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a b s t r a c t

Granular media has been used throughout history as rudimentary yet effective impact
mitigation. The unique response of natural granular media is associated with the existence
of a network of stress propagation pathways, i.e. a force chain network, which spatially
and temporally redirects and moderates the impulse. A variety of structured materials
have been proposed to improve the impact mitigating properties compared to natural
systems. However, these engineered materials use permanent deformation or viscoelastic
properties to dissipate energy, generally limiting their lifetime or effective frequency
and temperature range. Here, we take inspiration from natural granular media to
engineer a structured composite that exhibits an exponentially fast decay of the leading
transmitted pulses. The ordered network geometry allows for an analytical description of
the transmitted pulses, which we validate though experiments and numerical simulations.
In contrast to other structuredmaterials used for impactmitigation, these networks exhibit
reversible deformation, function over all frequencies, and possess a low relative density.
Our results open new possibilities for the design and realization of increasingly complex
material systems with engineered stress wave transmission pathways.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, material microstructures can be precisely
controlled at different scales to achieve new and improved
mechanical properties [1–3]. Here we take inspiration
from the advantageous properties of natural granular me-
dia, to design and build a structured composite material
that employs granular chains to control stress propagation
pathways. Granular chains present a unique dynamic re-
sponse due to both their discrete nature and the nonlinear,
Hertzian [4], interaction between particles under compres-
sion. For the special case of a uniform particle chain, any
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axial excitation results in the formation and propagation
of nonlinear compact pulses, or solitary waves [5–7]. More
generally, granular chains dictate the dynamic behavior of
natural, disordered granular packings [8,9]: instead of the
uniform, linear wave propagation observed in a homoge-
neous solid, a granularmedium composed of the samema-
terial will transmit excitations through a complex network
of force chains [10–15], i.e. preferred loading paths based
on the inter-particle contact network (Fig. 1(a)). This un-
derlying granular chain network controls the response to
static forces [10,11], resistance to intruder impacts [15,16],
and acoustic wave transmission [13,14]. In particular, the
amplitude of dynamic excitations are observed to decay
exponentially with distance from the impact [13,15,17],
which makes granular materials highly attractive for wave
mitigation applications. However, the primarymechanism
for this decay and the local distribution of pulse ampli-
tudes within a granular system are still being investigated.

http://dx.doi.org/10.1016/j.eml.2014.12.005
2352-4316/© 2014 Elsevier Ltd. All rights reserved.
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Fig. 1. Granular networks. (a) Example of force chain network in disordered granular packings (image reproduced and adaptedwith permission from [11]).
The light regions within the packing of photoelastic cylinders indicate higher stresses. (b) Conceptual schematic showing the engineered granular network,
gray spheres, fully embedded in a supporting matrix, shaded cylinder. (c) Photographs of the actual granular network used in experiments. To minimize
3D printed material usage, the supporting matrix was reduced to only the necessary confining channel structure.

Using an engineered granular network to design structured
materials both permits control over the wave propagation
pathway, and simplifies the dynamic response allowing for
predictive analytical descriptions of the leading pulses.We
predict and experimentally observe an exponential decay
of the leading pulse amplitudes through our engineered
granular network (Fig. 1(b) and (c)). This engineered net-
work provides insight into the dynamics of natural granu-
lar media and allows for the design of new, more efficient
stress wave mitigating structures.

The exponential decay rate of the maximum transmit-
ted pulse amplitude is a result of the branched material
structure in combination with the nonlinear dynamic re-
sponse. The branched structure allows for spatial mitiga-
tion, and the nonlinear dynamics for temporal mitigation.
Under quasi-static loading, the transmitted amplitudes in
each segment can be easily calculated from the symmet-
ric amplitude splitting; while the edge (smallest) ampli-
tudes decay exponentially, the central (largest) amplitude
decays faster than linear but slower than exponential.
Additionally, the transmitted amplitudes for a network
geometry composed of a linear media would not differ
between quasi-static and dynamic loadings (in the sim-
plest scenario of a non-dispersive media and neglecting
edge effects). The amplitude dependent wave speed in our
system [5–7], a property deriving form the nonlinearity,
reduces the occurrence of interior wave recombinations,
resulting in added temporal wave mitigation of the largest
transmitted pulse compared to linear systems. This expo-
nential decay could also be observed in other nonlinear,
i.e. non-granular, materials. However, the advantage of us-
ing granular chains lies in their inherent ability to break up
large amplitude or long duration excitations into a series of
smaller pulses [7]. Here, we focus on the relationship be-
tween the structured branching geometry and the global
dynamic properties in homogeneous granular networks.

The network geometry studied here (Fig. 1(b) and (c))
was chosen to capture the fundamental physical mecha-
nisms relevant for a general network structure, i.e. mul-
tiple wave splittings, bends, and combinations. However,

our approach is general and could be used to describe and
design an arbitrary force chain structure with variable par-
ticles sizes, materials, and network geometries. Previous
studies have observed the pulse splitting and combining
mechanisms individually using 2D Y-shaped granular sys-
tems [18–21]. Here, we investigate a 3D branching ge-
ometry, which gives rise to multiple occurrences of each
mechanism, and investigate the overall stress transmis-
sion properties emerging in these types of systems. This
study both provides a better comparison with the com-
plex force chain structures observed in natural granular
media, and allows for improved mitigation performance
compared to the 2D systems recently investigated [22]. Our
engineered network incorporates uniform chains of parti-
cles only along the predetermined force chain pathways
with a supporting matrix filling the remaining 3D volume
(Fig. 1(b)). This results in a structuredmaterial presenting a
low effective density compared to densely packed granular
media.

2. Materials and methods

2.1. Experiments

In experiments, the granular networks were con-
structed from stainless steel sphere chains (type 440C from
mcmastercarr.com) held in place by a polymer support-
ing channel structure, as shown in Fig. 1(c). The stainless
steel particles were assumed to have an Young’s modulus
of E = 200 GPa, Poisson’s ratio of ν = 0.28, and a density
of ρ = 7800 kg/m3 [22]. The particles used in experiments
have a manufacturer specified radius of R = 4.7625 mm.
The printed VeroClear material used for the supporting
channels has a manufacturer specified ρ = 1045 kg/m3 and
Young’s modulus E = 2–3 GPa (http://objet.com).

For ease in assembly, the supporting channel structure
was 3D printed in a modular fashion and then assembled
into networks of variable size. To generate a single inci-
dent pulse, each granular system was excited by dropping
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a sphere, identical to those in the network, from a known
height. Here, we study the initial pulse propagation along
the excited chains within the network, focusing on the
leading (largest) pulse amplitudes at each exit branch lo-
cation. Force measurements were obtained at each of the
branch endswith piezoelectric dynamic force sensors (PCB
208C01 and PCB 208C02, with sensitivity 11.2 mV/N and
112.4 mV/N). A conditioner (PCB 481A02) amplified sig-
nals when necessary and the data was collected through
a data acquisition board (NI BNC-2110 and NI PCI-6123).
To relate the measured force at the sensor to the ampli-
tude of the solitary wave traveling through the preceding
chain, we used the procedure described by Job et al. [23].
This procedure uses the assumptions that the solitarywave
kinetic energy is approximately equal to the potential en-
ergy and that the potential energy is well described by the
most compressed sphere–sphere contact. Since the total
solitary wave energy is transferred to potential energy at a
sphere–wall interface, the sensor-solitary wave amplitude
relation can be reduced to a function of thewall and sphere
chain Young’s moduli. For the stainless steel impact cap of
the sensor and the spheres used in experiments, the rela-
tion is Fsw = Fsensor/1.7 [23].

3. Calculations and theory

3.1. Numerical simulations

Numerical simulations were performed in 3D based
on a conservative discrete particle model, where particles
are considered as point masses connected by nonlinear,
Hertzian springs [4]. The repulsive force Fij between neigh-
boring spheres i and j evolves as a power law δ

3/2
ij of their

penetration distance. We used a 4th order Runge–Kutta
scheme to integrate the following system of equations,
consisting of: miüi =

P
j=1 Fij =

P
j=1 Kij

δij3/2 δ̂ij,
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m is the particle mass, ui =
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ticle x, y, and z displacement from equilibrium and P is
the number of neighboring particles (P equals 2–4 spheres

plus 3 wall particles). Kij =
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is the contact stiffness between two particles i and j and
δij is the penetration distance between two particles. δij
takes a zero magnitude when particles i and j are not in
contact. The confining walls were modeled as deformable
spheres of infinite radius. Three wall particles were placed
around the long axis of each bead chain, effectively forming
a tubewith an equilateral triangular cross-section, limiting
particle motion in the out-of-branch-axis directions. The
material properties of the spheres and supporting channel
material described in Section 2.1, were used for the numer-
ical simulations. Additionally, a value of ν = 0.35, typical
for polymers, was assumed for the VeroClear material.

3.2. Quasi-particle theory

The compact nature of the solitary waves allows for
each traveling pulse to be equivalently represented by

an effective particle, also referred to as the quasi-particle
theory [6,19,24]. The effective mass meff = 1.345 m
and velocity Veff = 1.385

√
5/2
4 

πρ(1−ν2)/2E
2 V 5

sw of the
quasi-particles can be calculated in terms of the mass of a
single particle in the chain,m, and the solitary wave speed
Vsw. This is done by equating the total energy and momen-
tum possessed by the inter-particle contacts andmotion of
particles in the width of a solitary wave to that of a sin-
gle, effective particle. A detailed derivation of the quasi-
particle mass and velocity can be found in [19,24].

The quasi-particle approach greatly simplifies the de-
scription of the nonlinear wave evolution in the granular
chain network, since pulse splitting, bending, and combin-
ing cannowbemodeled as a series of hard sphere collisions
between quasi-particles. To calculate the transmission co-
efficients of interest, we first calculate the ratio of trans-
mitted over incident equivalent particle velocity, V t

eff/V i
eff,

or pre- over post-‘‘collision’’ quasi-particle velocity, at a
given junction via conservation of energy andmomentum.
This ratio is then converted into force amplitude, using the
relationship Fsw ∝ V 6/5

eff , obtained from the above relation
between Veff and Vsw, and the known solitary wave speed
amplitude scaling relation, Fsw ∝ V 6

sw [6]. Thus, the com-
plex spatio-temporal wave structure can be inferred from
the successive exchange of momentum and kinetic energy
of these pseudo- or quasi-particles at the network nodes.

The propagating wave structure is described using four
transmission coefficients, defined in terms of the relative
(transmitted to incident) wave amplitude: (i) TS, incident
pulse splitting into three equivalent transmitted pulses,
(ii) TC, incident pulse bending at corners, (iii) TM3, three
identical incident pulses combining into a single transmit-
ted pulse, and (iv) TM2, two identical incident pulses com-
bining into a single transmitted pulse, which all depend
on the branch angle α (Fig. 2(a)). Since the procedure is
similar to that described in [22], where detailed deriva-
tions were provided, here we present only the required
assumptions and main results. The splitting transmission
coefficient was derived analogously to the 2D configura-
tion [22], but for 3 transmission branches. Similarly, the
corner transmission coefficient is identical to the 2D ge-
ometry (see [22]). For 3 identical pulses simultaneously
combining into a single transmitted pulse, the transmis-
sion coefficient TM3 is derived similarly to TM in [22], with
the assumption that the incident pulses travel at the same
branching angle α before and after the merging (a physical
constraint imposed by the walls). To derive TM2, we follow
the same procedure used to derive the merging of 2 chains
in the 2D network geometry, and keep only the component
of the transmitted quasi-particle velocity along the direc-
tion of the transmission branch. The exact expressions for
the derived transmission coefficients are:

TS =


2 cosα

1 + 3 cos2 α

6/5

, TC = (cosα)
6/5 ,

TM3 =


6 cosα

1 + 3 cos2 α
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
8

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3

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√
4 + tan2 α
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(1)
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Fig. 2. Pulse propagation through the granular network. (a) Schematic diagrams depicting the transmission coefficients, T = Ft/Fi , within the network
structure. (b) Schematic diagram of granular network geometry describing the branch level, N, and the radial distance from the line of impact, r. (c) Exit
branch locations and corresponding average transmitted amplitudes from repeated experiments of N = 1, 2, and 3. (d) Numerical simulation results, for
branch levels N = 1, 2, and 3, showing the spatio-temporal structure of the transmitted wave at the exit branch location shown in (c). The amplitude of
each leading pulse, with respect to the incident pulse amplitude, is given in terms of the derived transmission coefficients (profiles are offset by 0.5 N/N
for visual clarity, and y-ticks are 0.25 N/N).

Numerical simulations were performed on a unit cell net-
work, validating the predicted analytical expressions for
the transmission coefficients TS, TC, TM3, and TM2 and their
variations with the branching angles α (see supplemental
material, Appendix A).While the focus of thiswork is to de-
scribe the amplitude of the leading transmitted pulses, the
quasi-particle theory could also be used to describe the re-
flected pulses at splitting junctions [19], and the energy ab-
sorbed by the sphere–wall contact at corner junctions [22].

4. Results and discussion

The spatial distribution of pulses propagating through
the network is described by Ft (r,N), that represents the
transmitted pulse amplitude in a network of branching
level N at radial distance r , where r varies from 0 to 1
(Fig. 2(b)). To quantify the performance of such an engi-
neeredwavemitigating system,we introduce Fm that gives
the largest amplitude pulse reaching the exit chains oppo-
site the impact, and investigate its variation with distance
from the impact, or equivalently,with the network branch-
ing level N . The largest pulse is always located in the cen-
tral exit branch, so Fm = Ft (r = 0,N). Following the same
procedure as Ref. [22], we track an incident pulse through
the branched structure and obtain the expression of the
wave amplitude in each chain segment. The leading pulse
amplitudes in each branch of the granular networks with
level N = 1–3 are depicted in Fig. 2(c) and (d) for a unitary
incident pulse amplitude. The general expressions for the
wave amplitude in each branch at location r in a network
of sizeN are calculated exactly in terms of the transmission
coefficients, fromwhich the following simplified, approxi-
mate expressions for Fm and Ft are derived:

Fm = Fie
−N
N0 and Ft = Fme

−Nr
R0 . (2)

Fi denotes the incident pulse amplitude. A detailed deriva-
tion of Eq. (2) is given in the supplementalmaterial (seeAp-
pendix A). These expressions capture well the decay of the
maximum wave amplitude and the distribution of lead-
ing pulse amplitudes predicted by the quasi-particle the-
ory (Fig. 3(a)–(c)). The decay constants, N0 and R0, given
in supplemental material (see Appendix A), can be derived
from the transmission coefficients, and so depend on the
branching angle α only.

Experiments were performed for branching levels, N =

1, 2 and 3, using a branching angle, α = 40°, and granu-
lar chains made of 5 particles. The dynamic force measure-
ments from experiments are in excellent agreement with
the numerical simulations in terms of the number of pulses
and the relative amplitude of pulses reaching each branch
end (see supplemental material, Appendix A). This indi-
cates that slight misalignments of the granular network
are not significant enough to break the symmetry of the
system,whichwould have prevented pulse recombination.
While network geometries could be designed to prevent
pulse recombination, thus increasing the mitigation effi-
ciency, the focus of this work is to validate the response of
a general network.

Fig. 3(d) compares the experimental values of Fm with
numerical results and theoretical predictions. The exper-
imental distribution of transmitted force amplitudes Ft is
normalized by the corresponding Fm values for each branch
levelN, and comparedwith numerical simulations and the-
oretical predictions in Fig. 3(d)–(f). The presence of dis-
sipation in the experimental system (see supplemental
material, Appendix A) further improves mitigation com-
pared to the already rapid decay of leading pulses result-
ing from the branched structure. However, since this effect
was not taken into account in the model, the experimen-
tal wave amplitudes (Fig. 2(c)) are systematically lower



Author's personal copy

A. Leonard et al. / Extreme Mechanics Letters 1 (2014) 23–28 27

Fig. 3. Comparison of QP theory, Eq. (2), experiments and numerical simulations. (a–c) Theoretical predictions of the pulse amplitude: The exact calculation
of the normalized amplitudes based on quasi-particle theory is represented with unfilled markers, and is well captured by Eq. (2) shown in dashed red
lines (a) and dotted black lines (b). (c) Macroscopic acoustic performance of the network as predicted by quasi-particle coefficients. The color bar indicates
the transmitted primary pulse amplitudes normalized by the impact force, Ft/Fi . (d–f) Comparison of experiments (bluemarkers with error bars), numerical
simulations (black filled markers), and theoretical predictions (Eq. (2)), for: (d) the normalized central pulse amplitude Fm/Fi as a function of the branch
level N, and (e–f) the spatial distribution of leading pulse amplitudes. For (a–f), the marker shapes indicate the branch level N: ◦ (1), � (2), � (3), x (4), △
(5) and + (6).

than the predicted ones (Fig. 3(c)). Overall, the agreement
between the experiments, numerical simulations, and
theoretical predictions is quite good, confirming both the
exponential decay of the central Fm amplitude with N and
the exponential decay profile of wave amplitude along r
at a given branching level N. For the α = 40° network,
the theoretical values N0 ≃ 1.8 and R0 ≃ 1.9, sug-
gest that the N = 2 granular network already results in
strong wave amplitude mitigation. The numerical simu-
lations and experiments agree reasonably well with the
predicted values (Fig. 3(d)–(f) and supplemental material,
Appendix A). However, similar to the observations made
in 2D networks [22], the comparisonwith theory improves
as the branch lengths increase, which allows primary and
trailing pulses sufficient time to fully separate, as assumed
in the model.

We compare now the performance of the engineered
granular network with other materials in two ways:
(i) efficiency of energy spreading compared to a homoge-
neous continuum (Fig. 4(a)), and (ii) attenuation length,
ξ , compared to viscoelastic materials which also display
exponential damping (Fig. 4(b)) (see the supplemental
material for a detailed analysis, Appendix A). In a homo-
geneous, linear elastic solid, the acoustic energy decreases
as a power of the distance from the excitation, as the
wave front spreads radially. Fig. 4(a) shows that the non-
linear dynamic behavior of our structured granular net-
work spreads the acoustic wave front energy in a more ef-
ficient way, especially for larger branching levels. In the
Ashby diagram of Fig. 4(b), the materials located in the
top right hand corner are the most efficient acoustic wave
mitigators: they combine a small value of ξ with a low
effective density. The tested network surpasses designed

high damping materials like InSn based composites [25],
polyurethane [26] and complex composite polymers [27],
that, in addition, only function over a small range of fre-
quencies and temperatures. While the attenuation length
of disordered and ordered granular packings are of the
same order (a few grain diameters [13,17]), indicating a
similar decay mechanism, the effective density is consid-
erably smaller in the engineered network. However, unlike
uniform viscoelastic solids, the properties of our network
are anisotropic. Thus the gain in decay rate of our system
is at the expense of a directional dependent response.

In conclusion, we took inspiration from the advanta-
geous properties of natural granular media to engineer a
novel structured composite. This system displays the same
exponential force reduction observed in disordered granu-
lar media, but with added benefits of a low relative density
and a predictable response. This response is a result of the
structured branching geometry combinedwith the nonlin-
ear dynamics, and does not require viscoelasticity or per-
manent deformation to achieve the force reduction. This
networkedmaterial concept and its analysis is general and
could be used to describemore complex systemswith cus-
tomized stress wave pathways, including e.g. splitting and
combining processes at junctions made of chains with dif-
ferent material properties and unequal branching angles
(see Ref. [19]). Additionally, the network structure could
be combined with existing 1D engineered granular mit-
igation techniques [7]. The good agreement of theoreti-
cal and numerical predictions with experiments for our
network topology suggests that more complex networks
could be designed using a similar approach, and then fabri-
cated for achieving improved and optimized acoustic prop-
erties. Our results both provide insight into the dynamics
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Fig. 4. Comparison of stress attenuation performance. (a) Comparison of energy spreading between our engineered network and an equivalently sized
cone of homogeneous, linear elastic material. TEGran is the transmitted energy in the primary pulse of the central exit chain of a granular network of size N.
TELin is the transmitted acoustic energy in the neighborhood of the central branch after radial spreading. Refer to the supplemental material for a detailed
analysis (see Appendix A). (b) Inverse of the attenuation length, 1/ξ , as a function of the inverse effective density, 1/ρ, for a broad range of materials and
systems. The • and + connect by a dashed line represent the lower and upper values of ξ (calculated for f = 1 kHz) from the literature (see supplemental
material, Appendix A). The point denoted ‘‘tested network’’ indicates the structured granular network geometry used in experiments, where the effective
density was conservatively calculated assuming a solid cylindrical matrix as shown in Fig. 1(b).

of natural granular media and open new possibilities for
the design and realization of increasingly complexmaterial
systems.
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