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Abstract We study the dynamic response of uniform gran-
ular chains composed of short cylindrical particles excited by
an impulse. The particles in the chains are arranged with their
axes orthogonal to the chain’s axis, and the particles maintain
a constant relative orientation angle. We study the formation
and propagation of solitary waves in the chains varying the
orientation angle (α) between particles, and show tunabil-
ity of the stress transfer as a function of α. We use the gen-
eral Hertzian contact theory to model the interaction between
particles. We compare experimental findings with theoreti-
cal predictions based on the long wavelength approximation,
and with numerical predictions based on a one-dimensional
discrete particle model, and on a three-dimensional finite ele-
ment approach, finding good agreement.
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Cylindrical particles · Tunability

1 Introduction

In recent years, the study of the nonlinear dynamics of one-
dimensional chains of spherical particles has received con-
siderable attention [1–17]. Interest on these systems derives
from their tunable dynamic response, encompassing linear,
weakly nonlinear and strongly nonlinear regimes, controlled
by varying the static and dynamic load applied [6,9,13]. In
chains with a very weak (or zero) static precompression, the
propagation of compressive pulses is strongly nonlinear, and
it is characterized by the formation of stable solitary waves
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with a compact support, and with a speed of propagation
dependent on the dynamic force amplitude [1,6]. The propa-
gation properties of these waves can also be tuned by modify-
ing the particle’s dimension and material properties [2,6,9].
These tunable characteristics derive from the combination of
nonlinearity of the particles’ interaction (i.e., a power-law
type contact potential in compression, and zero strength in
tension), and of discreteness of the system. Chains of spheri-
cal particles have been proposed for many practical applica-
tions, such as shock and energy absorbing layers [7,8,18,19],
sound focusing devices (tunable acoustic lenses) [20], and in
non-destructive evaluation/structural health monitoring [21–
24].

In this paper, we study the formation and propagation of
nonlinear waves in a weakly compressed chain composed of
uniform cylindrical particles arranged with their axes perpen-
dicular to the chain’s axis. In this case, the contact interac-
tion between particles is a function of the relative orientation
angle (α) between the particles’ axes. This provides an addi-
tional design parameter for controlling the dynamic response
of the system, compared to chains of spherical particles.

The remainder of this paper is organized as follows: In
Sect. 2, we describe the experimental set up. In Sect. 3, we
review the general Hertzian contact theory to describe the
power law interaction between cylindrical particles under
a non-conformal contact. In Sect. 4, we provide a theoret-
ical description for highly nonlinear solitary wave’s prop-
agation in a uniform chain of cylindrical particles, based
on long wavelength approximation and the Hertzian contact
law. Sections 5 and 6 present our numerical approaches in
support of the theory and the experimental findings: Sect. 5
introduces the discrete particle model and Sect. 6 the finite
element model. In Sect. 7.1, we present the quasistatic val-
idation (using a comparison with the Hertzian contact law)
of our finite element simulations for the contact between two
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cylindrical particles. In Sect. 7.2, we provide the experimen-
tal results for the propagation of compressive waves in a chain
of cylindrical particles, and we compare the obtained results
with the theoretical predictions and the numerical simula-
tions. In this section, we also discuss the effect of different
particle orientation on the wave propagation. The paper ends
with conclusions and plans for future work in Sect. 8.

2 Experimental setup

The experimental setup used in this paper consisted of 20
stainless steel (316 type, from McMaster-Carr) cylindrical
particles assembled in a vertical chain such that the orienta-
tion angle (α) between the axes of two adjacent cylinders is
90◦ (Fig. 1a). Each particle has a mass m = 0.68 g; radius
R = 2.38 mm and length L = 4.76 mm (Fig. 1b). The mod-
ulus of elasticity (E) of the particles is equal to 193 GPa and
the Poisson’s ratio (ν) is equal to 0.3 [25,26]. The chain of
particles in the experiments was supported by guided rails
consisting of four garolite rods. These rails ensured the uni-
directional motion of the particles along the chain’s axis.
A single pulse was excited by impacting the chain with a
stainless steel (316 type) spherical striker of comparable mass
(m = 0.45 g) to that of the cylindrical particles in the chain.
To study the dependence of the propagating wave speed (Vs)

on the amplitude of the dynamic force (Fm), we performed
experiments varying the striker impact velocity (controlled
by varying the drop-height of the striker).

We embedded piezo-sensors in selected particles in the
chain for monitoring wave propagation along the chain. The
assembly of the sensor particles was achieved following a
procedure similar to the one described in [9] for spherical par-
ticles (Fig. 1c). These particles were connected to a Tektronix
oscilloscope (TDS 2024) for data acquisition. For the mea-
surements described in this paper, the sensors were placed
in the 7th and 13th particles from the top of the chain. The
sensor particles used in the experiments were pre-calibrated
using conservation of momentum.

3 Contact interaction between two cylindrical particles

The contact area created by compressing two cylindrical sur-
faces against each other depends on the orientation angle (α)

between the axes of the two cylinders. For small deforma-
tions, this could result in (i) a circular contact area (α = 90◦),
(ii) an elliptical contact area (0◦ < α < 90◦), (iii) a very thin
rectangular contact area (α = 0◦). For the first two cases, the
contact interaction between two particles can be described
by the Hertzian contact law which presented in [27] and
briefly summarized here. Let δ denote the total displacement
of two cylindrical particles under compression. The relation

Fig. 1 (Color online) a Schematic diagram of the cylindrical particle’s
chain. The chain is composed of 20 elements, stacked vertically. Piezo-
electric sensors were embedded in particles at location number 7 and
13. The orientation angle α between two adjacent particles in this setup
is 90◦. b Digital image showing the cylindrical particles used in the
experiments. c Schematic diagram representing a sensor particle with
embedded piezo-gauge

between the contact force F and the displacement δ can be
obtained from [27] as:

F = 4

3

√
Re E∗

F3/2
2

δ3/2 = kcylδ
3/2, (1)

where Re is the equivalent radius and Re = R/sinα, the
effective modulus E∗ is defined as E∗ = E

2(1−ν2)
. The cor-

rection factor F2 depends on the eccentricity of the elliptical

contact area ε =
√

1 − (b/a)2 according to the following
relation:
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where K (ε) , E(ε) are the complete elliptic integral of the
first and second kind respectively, a is the semi-major and
b is the semi-minor axes of the elliptical contact area, and
b
a ≈

(
1+cos α
1−cos α

)−2/3
. For the case α = 90◦, the correction

factor F2 equals to 1. Comparing this contact interaction with
the contact interaction between two identical spherical parti-

cles F = kcδ
3/2 [27], with the contact stiffness kc =

√
2RE

3(1−ν2)
,

it is important to notice that the contact stiffness of the cylin-
drical particles kcyl depends on angle α, differently from the
case of spherical particles.

The quasi-static contact model described above relies on
the assumption that the semi-major axis a in the contact area
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is much smaller than the particle’s radius (R), to ensure each
cylinder can be considered as an elastic half-space. At the
same time, the ratio b

a of the contact area shows a strong
dependence on α, and when α → 0◦, a becomes very large
compared to b. In this case a can become larger than R,
violating the assumption.

When α = 0◦, the two cylindrical particles are parallel to
each other, reducing the contact area to a line. In this case, the
Hertzian contact model mentioned above is invalid because
Re and F2 are undefined. For two parallel cylindrical parti-
cles of the same radius, under a compressive force F∗ (where
F∗ is force per unit length), the total displacement δ is given
by [27]:

δ = 2F∗ 1 − ν2

π E

[
2ln

(
4R

w

)
− 1

]
, (3)

where w =
√

4F∗ R(1−ν2)
π E is the semi-contact width, which

also depends on F∗. From Eq. 3, we can see that the line con-
tact interaction is not a linear relation. The contact force in
this case can be represented in terms of the total displacement
as:

F∗ = π E

1 − ν2

[
δ

2

1

W
(− eδ

8R

)
]

(4)

where W is the Lambert function (or omega function), e is
mathematical constant e = 2.718, and x = W (y) is the
solution of xex = y.

4 Wave propagation in a chain of cylindrical particles

A chain of spherical particles can be modeled as an array of
rigid bodies (masses) connected by nonlinear springs, defined
by the Hertzian contact law in compression and a zero tensile
response. For this system, it is possible to write a discrete set
of equations that describes the motion of the particles [1,6].
When the system is excited by a striker, the highly nonlin-
ear dynamic response of the particles reveals the formation of
compact solitary waves with unique properties. Starting from
the discrete equations of motion for a weakly compressed
chain of uniform spherical particles, and using a long wave-
length approximation, Nesterenko derived a characteristic
highly nonlinear wave equation that captures the fundamen-
tal properties of the system. The solution of the highly non-
linear wave equation describes the solitary wave shape and
provides a nonlinear relation between wave amplitude and
speed [1,6]. The solitary wave speed in chains of spherical
particles was found to be a nonlinear function of the maxi-
mum dynamic contact force, and of the initial static compres-
sive loading [9]. For a weakly compressed chain of uniform
cylindrical particles in which α �= 0◦, a similar procedure
can be followed. The Hertzian contact interaction between

two cylindrical particles has a power law formulation simi-
lar to the one between two spherical particles, differing only
in the definition of the contact stiffness. Therefore, under
the long wavelength approximation, we expect the weakly
compressed chain of cylindrical particles to also support
the formation and propagation of highly nonlinear solitary
waves with properties similar to those of chains composed
of spherical particles. Following [9], the analytical formula-
tion describing the relation between the solitary wave speed
Vs and the normalized force fr = Fm/F0 (Fm is the maxi-
mum dynamic contact force in the chain, and F0 is the initial
compressive force applied to the chain) can be obtained as:

Vs = D

√
4k2/3

cyl

5m
F1/6

0
1

f 2/3
r − 1

[
3

2
+ f 5/3

r − 5

2
f 2/3
r

]1/2

(5)

where D = 2R is the diameter of the cylindrical particles.
Because the power law exponent n in the contact formulation
is still n = 1.5 (as in the spherical particles case), the width
of the propagating highly nonlinear solitary waves can also
be expected to be ∼5 times the particles’ diameter.

For a weakly compressed chain of uniform cylindrical
particles in which α = 0◦, a similar procedure cannot be
followed because the contact interaction in this case is not
a power law formulation as shown in Eq. 4. For very small
values of orientation angle α the exponent n depends on α

and it can deviate from the value 1.5. We discuss this case
using numerical simulations in the following sections of this
paper.

5 Discrete particle model (DPM)

We used a conventional discrete particle model (DPM) [9,14,
28,29] to simulate the wave propagation in the chain of cylin-
drical particles. The cylindrical particles were considered as
point masses connected with each other through nonlinear
springs (Eqs. 1, 4), as the sound speed of elastic waves within
the particles is much larger than the speed of propagation
through the chain. We neglected all losses originating from
internal resonance or friction. We used a fourth order Runge-
Kutta method to solve the equations of motion of the system.

6 Finite element model (FEM)

We created a three-dimensional finite element model (FEM)
for the chain of cylindrical particles. The model was gener-
ated in Abaqus/CAE and it was solved in Abaqus/Explicit.
The cylindrical particles were modeled as solid (contin-
uum) three-dimensional bodies, and they were meshed with
tetrahedral elements of second order (using the modified
10-node tetrahedral elements C3D10M). The appropriate
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mesh size for the particles was determined based on a mesh
convergence study. The material and geometrical parameters
of the cylindrical particles were obtained from the exper-
imental setup described in Sect. 2. The end of the chain
was modeled as a rigid wall composed of R3D3 elements.
To model correctly the contact interaction between any two
bodies (particle-particle, particle-wall) for quasi-static and
dynamic problems, we used the Abaqus-Explicit surface-to-
surface hard contact method. In this method, the primary sur-
face in the contact pair is called the master surface and the
secondary surface is called the slave surface. The surface-
to-surface method uses the normal vector of the individual
elements on the slave surface to match the normal vector
of the individual elements on the master surface in order to
determine the distance (gap or penetration) between the two
surfaces. Once the slave surface generates contact with the
master surface, the kinematic constraint applied on the con-
tact pair uses the surface-to-surface method information
along with hard-contact pressure-over closure to develop
adequate force on the two contacting surfaces. This prevents
penetration or overlap between the surfaces thereby main-
taining the surface contact until the two bodies start moving
apart. The hard-contact pressure-over closure model gener-
ates zero force when the two surfaces are not in contact. For
simplicity, we modeled frictionless contact interaction in the
tangential direction. The force calculated from the contact
constraint model is the contact force between the two bod-
ies. More information regarding the Abaqus’s elements and
contact interaction can be found in [30,31].

7 Results and discussion

7.1 Contact interaction between two cylindrical particles

We studied the quasi-static compression of two cylindrical
particles (see Fig. 2a and b) to validate our finite element
model and to verify the limits of validity for the contact inter-
action law described in Sect. 3, when the orientation angle
α between two cylinders is small. We simulated the contact
process between two particles having the same properties as
the particles used in experiments, at different relative ori-
entation angles α (α ∈ [0◦, . . . , 90◦]). We imposed a fixed
maximum displacement δ between the two particles, such
that δ is much smaller than the particle’s diameter (to satisfy
Hertz’s small displacement assumption [27]).

The variation of contact force as a function of increased
displacement between the two particles is plotted in Fig. 2c.
Here we compare the response for selected orientation angles
α, in the range of contact forces of interest for experiments.
The Hertzian theoretical responses (see Sect. 3) are repre-
sented by the solid curves, while the results obtained from
our FE simulations are represented by the dashed curves.

Fig. 2 (Color online) a Schematic diagram showing isometric view
and b top view of two cylindrical particles in contact. c Comparison
of the contact force-displacement relations obtained with the Hertz-
ian contact model (solid curves), and with our finite element model
(dashed curves). Results obtained for a contact between two cylindrical
particles oriented at a relative angle α = 0◦ (curve group (i)), α =
5◦ (curve group (ii)), α = 10◦ (curve group (iii)), α = 30◦ (curve
group (iv)) and α = 90◦ (curve group (v)). d Detailed view of (c) for
α = 5◦, 10◦, 30◦, & 90◦. e Dependence of the exponent n in a generic
power-law type contact interaction between two cylindrical particles on
the orientation angle α, obtained from finite element analysis

For large orientation angles α, we observed good agreement
between theory and numerical results. When the orientation
angle α decreases, i.e. α → 0◦, the violation of assumptions
used in the theoretical model leads to an evident discrepancy
between the curves (see Fig. 2c and d).

To study the evolution of the contact response between
two cylinders with variations of the angle α, we assumed
that the contact interaction between two identical particles
can always be expressed in the form of a generalized power-
law, as:
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F = kcyl (α) δn(α) (6)

We used this power law to fit results obtained with our finite
element model (Fig. 2d) and plot the values of the exponent
n as a function of α (Fig. 2e). For α > 30◦ the value of n is
close to 1.5 which is as expected from the Hertzian contact
theory, while for smaller angles 0◦ < α < 30◦ the exponent
n deviates from 1.5, and gradually decreases as the angle
decreases. When α = 0◦, we have a line contact between the
two interacting cylinders. For this case, if the contact interac-
tion is approximated by a power law formulation, we obtain
the power-law exponent value n = 1.15 which is close to the
value 1.11 reported in [32].

7.2 Dynamic response of a chain of cylindrical particles

We tested experimentally the dynamic response of a verti-
cally aligned, one-dimensional chain composed of 20 uni-
form cylindrical particles with relative orientation angle
α = 90◦, excited by a stainless steel spherical striker of
mass m = 0.45 g, with an impact velocity v = 0.5 m/s. The
force profiles measured in time by the sensors positioned at
particle number 7 and 13 are shown in Fig. 3a. We compared
the experimental data with numerical results obtained with
the discrete particle model based on Hertzian contact inter-
actions, and with the three-dimensional FE model, finding
very good agreement between them (Fig. 3a). We calculated
the wave speed by dividing the distance of the two sensors
with the time taken for the peak of the wave to travel between
them. The solitary wave speed obtained from the finite ele-
ment model, discrete particle model, and experiments were
539.2, 544 m/s, and 559±28 m/s, respectively. The width of
the propagating pulses was measured to be 6 particle diam-
eter from experimental data, which is close to the 5 particle
size of solitary wave’s reported in earlier studies for chains
of spherical particles [1,6].

We studied the relation between wave speed and maxi-
mum dynamic contact force in Fig. 3b. It should be noted
that the force measured by the sensors in our experiments is
the average of the two dynamic forces at the contacts with
the adjacent particles [28]. To compare experiments with our
discrete numerical simulations we obtained the maximum
dynamic contact force in experiments

(
Fm,exp

)
following

the procedure reported in [28]. We calculated numerically
the coefficient β as the ratio between the maximum contact
force and the maximum average force in a given particle (the
instrumented particle in our case), β = Fm,num

Favg,num
. The maxi-

mum dynamic contact force Fm,exp can then be calculated as
Fm,exp = βFavg,exp, where Favg,exp is the force measured
by the sensors in our experiments. From Fig. 3b, it is evi-
dent that the experimental and numerical results are in good
agreement, demonstrating the formation and propagation of
highly nonlinear solitary waves. Similarly to what reported

Fig. 3 (Color online) a Comparison of experimental and numeri-
cal results, obtained from the finite element and the discrete parti-
cle model, for the wave propagation in a chain of cylindrical parti-
cles with orientation angle α = 90◦. The curve groups (1) and (2)
are results obtained from the instrumented particles placed at location
number 7 and 13 from the top of the chain, respectively. The solid
curves represent experimental data. The dashed curves are obtained
from our discrete particles model, and the dotted curves from FEM.
b Dependence of solitary wave speed on the maximum dynamic con-
tact force in the chain of cylindrical particles when α = 30◦ (curve
group (i)), when α = 45◦ (curve group (ii)), and when α = 90◦ (curve
group (iii)). Experimental data are reported only for α = 90◦, and it
is shown by solid squares. The theoretical results for all the angles in
each group are shown by solid curves. The results obtained with our
discrete particle model are represented by the dashed curve and the
finite element results are represented by the dotted curves in each group

for chains of spherical beads [6,9,13], the dynamic response
of chains of cylindrical particles can be tuned by varying
the radius and/or the material properties of the particles, the
initial precompression, and dynamic force applied to the sys-
tem. However, the cylindrical geometry of the particles offers
an additional parameter for tunability: the orientation angle
between consecutive cylinders.

We studied numerically the effect of particle orientation
on the wave propagation in the system. Figure 3b shows the
variation of wave speed as a function of dynamic force for
selected values of α = [30◦, 45◦, 90◦]. For a particular ori-
entation angle α, the dynamic force is varied by changing
the striker impact velocity. As the α value decreases the con-
tact stiffness kcyl increases (Eq. 1) which results in higher
wave speeds for the same dynamic load (Eq. 5). For exam-
ple, when the orientation angle between cylindrical particles
was α = 90◦, for the dynamic load of Fm = 40 N, the wave
speed was Vs = 591.3 m/s. When the orientation angle was
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Fig. 4 (Color online) Numerical results showing the dynamic response
of a chain composed of parallel cylinders (α = 0◦). a Force profiles
in time obtained for a wave traveling in a chain of parallel particles
using our finite element model (dotted curves), and our discrete par-
ticles model (dashed curves). The curve groups (1) and (2) represent
results obtained for the waves traveling through the 7th and 13th parti-
cles from the top of the chain. b Dependence of wave speed on the max-
imum dynamic contact force. The solid lines represent results obtained
with our FEM for different values of the relative orientation angle
α = [0◦, 1◦, 3◦, 5◦, 30◦, 45◦, 90◦]. The dotted line, shown for α = 0◦,
reports data obtained with the DPM

lower than α = 90◦ the wave speed increases. The speed is
9% higher for α = 45◦ and 16% higher for α = 30◦.

The case α = 0◦ (Fig. 4) presented unique features: The
shape of the propagating waves is significantly different from
the cases for which α > 0◦. The width of these waves, for
an impulse generated by a striker of mass m = 0.45 g with
velocity 0.5 m/s, is ∼10 particle diameters (see Fig. 4). The
wave speed is ∼4 times the value observed for other cases,
and does not appear to change significantly in the range
of dynamic force considered (see Fig. 4b). This interesting
behavior for α = 0◦ originates from the fact that the con-
tact interaction does not have a power-law type relation (see
Sect. 3).

Using FEM, we also studied the sensitivity of the system
towards the small angle variation near α = 0◦ (Fig. 4b).
From the FEM results, we found that the dynamic response
of this system is very sensitive to the change of the orien-
tation angle, i.e., the wave speed changes significantly with
small changes in the value of α. Because of the imperfect
nature of the experimental setup (e.g., the non-uniformity
of the particles, especially the sensor particles, and the tol-
erances between the particles and the support system) the
measurements of the wave propagation in a chain of cylin-
ders with small α presented significant variability. From the

Fig. 5 (Color online) FEM results showing the dependence of the wave
speed (normalized with respect to the wave speed in the case α = 90◦)
as a function of the orientation angle α. The three curves correspond
to 3 different dynamic force values, the solid curve with circular mark-
ers is for Fm = 80 N, the dashed curve with diamond markers corre-
sponds to Fm = 40 N and the dotted curve with triangular markers is
for Fm = 10 N

FEM analysis and discrete particle simulations, we found that
the wave speed in the chain of cylindrical particles increases
dramatically as the orientation angle decreases, for a given
dynamic force (the solid curve with star markers and the dot-
ted curve in Fig. 4b represent results obtained with the FEM
and the DPM, respectively). The angle of orientation has a
significant effect on the solitary wave speed as α → 0◦. In
Fig. 5 we calculated the normalized solitary wave speed (with
respect to the wave speed in case of α = 90◦) as a function
of α for selected values of dynamic force. From this figure
it appears clear that in the range of small α (0◦ < α < 10◦)
the wave speed changes significantly with small changes of
α, while in the range of large values of α, the wave speed is
not very sensitive to the changes of angle of orientation.

In recent studies we have also found that the length of
the cylindrical particles has an important effect on the wave
propagation in the system. As the length of the cylinders
increases, more energy from the initial impulse is transfered
to vibrational modes of individual particles. The effects of
the vibrational properties of the particles in the wave propa-
gation are currently being investigated.

8 Conclusions

We studied the wave propagation in a chain composed of
uniform cylindrical particles with axes perpendicular to the
chain’s axis. The particles were arranged such that the ori-
entation angle α between the axes of neighboring particles
is uniform throughout the chain. We reviewed the Hertzian
contact interaction between two cylindrical particles and its
dependence on the orientation angle α. We compared results
from the Hertzian contact law with a three-dimensional finite
element model to find the range of α in which the Hertzian
contact law is valid. We used the contact interaction between
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particles in a discrete particle model, to study the properties
of wave propagation. We observed the formation and propa-
gation of highly nonlinear solitary waves, similar to the uni-
form chain of spherical particles, when α > 0◦, with good
agreement between the discrete particle and finite element
models. We compared the numerical results with experiments
for the case of α = 90◦. We analyzed the dynamic response
of the system with variations of the angle α and showed that
the response of the system is tunable with α. Chains of
cylindrical particles could find application in the design of
materials capable of tailoring stress wave propagation, and
in tunable acoustic devices.
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