameters depend on the symmetries
associated with the material microscopic topology (Ting and Chi-Tsai, 1996; Podestá et al., 2019). In plane elasticity, stiffness tensors
are categorized into four symmetry classes. They are denoted as 𝑂(2) for Isotropic, 𝐷4 for Tetragonal, 𝐷2 for Orthotropic and 𝑍2 for
Digonal (fully anisotropic) with 2, 3, 4 and 6 independent parameters respectively. This categorization is based on the invariants
of the stiffness tensor (Forte and Vianello, 2014; Auffray and Ropars, 2016). However, in our methods of parameter identification,
we do not consider any prior information on the material symmetries or the number of independent material parameters.

2.2. Model setup

Without loss of generality, we study two-dimensional structured solids, obtained from finite periodic tessellation of square unit
cells (Fig. 1).2 We focus on identifying the effective anisotropic material parameters of these composite assemblies, as linear elastic
continua.

To design unit cells, we follow an approach inspired by Cahn’s method of generating Gaussian random fields by superposing
plane waves of fixed wavelength but random in phase and direction (Cahn, 1965; Soyarslan et al., 2018; Kumar et al., 2020). We
first define a function 𝑓 (𝑥1, 𝑥2), as a linear superposition of cosine periodic functions:

𝑓 (𝑥1, 𝑥2) =
∑

𝑚,𝑛
𝐴𝑚𝑛 cos

(

2𝜋(𝑚𝑥1 + 𝑛𝑥2)
)

, ∀(𝑥1, 𝑥2) ∈ [−0.5, 0.5], ∀𝑚, 𝑛 ∈ [−3,−2,−1, 0, 1, 2, 3], (5)

where 𝑚, 𝑛 are spatial frequencies, and 𝐴𝑚𝑛 are the corresponding cosine function weights. The function is then thresholded at a
value 𝜉, to generate a binary image which represents a unit cell, as shown in Fig. 1, panels a, b. Each unit cell is pixelated and
discretized with a 100 × 100 square mesh. In this pixelated representation, the gray phase represents a stiffer material and the
black phase represents a softer material (see Section 4.3.1).

The periodicity is ensured from the choice of the cosine functions directly. We randomly sample the weights 𝐴𝑚𝑛 and the threshold
value 𝜉 to generate a small database of unit cells (about 100), from which we pick four unit cells to study in this paper. The four
unit cells are chosen such that they are diverse in anisotropic properties and suitable for additive manufacturing (see Section 4.1).

2 Our methods are easily extendable to non-square unit cells.
3
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Fig. 1. (a) Design of an anisotropic unit cell geometry by thresholding a periodic function 𝑓 (𝑥1 , 𝑥2). (b) A two-phase unit cell geometry consisting of a stiffer
(gray) and a softer phase (black). (c) A two-dimensional anisotropic metamaterial created by tessellating the unit cell geometry (shown in the inset) ten times
along both 𝑥1- and 𝑥2-axes.

We consider a unit cell as suitable for manufacturing if the stiff phase is connected in the finite periodic tessellation with a minimum
feature size of 5 pixels, matching the resolution of our chosen additive manufacturing approach.

A schematic of our setup is shown in Fig. 1c. A two-dimensional square anisotropic structured solid with 10 × 10 unit cell
tessellation, with side length L, is subjected to a displacement-controlled tension test. The boundary conditions are such that the
bottom end is fixed, while a displacement of 𝒖 = [0, 𝑢𝑝]𝑇 is prescribed at the top end. The reaction force components measured at
the fixed end are denoted as 𝐹1, 𝐹2.

3. Virtual fields method for anisotropic metamaterials

Many parameter identification methods rely on conducting multiple experiments, which are time consuming, complex and require
specialized equipment. To circumvent these drawbacks, we explore a material characterization method based on the VFM that solely
relies on full-field displacements and net reaction force measurements from a single experimental test. In this section, after discussing
the assumptions underlying the adoption of the VFM for metamaterials, we outline all the components of the proposed method.

3.1. Basic assumptions

The VFM (Grédiac, 1989; Grédiac et al., 2008; Pierron and Grédiac, 2012) exploits the weak formulation of linear momentum
balance, i.e., the principle of virtual work, as a constraint on the material parameter space. Since the full displacement field over
the specimen and the net reaction forces at the specimen boundaries are known, testing the weak formulation for a suitable set
of test functions (also known as virtual fields) results in a system of equations that can be solved for the unknown material
parameters. By choosing the test functions as not constant in space, the linear momentum balance is tested in different regions
of the considered specimen domain. As such, the VFM takes advantage of the local strain data, as opposed to global methods for
parameter identification.

In the following, the VFM is used to characterize the mechanical behavior of metamaterials. However, it should be noted
that – due to the non-homogeneous nature of the metamaterials – the application of identification methods based on full-field
measurements is not trivial. Full-field measurement techniques such as DIC measure the kinematic fields locally, i.e., at several
points on the considered specimen surface. The studied metamaterials are not expected to behave at these local points as their
homogenized counterparts, especially when the number of repeating unit cells is low in comparison to the size of the specimen.
To give an example, in Section 5.1.1 the deformation of a heterogeneous metamaterial specimen will be compared to that of an
equally-dimensioned homogeneous body, whose stiffness is set to the homogenized stiffness of the metamaterial. Under the same
loading conditions, the two specimens exhibit different local displacements, which is likely caused by local size effects and the
different boundary conditions that are assumed during the loading of the macroscopic structure and the homogenization of the
microscopic unit cell. It is observed that deviations between the kinematic fields are predominant at the boundary and in particular
at the corners of the domain. This agrees with theoretical studies on heterogeneous metamaterials, which suggest the usage of
non-local – e.g., higher-order strain-gradient based – theories as proposed by Mindlin and Eshel (1968), to model size effects and
wedge forces appearing at corners of non-homogeneous bodies (Fischer et al., 2011; Andreaus et al., 2016; Yang et al., 2021).
Within this work, such theories are avoided for the sake of simplicity and to keep a reasonably low number of material parameters.
Hence, the assumption is made that the global material behavior of the metamaterials can be characterized based on local kinematic
measurements within a local constitutive theory. As we will see later, this assumption will introduce errors in the identification
procedure, which are, however, below a practically relevant level. During the development of the VFM, we found that the locally
measured kinematic data must be treated with care, especially at the boundary and the corners of the specimen. We will later
4
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introduce specifically designed virtual fields that reduce the influence of data acquired at the specimen boundary and corners (see
Section 3.5 for details).3

.2. Required data

To identify the unknown parameters, the VFM needs diverse local strain data, i.e., strain fields that are not homogeneous.
herefore, data that serve as input for the VFM are usually generated by testing complex specimen geometries under complex

oading conditions (Kim et al., 2014; Rossi et al., 2015). However, for the structured materials considered in this study, generating
omplex specimen geometries (e.g., a plate with holes or notches) and studying their behavior under complex loading conditions is
ot trivial. Local features like holes or notches may lead to stress concentrations or singularities and hence more complex geometries
ay be prone to behave locally inelastic or even fail. Further, we will show later that the VFM performs best if we do not feed the
ethod with data at the boundary of the specimen. Introducing more features like holes or notches to the geometry would increase

he boundary and thus reduce the amount of data suitable to be used by the VFM.
For our purposes we will show that, due to the anisotropy of the material, a clamped square plate under uniaxial tension produces

sufficiently heterogeneous strain field. We hence consider a displacement-controlled uniaxial tension experiment of a square-shaped
pecimen that consists of 𝑛𝑐 × 𝑛𝑐 repeating square unit cells of the considered metamaterial (Fig. 1). At the fixed boundary of the

specimen, a load cell measures the net reaction force. Further, the full-field deformation of the specimen is tracked through DIC,
which measures the local displacements of the solid material. After preprocessing the data, the VFM takes as input the displacement
measurements at the (𝑛𝑐 +1) × (𝑛𝑐 +1) unit cell corners and the net reaction forces. A quadrilateral finite element mesh is generated
such that each of the 𝑛𝑐 × 𝑛𝑐 elements corresponds to one unit cell and the element nodes correspond to the unit cell corners with
xperimentally known displacement values. The continuous displacement field 𝒖(𝒙) is hence approximated by

𝒖(𝒙) =
𝑛𝑛
∑

𝑎=1
𝑁𝑎(𝒙)𝒖𝑎, (6)

where 𝑛𝑛 = (𝑛𝑐 + 1)2 denotes the number of nodes in the finite element mesh and 𝒖𝑎 are the known nodal displacements, while
𝑁𝑎(𝒙) are the standard ansatz functions of bilinear quadrilateral finite elements. The infinitesimal strain field is then obtained as
the symmetric gradient of the displacement field, i.e., 𝜺(𝒙) = 1

2

(

∇𝒖(𝒙) + (∇𝒖(𝒙))𝑇
)

.

.3. Weak formulation of linear momentum balance

We denote the specimen domain and its boundary as 𝛺 and 𝜕𝛺, respectively, and the surface traction force acting on 𝜕𝛺 as 𝒕.
ssuming no inertia and body forces, the weak form of linear momentum balance reads

∫𝛺
𝝈(𝒙)∶∇𝒗(𝒙) d𝐴 − ∫𝜕𝛺

𝒕 ⋅ 𝒗(𝒙) d𝑠 = 0, (7)

hich has to hold true for all admissible, i.e., sufficiently regular, test functions 𝒗(𝒙). Note that we are not introducing the classical
istinction between Dirichlet and Neumann portions of the boundary; accordingly, we are not requiring admissible test functions
o vanish anywhere.

.4. Discretization

The weak form of linear momentum balance has to hold true for any chosen set of admissible test functions. Here, we adopt
he standard (Bubnov–Galerkin) approach and express the test functions as a linear combination of the same shape functions 𝑁𝑎(𝒙)
sed to interpolate the displacement data

𝒗(𝒙) =
𝑛𝑛
∑

𝑎=1
𝑁𝑎(𝒙)𝒗𝑎. (8)

nserting the test function ansatz into the weak form of linear momentum balance results in

𝑛𝑛
∑

𝑎=1
𝒗𝑎 ⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∫𝛺
𝝈∇𝑁𝑎(𝒙) d𝐴

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑭 𝑎

int

−∫𝜕𝛺
𝒕𝑁𝑎(𝒙) d𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑭 𝑎

ext

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 0, (9)

here the first and second integral are the nodal internal forces 𝑭 𝑎
int and nodal external forces 𝑭 𝑎

ext, respectively. By employing the
onstitutive relation Eq. (3), the nodal internal forces may be written as

𝑭 𝑎
int = ∫𝛺

𝝈∇𝑁𝑎 d𝐴,

3 We note at this point that reducing the influence of data acquired at the specimen boundary and corners may be beneficial not only when studying
5

eterogeneous materials. Even for homogeneous specimens, the acquisition of kinematic data at the specimen boundary via DIC is known to be difficult.
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= ∫𝛺

[

𝜎1𝑁𝑎
,𝑥 + 𝜎6𝑁𝑎

,𝑦

𝜎6𝑁𝑎
,𝑥 + 𝜎2𝑁𝑎

,𝑦

]

d𝐴,

= ∫𝛺

[

𝐶11𝜀1𝑁𝑎
,𝑥 + 𝐶12𝜀2𝑁𝑎

,𝑥 + 2𝐶16𝜀6𝑁𝑎
,𝑥 + 𝐶16𝜀1𝑁𝑎

,𝑦 + 𝐶26𝜀2𝑁𝑎
,𝑦 + 2𝐶66𝜀6𝑁𝑎

,𝑦

𝐶16𝜀1𝑁𝑎
,𝑥 + 𝐶26𝜀2𝑁𝑎

,𝑥 + 2𝐶66𝜀6𝑁𝑎
,𝑥 + 𝐶12𝜀1𝑁𝑎

,𝑦 + 𝐶22𝜀2𝑁𝑎
,𝑦 + 2𝐶26𝜀6𝑁𝑎

,𝑦

]

d𝐴,

= ∫𝛺

[

𝜀1𝑁𝑎
,𝑥 𝜀2𝑁𝑎

,𝑥 0 2𝜀6𝑁𝑎
,𝑥 + 𝜀1𝑁𝑎

,𝑦 𝜀2𝑁𝑎
,𝑦 2𝜀6𝑁𝑎

,𝑦

0 𝜀1𝑁𝑎
,𝑦 𝜀2𝑁𝑎

,𝑦 𝜀1𝑁𝑎
,𝑥 𝜀2𝑁𝑎

,𝑥 + 2𝜀6𝑁𝑎
,𝑦 2𝜀6𝑁𝑎

,𝑥

]

d𝐴 𝑪vec, (10)

here the elasticity tensor parameters 𝑪vec = [𝐶11 𝐶12 𝐶22 𝐶16 𝐶26 𝐶66]𝑇 are assumed to be constant in space.

.5. Choice of test functions

Choosing a test function in the form of (8) and evaluating (9) results in two linear equations with the material parameters as
nknowns. As the weak linear momentum balance has to hold true for any test function this provides an infinite supply of linear
quations. Hence, the problem at hand is overdetermined and different choices of test functions will yield different solutions for the
nknown material parameters.

As discussed in Section 3.1, the deformation of a heterogeneous specimen and that of its homogenized counterpart under the
ame loading conditions are locally different, a phenomenon that is best observed at the boundary and at the corners of the specimen
here local effects are especially pronounced. In the following, this special characteristic of the problem at hand motivates a special

hoice of the test functions that avoids evaluations of the linear momentum balance in the boundary regions of the specimen.
First, we define test functions that are constant at the nodes corresponding to one finite element, i.e., one unit cell, and zero at

ll other nodes. To this end, we define  = {1,… , 𝑛2𝑐} as the set of all unit cells and 𝑐 as the set of all nodes corresponding to the
nit cell 𝑐 ∈ , and define a set of test functions as

 =

{

𝒗(𝒙) = 1
𝑛𝑛𝑐

∑

𝑎∈𝑐
𝑁𝑎(𝒙)𝒆𝑖 | 𝑐 ∈ , 𝑖 ∈ {1, 2}

}

, (11)

where 𝒆𝑖 are the unit vectors in the corresponding 𝑥- and 𝑦-direction. Note that the test functions are normalized by dividing by the
number of nodes corresponding to the unit cell 𝑛𝑛𝑐 (equal to 4 in our case).

Using the test functions in  to test weak linear momentum balance would cause two problems. First, at elements adjacent to the
loaded and to the restrained portions of the boundary, the external force contributions 𝑭 𝑎

ext in (9) are unknown, leading to equations
that could not be solved for the unknown material parameters. And second, we want to avoid using data at the specimen boundary
due to the reasons discussed earlier. Therefore, we modify (11) such that

 int =

{

𝒗(𝒙) = 1
𝑛𝑛𝑐

∑

𝑎∈𝑐
𝑁𝑎(𝒙)𝒆𝑖 | 𝑐 ∈ int, 𝑖 ∈ {1, 2}

}

, (12)

where int ⊂  denotes a reduced set of unit cells that does not include unit cells close to the boundary. We found that ignoring
two rows of unit cells at the top and bottom boundary as well as two columns of unit cells at the left and right boundary are a good
compromise, and we kept this choice constant throughout all tests. As the fields in  int depend on 𝒆𝑖, each field is zero in either 𝑥-
or 𝑦-direction. The non-zero component of an exemplary virtual field in  int is shown in Fig. 2 (left).

Evaluating Eq. (9) for this set of functions leads to
1
𝑛𝑛𝑐

∑

𝑎∈𝑐
𝑭 𝑎

int = 𝟎, ∀𝑐 ∈ int. (13)

Hence, this choice of virtual fields can be interpreted physically as enforcing that the sum of internal forces over one unit cell should
vanish.

Eqs. (13) are not sufficient to identify the unknown material parameters, as the trivial solution 𝑪vec = 𝟎 fulfills (13). To obtain a
well-posed problem, the measured reaction forces need to be incorporated. At the same time, we want to avoid using displacement
data at the specimen boundary. Therefore, we consider the free-body diagram of the lower half of the domain as depicted in Fig. 2
(right). Denoting the half-body domain as 𝛺∗ = {𝒙 | 0 ≤ 𝑥1 ≤ 𝐿, 0 ≤ 𝑥2 ≤ 𝐿

2 } and its boundary as 𝜕𝛺∗, the weak form of linear
omentum balance for this domain reads

∫𝛺∗
𝝈(𝒙)∶∇𝒗(𝒙) d𝐴 − ∫𝜕𝛺∗

𝒕 ⋅ 𝒗(𝒙) d𝑠 = 0. (14)

nserting the test function ansatz leads to

𝑛𝑛
∑

𝑎=1
𝒗𝑎 ⋅

⎡

⎢

⎢

⎢

⎢

⎢

∫𝛺∗
𝝈∇𝑁𝑎(𝒙) d𝐴

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∗𝑎

−∫𝜕𝛺∗
𝒕𝑁𝑎(𝒙) d𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
∗𝑎

⎤

⎥

⎥

⎥

⎥

⎥

= 0. (15)
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Fig. 2. Non-zero component of a virtual field in  int (left) and non-zero component of a virtual field in center (right).

We define center = {𝑎 | 𝑦𝑎 = 𝐿
2 } as the set of nodes in the center of the specimen. If the tessellated geometry consists of an odd

number of unit cells in each spatial direction, i.e., there are no nodes at 𝑦𝑎 = 𝐿
2 , we consider instead center = {𝑎 | 𝑦𝑎 = 𝐿

2 + 𝐿
2𝑛𝑐

}.
We choose a set of virtual fields center that are constant along center and zero at all other nodes

center =

{

𝒗(𝒙) = 1
𝑛𝑛𝑐

∑

𝑎∈center
𝑁𝑎(𝒙)𝒆𝑖 | 𝑖 ∈ {1, 2}

}

. (16)

Evaluating (15) for these particularly chosen test functions results in
∑

𝑎∈center
𝑭 ∗𝑎

int = ∫𝜕𝛺center
𝒕 d𝑠 = 𝑹, (17)

where 𝜕𝛺center is the top boundary of 𝛺∗. Note that due to the specific choice of the test functions, the surface integral simplifies
in such a way that it equals the global reaction force 𝑹, meaning that the sum of the internal forces at 𝜕𝛺center must equal the net
reaction force.

3.6. Deterministic parameter identification

After choosing the virtual fields and considering (10), the linear equations in (13) can be assembled in a system of equations

𝑨int𝑪vec = 𝟎, (18)

and the linear equations in (17) can be rewritten as

𝑨center𝑪vec = 𝑹, (19)

where 𝑨int and 𝑨center are in general non-symmetric matrices. The system formed by the linear Eqs. (18) and (19) is overdetermined,
i.e., it consists of more equations than unknown parameters. Assuming that the equations in the overdetermined system are not
linearly dependent (which is a valid assumption as every equation is perturbed by noise when considering experimental data),
there is no unique solution that satisfies all equations. Instead, we obtain an approximate solution of the overdetermined system by
minimizing the sum of squared residuals

𝑪opt
vec = arg min

𝑪vec

(

‖𝑨int𝑪vec‖
2 + 𝜆𝑟‖𝑨center𝑪vec −𝑹‖

2) , (20)

where ‖ ⋅ ‖ is the Euclidean norm and 𝜆𝑟 > 0 is a weighting parameter that scales the different contributions to the minimization
problem. As there are less equations in the system (19) than in (18), the weighting parameter should be chosen sufficiently larger
than one (𝜆𝑟 ≫ 1). Following previous works (Flaschel et al., 2021, 2022, 2023), we choose 𝜆𝑟 = 100 and keep it constant throughout
this work. Based on our experience, the choice of 𝜆𝑟 is not crucial for the success of the method (see also Joshi et al., 2022;
Thakolkaran et al., 2022; Marino et al., 2023). The necessary condition for a minimum is

�̄�𝑪opt
vec = �̄�, with �̄� =

(

𝑨int)𝑇 𝑨int + 𝜆𝑟
(

𝑨center)𝑇 𝑨center, �̄� = 𝜆𝑟
(

𝑨center)𝑇 𝑹, (21)

which leads to a determined system of equations that can be solved for 𝑪opt
vec . The minimization problem in Eq. (20) can alternatively

be written as

𝑪opt
vec = arg min

𝑪vec
‖𝑨𝑪vec − 𝑩‖

2, (22)

where we have defined

𝑨 =
[

𝑨int
√ center

]

, 𝑩 =
[

𝟎
√

]

. (23)
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The necessary condition for a minimum then reads

𝑨𝑇𝑨𝑪opt
vec = 𝑨𝑇𝑩. (24)

.7. Bayesian inference

Besides the previously introduced deterministic approach, we further study the problem from a stochastic perspective. To this
nd, we construct a Bayesian linear regression model, for which we assume no intercept and a diffuse prior, as implemented in the
atlab ® built-in function bayeslm.

We denote the number of rows in 𝑨 as 𝑛𝑒𝑞 and we define 𝑨𝑖 with 𝑖 ∈ {1,… , 𝑛𝑒𝑞} as the 𝑖th row of 𝑨. For each equation in
the overdetermined system of equations 𝑨𝑪vec = 𝑩, we assume the likelihood of obtaining 𝐵𝑖 as a Gaussian likelihood with mean
𝑨𝑖 ⋅ 𝑪vec and standard deviation 𝜎 > 0, i.e.,

𝑝(𝐵𝑖|𝑨𝑖,𝑪vec, 𝜎
2) = 1

√

2𝜋𝜎2
exp

[

−

(

𝐵𝑖 −𝑨𝑖 ⋅ 𝑪vec
)2

2𝜎2

]

, (25)

where 𝑪vec and 𝜎2 are treated as random variables. Assuming further that the likelihoods are conditionally independent, we define
the joint likelihood as

𝑝(𝑩|𝑨,𝑪vec, 𝜎
2) =

𝑛𝑒𝑞
∏

𝑖=1
𝑝𝑖(𝐵𝑖|𝑨𝑖,𝑪vec, 𝜎

2). (26)

Assuming here a diffuse prior for the joint prior distribution of 𝑪vec and 𝜎2, i.e.,

𝑝(𝑪vec, 𝜎
2) ∝ 1

𝜎2
, (27)

the marginal posterior distributions of 𝑪vec and 𝜎2 are analytically tractable and implemented in the Matlab ® function bayeslm.

4. Data acquisition

In this section, we first discuss the unit cell geometries considered for identification of the material parameters. Then, we describe
our numerical and experimental data acquisition methods, including details on fabrication, experimental setup, testing and DIC.

4.1. Design and choice of unit cell geometries

We pick four unit cells with distinct/diverse effective stiffness tensor parameters (all with six non-zero stiffness parameters).
Table 1 shows the unit cells along with their symmetry class and homogenized stiffness tensor. Geometry #1 has 𝐶22 as the largest
stiffness parameter with 𝐶16 almost comparable to 𝐶12 and 𝐶26 > 𝐶16. While geometry #2 has 𝐶11 as the largest stiffness parameter
with 𝐶16 > 𝐶26, geometry #3 has negative values for all of the off-diagonal parameters. Geometry #4 has four independent stiffness
parameters with 𝐶66 as one of the largest values among other stiffness parameters, along with 𝐶11 = 𝐶22 and 𝐶16 = 𝐶26. The fill
fraction of the stiff phase for all the unit cells lies between 60 and 70%.

4.2. Numerical data generation

Simulations: We use synthetic data generated using the FEM to verify our methods and aid our analysis before performing the
experiments. Each pixel is discretized using a four-node plane-stress bilinear quadrilateral element. For tessellation, we vary the
number of unit cells 𝑛𝑐 between 5 and 25.

Homogenization: We compute the effective mechanical properties of the unit cells using the theory of homogenization imple-
mented using the FEM (as in Andreassen and Andreasen, 2014).

4.3. Experimental data generation

4.3.1. Fabrication
As specimens with a large number of unit cells are difficult to fabricate, we here pick 10 × 10 tessellations to perform experimental

validations. We use a commercial multi-material polyjet technology based 3D printer, Stratasys Objet500 Connex, to fabricate all the
specimens. The dimensions of the specimen are 75 × 75 × 5 mm excluding the portion that goes into the grips. We use Stratasys’
proprietary material DM8530 for the stiff phase and TangoBlack for the soft phase. The material properties (DM8530: Young’s
modulus E = 1000 ± 90 MPa and Poisson’s ratio 𝜈 = 0.35, TangoBlack: Young’s modulus E = 0.7 MPa and Poisson’s ratio 𝜈 = 0.49)
are experimentally measured following the ASTM D638-14 standard test method and the same values are used in the numerical
computations.
8
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Table 1
Unit cell geometries considered in this study along with their mechanical and symmetry properties.
Unit cell geometry Name Homogenized stiffness tensor

(𝑪H) [MPa]
Elastic symmetry

class

Geometry #1
⎡

⎢

⎢

⎣

131.62 61.98 63.58
61.98 198.38 83.87
63.58 83.87 95.30

⎤

⎥

⎥

⎦

𝑍2

Geometry #2
⎡

⎢

⎢

⎣

127.14 59.50 73.42
59.50 105.83 55.16
73.42 55.16 110.15

⎤

⎥

⎥

⎦

𝑍2

Geometry #3
⎡

⎢

⎢

⎣

44.70 −9.42 −12.52
−9.42 107.19 −20.71
−12.52 −20.71 105.35

⎤

⎥

⎥

⎦

𝑍2

Geometry #4
⎡

⎢

⎢

⎣

65.74 40.36 18.95
40.36 65.74 18.95
18.95 18.95 86.47

⎤

⎥

⎥

⎦

𝐷2

Fig. 3. Experimental setup for displacement-controlled uniaxial testing of an anisotropic metamaterial.

4.3.2. Experimental setup and testing
We subject the additively manufactured specimens to displacement-controlled tension tests using a universal testing machine,

Instron E3000, mounted with a multi-axis force–torque sensor (ATI Mini85) as shown in Fig. 3. The force–torque sensor is acquired
from ATI Industrial Automation. We apply a vertical displacement of 1.5 mm at the top boundary at a rate of 0.5 mm/min resulting
in a global axial strain of �̃�22 = 0.02 and a global strain rate of 1.1×10−4 s−1. Custom-designed grips are fabricated out of aluminum
and are serrated to hold the specimens firmly and prevent any lateral slipping. We use the same strain rate while measuring the
constitutive material properties of the individual phases.

We use DIC, an image-based optical technique, to measure the full-field displacements (Sutton et al., 2009). We capture images
at a frequency of 1 Hz using a Nikon D750 camera equipped with a Nikon AF-S NIKKOR 24-120 mm f/4G ED VR zoom lens. We
use manual mode at an exposure rate of 1/640 s, an ISO setting of 1250 and an aperture setting of F8. The camera has a 6016 by
4016 square pixel resolution and the region of interest we studied is about 3060 by 3060 pixels. We place a ring light between the
additively manufactured specimen and the camera to illuminate the surface uniformly and we place the camera lens at a distance
of about 35–40 cm from the specimen plane.

4.3.3. Digital image correlation
Given a reference image 𝑓 and a deformed image 𝑔, the correlation algorithm aims at minimizing the sum of squared differences

over the considered domain 𝛺

 = (𝑔(𝒙 + 𝒖(𝒙)) − 𝑓 (𝒙))2 𝑑𝒙, (28)
9

∫𝛺



Journal of the Mechanics and Physics of Solids 181 (2023) 105471J. Boddapati et al.
where 𝒙 is the position in the reference image and 𝒖(𝒙) is the displacement field which is interpolated as

𝒖(𝒙) =
∑

𝑢𝑛𝝓𝑛(𝒙), (29)

where 𝝓𝑛 are a set of shape functions and 𝑢𝑛 the associated degrees of freedom. There are two approaches to determine the unknowns
𝑢𝑛, local DIC and global DIC (Hild and Roux, 2012). In the local approach, the region of interest (𝛺) is divided into several sub-images
known as subsets and the mean displacement of each subset is computed independently while minimizing the objective Eq. (28).
In the global approach, shape functions defined through a finite element mesh over the whole region of interest are used (Besnard
et al., 2006). The global approach assumes continuity of displacements over the entire region of interest which is well suited when
the structure is heterogeneous. Moreover, the global approach provides the displacement information at the boundaries, which is
hard to obtain using the local approach. The displacement data at the boundaries are an important input for the VFM. Hence, we
follow the global approach to perform the correlation in this study.

We perform DIC using piece-wise linear shape functions defined on a triangular mesh to compute the displacements (as in Agnelli
et al., 2021). We choose an edge length of 18 pixels (∼0.44 mm) to construct the triangular mesh. We observe a noise floor of the
order of 0.04 mm in the displacement data which is obtained from correlation performed on static images. In the future, experimental
errors may be further reduced using the global DIC technique with quadratic interpolation (Blaysat et al., 2020). The data provided
by the DIC correspond to the nodes that might not always align with the unit cell corners. To obtain the displacements of the unit
cell corners, we further average the displacement data from the nodes that fall within 1 mm radius of a unit cell corner.

5. Results and discussion

In this section, we discuss the data generation from both numerical simulations and experiments. Afterwards, we apply the
proposed deterministic parameter identification method to the data and discuss the results. Finally, at the end of the section, we
apply the Bayesian method to the data.

5.1. Generation of full-field displacement data

5.1.1. Synthetic data
In the following, we investigate the synthetically generated displacement data for a heterogeneous structure in comparison to

the computed displacement field of a homogeneous body, whose stiffness is equal to the homogenized stiffness of the heterogeneous
structure. To simulate the displacement of a homogeneous body, we assume a 10 × 10 bilinear quadrilateral finite element mesh. The
displacement of the heterogeneous body is computed on a much finer mesh with 1000 × 1000 elements. To allow for a comparison
with the displacement field of the homogeneous body, the computed displacements at the unit cell corners of the heterogeneous
body (i.e. the data of interest for the VFM) are extracted and interpolated with a bilinear polynomial for each unit cell. It can be
seen in Fig. 4 that there is a good qualitative agreement between the two displacement fields for geometry #1 (see Fig. S1, Fig. S2
and Fig. S3 for the other geometries). However, there are quantitative differences due to local effects in the heterogeneous structure,
which appear to be dominant at the boundary and corners of the specimen.

5.1.2. Comparison between experimental and synthetic data
In Fig. 5, we compare the full-field displacement and strain fields between the numerical and experimental data on the

heterogeneous structure for geometry #1. (See Figs. S4 to S6 for the other geometries). We observe very good agreement between
the numerical and experimental data, especially for the variables 𝑢2, 𝜀22. However, the experimentally measured 𝑢1 appears to be
slightly higher than the numerical data, by about 0.1 mm, for all the geometries. Also the two 𝜀11 fields are in good qualitative
agreement, but experimental strains are larger. As expected, most of the strain is localized in the softer phase, although the applied
global strain (�̃�22) is 0.02.

Further, a comparison of the displacement fields after postprocessing the synthetic and experimental data, i.e., after extracting
and interpolating the displacements at the unit cell corners for all the geometries are shown in Fig. S7, Fig. S8, Fig. S9, and Fig.
S10 All displacements are in good agreement. An exception is observed for geometry #3 (see Fig. S5 and Fig. S9), for which the
experimentally measured horizontal displacement 𝑢1 does not compare well to the corresponding finite element results. The unit
cell architecture of geometry #3 leads to highly nonlinear mechanical behavior (see Fig. B.10), which is not captured well in the
simulations.

5.2. Parameter identification based on synthetic data

Since the homogenization theory assumes length scale separation and periodic boundary conditions in identifying the effective
material parameters, it is important to understand the continuum behavior of the heterogeneous structures as the number of unit
cells changes. For this, we apply the VFM described in Section 3.6 on the synthetic data to identify material parameters as the
number of unit cells in each direction are varied simultaneously. Further, we also use synthetic data to identify parameters using
multiple tests (as in the conventional approach). A discussion on this conventional approach is provided in Appendix A. The relative
error is defined as

LSE
‖⋅‖2

=
‖

‖

𝑪H
vec − 𝑪M

vec
‖

‖2
H with 𝑪vec ∈ R6, (30)
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Fig. 4. Comparison between the displacement fields obtained from finite element simulations of a homogeneous specimen (left) and a heterogeneous structure
made of geometry #1 (center). For the homogeneous specimen a finite element simulation using 10 × 10 bilinear quadrilateral elements was executed. The
heterogeneous specimen was simulated using 1000 × 1000 bilinear quadrilateral elements. Afterwards, the displacement data at the unit cell corners were
extracted and interpolated with a bilinear polynomial for each unit cell, to allow for a comparison with the homogeneous specimen. The difference between the
fields is shown on the right.

Fig. 5. Comparison between numerical (top) and experimentally measured (bottom) full-field displacement and strain field data for the 10 unit cell tessellation
of geometry #1 subjected to displacement-controlled uniaxial tension test.

where 𝑪H
vec is the vectorized homogenized stiffness tensor obtained from computational homogenization and 𝑪M

vec is the vectorized
stiffness tensor identified using the VFM and the conventional methods.

We compare the relative error in parameter identification when performing multiple tests (as in the conventional approach) and
when using the VFM (Fig. 6). Since we exclude two rows and columns of boundary unit cells in the proposed VFM, the number of
unit cells available to form the system of equations is guaranteed only when there are at least 7 unit cells in each direction and the
results are shown starting with this number. For geometry #1, as the number of unit cells increases, the error calculated for the
conventional method based on multiple tests decreases monotonically from 13.4% at 5 unit cell tessellation to 2.3% at 25 unit cell
tessellation. Similarly, the error for the VFM decreases monotonically from 13.1% at 7 unit cell tessellation to 2.4% at 25 unit cell
tessellation. This shows that the parameters identified using our VFM are as good as those obtained by performing multiple tests, as
long as there are at least ten repeated unit cells in the domain of interest. We found this general conclusion to hold for most of the
considered geometries. The only exception is geometry #3, for which the error remains at 7.0% (for multiple tests) and 11.8% (for
the VFM) even beyond 10 unit cell tessellation. The comparatively large relative error, however, does not mean that all material
parameters are inaccurately identified. By taking a closer look at the individual components of the stiffness tensor, it is observed that
many of the parameters are identified with satisfactory accuracy. We show in Figs. S11 and S12 in the Supplementary Information
the convergence behavior of all individual parameters for geometry #1 and geometry #3 as the number of unit cells for tessellation
is varied, where we excluded the other geometries for brevity. While for geometry #1 all parameters are satisfactorily identified, in
the case of geometry #3 a major portion of the error lies in just two of the parameters, i.e., 𝐶 for multiple tests and 𝐶 and 𝐶
11
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Fig. 6. Variation of least square error between homogenized stiffness tensor and stiffness tensor identified using the VFM and the conventional methods as the
number of unit cells in each direction are varied.

Table 2
Comparison of stiffness tensor parameters identified for geometry #1 with 25 unit cell tessellation based on
synthetic data using the VFM and the conventional methods against the computational homogenization.
Method 𝐶11 (MPa) 𝐶12 (MPa) 𝐶22 (MPa) 𝐶16 (MPa) 𝐶26 (MPa) 𝐶66 (MPa)

Homogenization 131.62 61.98 198.38 63.58 83.87 95.30
VFM 125.97 62.57 196.15 61.35 82.39 93.48
Multiple tests 129.86 67.93 199.37 64.01 85.47 95.54

for the VFM. Parameters 𝐶12 and 𝐶16 are quite small relative to the rest of the parameters and hence, they are hard to accurately
estimate in comparison to the others. It can further be observed in Figs. S11 and S12 that for some of the parameters, the method
of multiple tests outperforms the VFM, but for other parameters the VFM is superior. These results indicate that the parameters for
geometry #3 are difficult to identify independently of the choice of the parameter identification method.

As the number of unit cells increases, the ratio of the number of unit cells along the boundary to the number of unit cells
in the interior decreases. As a result, the boundary effects described in Section 5.1.1 diminish and the behavior of the structure
approaches the continuum equivalent. In Table 2, we summarize the parameters identified for geometry #1 from both the methods
in comparison to the homogenization for 25 unit cell tessellation (see Table B.3, Table B.4, Table B.5 for the other geometries).

5.3. Parameter identification based on experimental data

Fig. 7 summarizes the material parameters identified by the VFM using the simulated and experimental data for 10 unit cell
tessellations in comparison to the homogenized stiffness. The parameters identified using synthetic data compare well with the
homogenized properties for all the geometries. Further, a good qualitative agreement is observed for the parameters identified
using experimental data. For some of the parameters, such as 𝐶12, 𝐶22, 𝐶16, 𝐶26, the experimentally determined parameters match
the expectations quantitatively. In contrast, there is a larger discrepancy in the values of 𝐶11, 𝐶66, for almost all the geometries.
These discrepancies are related to the fact that the experimentally measured displacement 𝑢1 appears higher than in the simulations,
i.e., about 0.1 mm, leading to an under-prediction of the stiffness in the lateral directions. An interesting observation is made for
geometry #4. Based on the numerical data, we know that 𝐶11 = 𝐶22 and 𝐶16 = 𝐶26. However, we observe experimentally that
𝐶11 < 𝐶22 and 𝐶16 < 𝐶26. Geometry #3 has thin and sharp features in the softer phase. The presence of these sharp features inducing
local stress singularities likely led to local material damage, which was subsequently observed as non-linear load–displacement
12
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Fig. 7. Comparison of material parameters identified using the VFM from numerical and experimental data of 10 unit cell tessellations.

behavior (see Fig. B.10). As it is well known, the behavior of materials in the vicinity of such sharp discontinuities markedly deviates
from a two-dimensional linear elastic continuum (Rosakis and Ravi-Chandar, 1986). Therefore, we attribute such non-linear behavior
to the architecture of geometry #3 itself. In such micro-structures, our linear elastic model assumption fails.

We finalize the study by applying the Bayesian method described in Section 3.7 to the experimental data. The resulting marginal
posterior probability distributions of the material parameters are shown in Fig. 8. It is observed that the computed mean values of
the marginal posteriors are similar to the deterministic results shown in Fig. 7. Beyond that, the standard deviations of the marginal
posteriors indicate (un)certainty in the parameter predictions. Matching our expectations, the parameter 𝐶22 is identified with the
highest certainty, while for example, the identification of the parameter 𝐶11 shows a high uncertainty. An interesting observation is
made for geometry #3. The parameters identified using synthetic data with the largest error are also the same parameters identified
using experimental data with the largest standard deviation in the marginal posterior distribution. Additionally, it is noteworthy
that the marginal posteriors of the parameters identified when the Bayesian method is applied to the numerical data show low
standard deviations as the data is not affected by the experimental noise (see Fig. B.11).

We note that, for geometry #3, the marginal posterior probability distributions of the parameters exceed the thermodynamically
admissible range, e.g., the marginal posterior of 𝐶11 is partially negative. This must be considered when interpreting the results.
In this work, no measure was taken to enforce thermodynamic admissibility in the Bayesian method, which thus remains a future
objective.

6. Conclusions

In this paper, we present an approach to identify the 6 independent elastic material parameters of plane anisotropic elasticity
from a single experiment, using the virtual fields method. This approach allows for identifying shear-normal coupling parameters
experimentally, a task that has remained challenging so far. We first demonstrate the effectiveness of our method using numerically
13
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Fig. 8. Marginal posterior probability distributions of the material parameters obtained through Bayesian linear regression on the experimental data. The red
lines indicate the mean of the marginal posterior distributions. The blue boxes indicate the standard deviation from the mean, i.e., the 68% probability interval.
The black intervals indicate three times the standard deviation from the mean, i.e., the 99% probability interval.

generated data from a single tension test. We then experimentally validate the method on additively manufactured specimens, by
measuring full-field displacement data and traction forces. We show that our method is effective for materials that include at least
10 repeated unit cells in their structure, to satisfy homogenization conditions. We calculate the uncertainty in the identification
estimation of the material parameters using Bayesian linear regression. In the future, to further refine the experimental parameter
identification, it is necessary to optimize the shape of the specimens to ensure strong contributions of strains from different stiffness
tensor components. The proposed approach has the potential for measurements of elasticity parameters of complex, anisotropic,
three-dimensional structured materials and composites with shear–shear couplings, and for the study of their nonlinear behavior. A
further potential application of the method could be for parameter identification of constitutive tensors corresponding to different
types of coupled behavior, such as generalized piezoelectric, flexoelectric, and piezomagnetic tensors.
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Appendix A. Parameter identification based on multiple tests

In this section, we explore a method of parameter identification that involves multiple tests (as in the conventional approach) in
the context of anisotropic metamaterials. We subject the metamaterial to three different tests namely Test A, Test B, and Test C as
shown in Fig. A.9. Test A and Test C are tension tests along 𝑥2 and 𝑥1 axis respectively, and Test B is a simple shear test. We assume
that the average strains �̃�𝐴,𝐵,𝐶𝑖𝑗 are known experimentally from full-field measurements. In addition, the reaction forces at the fixed
end are known experimentally from load sensor measurements. We will show that the material parameters can be identified from
the average strains and the net reaction forces from these three tests.

From Gauss’ divergence theorem, the average stresses �̃� are related to the tractions 𝒕 at the fixed end as

𝑡𝑖 = �̃�𝑖𝑗𝑛𝑗 , (A.1)

where 𝒏 is the unit outward normal. For Test A, the unit outward normal 𝒏 at the fixed end is [0,−1]𝑇 . Using Eqs. (3) and (A.1),
and assuming homogenized effective continuum behavior for the structured solid, we get

𝐹𝐴
1 ∕ = �̃�𝐴6 = 𝐶16�̃�

𝐴
11 + 𝐶26�̃�

𝐴
2 + 𝐶66

(

2�̃�𝐴6
)

, (A.2a)

𝐹𝐴
2 ∕ = �̃�𝐴2 = 𝐶12�̃�

𝐴
1 + 𝐶22�̃�

𝐴
2 + 𝐶26

(

2�̃�𝐴6
)

, (A.2b)

where �̃�𝐴12, �̃�
𝐴
22 are the average stress components, 𝐹𝐴

1 , 𝐹𝐴
2 are the reaction force components at the fixed end from Test A and 

is the cross sectional area of the fixed end.
Similarly, from Test B and Test C, we get

𝐹𝐵
1 ∕ = �̃�𝐵6 = 𝐶16�̃�

𝐵
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Rearranging Eqs. (A.2a), (A.2b) and (A.3a)–(A.3d) into a matrix form, we obtain a system of linear equations,
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Fig. A.9. Parameter identification of an anisotropic metamaterial by performing three different tests.
15



Journal of the Mechanics and Physics of Solids 181 (2023) 105471J. Boddapati et al.
Fig. B.10. Axial and shear load–displacement data for all the experimentally tested specimens.

Table B.3
Comparison of stiffness tensor parameters identified for geometry #2 with 25 unit cell tessellation based on
synthetic data using the VFM and the conventional methods against the computational homogenization.
Method 𝐶11 (MPa) 𝐶12 (MPa) 𝐶22 (MPa) 𝐶16 (MPa) 𝐶26 (MPa) 𝐶66 (MPa)

Homogenization 127.14 59.50 105.83 73.42 55.16 110.15
VFM 129.92 58.84 102.72 77.43 55.25 113.73
Multiple tests 123.82 57.44 102.35 72.74 54.68 110.12

For readability, Eq. (A.4) is written as

�̃�𝑪vec = 𝑭vec, (A.5)

where �̃� is a non-symmetric square matrix of size 6 containing average strain components from all of the tests and 𝑭vec is a vector
containing net reaction force components from all of the tests. Then the material parameters 𝑪opt

vec can be obtained as a solution to
the least squares minimization problem,

𝑪opt
vec = arg min

𝑪vec
‖�̃�𝑪vec − 𝑭vec‖

2. (A.6)

It should be noted that we use this method for material parameter identification, only using the numerical data. We did
not experimentally validate this method, since shear testing is non-trivial and requires dedicated setups, such as a hexapod
machine (Dalemat, 2019).

Appendix B. Additional data

See Tables B.3–B.5 and Figs. B.10, B.11.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2023.105471.
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Table B.4
Comparison of stiffness tensor parameters identified for geometry #3 with 25 unit cell tessellation based on
synthetic data using the VFM and the conventional methods against the computational homogenization.
Method 𝐶11 (MPa) 𝐶12 (MPa) 𝐶22 (MPa) 𝐶16 (MPa) 𝐶26 (MPa) 𝐶66 (MPa)

Homogenization 44.70 −9.42 107.19 −12.52 −20.71 105.35
VFM 33.95 −5.84 106.48 −4.44 −20.78 92.65
Multiple tests 45.78 −19.27 112.01 −11.30 −20.30 105.65

Table B.5
Comparison of stiffness tensor parameters identified for geometry #4 with 25 unit cell tessellation based on
synthetic data using the VFM and the conventional methods against the computational homogenization.
Method 𝐶11 (MPa) 𝐶12 (MPa) 𝐶22 (MPa) 𝐶16 (MPa) 𝐶26 (MPa) 𝐶66 (MPa)

Homogenization 65.74 40.36 65.74 18.95 18.95 86.47
VFM 65.45 40.94 65.43 17.93 17.76 82.19
Multiple tests 66.66 41.58 66.66 18.75 18.75 86.86

Fig. B.11. Marginal posterior probability distributions of the material parameters obtained through Bayesian linear regression on the numerical data.
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