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We conduct an extensive study of nonlinear localized modes (NLMs), which are temporally periodic and
spatially localized structures, in a two-dimensional array of repelling magnets. In our experiments, we arrange a
lattice in a hexagonal configuration with a light-mass defect, and we harmonically drive the center of the chain
with a tunable excitation frequency, amplitude, and angle. We use a damped, driven-variant of a vector Fermi—
Pasta—Ulam-Tsingou lattice to model our experimental setup. Despite theridealized nature of this model, we
obtain good qualitative agreement between theory and experiments for.a variety of dynamical behaviors. We find
that the spatial decay is direction-dependent and that drive amplitudes along fundamental displacement axes lead
to nonlinear resonant peaks in frequency continuations that are Similar to those that occur in one-dimensional
damped, driven lattices. However, driving along other directions leads to the creation of asymmetric NLMs
that bifurcate from the main solution branch, which consistsrof symmetric NLMs. When we vary the drive
amplitude, we observe such behavior both in our experiments and in our’'simulations. We also demonstrate that
solutions that appear to be time-quasiperiodic bifurcate from the branch of symmetric time-periodic NLMs.

I. INTRODUCTION

Discrete breathers are spatially localized, time-periodic solutions of nonlinear lattice differential equations. They have been
studied in a host of scientific areas, including optical waveguide arrays and photorefractive crystals [1], Josephson-junction
ladders [2, 3], layered antiferromagnetic crystals [4, 5], halide-bridged transition-metal complexes [6], dynamical models of the
DNA double strand [7], molecular lattices [8];.Bose—Einstein condensates in optical lattices [9], and many others.

Most of the immense volume of work — now:spanning more than three decades — on discrete breathers has been in one-
dimensional (1D) lattices [10—-12]. Most relevant to the'present article is research on discrete breathers in Fermi—Pasta—Ulam—
Tsingou (FPUT) lattices, which have nonlinear inter=site coupling [13, 14]. Additionally, FPUT-like lattices with power-law
potentials have been used to model a variety of mechanical systems, such as granular crystals [15-18] and (more recently)
magnetic lattices [19-21].

There have also been some studies of/breathers in two-dimensional (2D) lattices, although there are many fewer such studies
than of 1D lattices. There are even fewer studies of in-plane breathers [22]. Example 2D physical settings in which breathers
have been examined include crystal lattices [12, 23], electric circuits [24], and dusty plasmas [25, 26]. Breathers in 2D lattices
have been analyzed with both.asymptotic:methods [27] and numerical methods in both homogeneous [22, 28] and heterogeneous
media [29, 30]. See [8, 31] for overviews of results about 2D breathers.

The 2D setting of the present work is a mechanical system in which each magnet has two in-plane displacement fields, which
distinguishes it from many studies.of scalar 2D lattices, such as those that describe electrical circuits [24]. Specifically, we
examine a lattice of reépelling . magnets that are arranged in a hexagonal configuration. The choice of a hexagonal arrangement
is motivated by our experimental setup, as hexagonal configurations are more robust structurally than other arrangements (such
as square configurations):-At the center of the lattice is a light-mass defect, which introduces a localized defect mode into the
spectrum of the/linearization of the system. To excite the system experimentally, we drive the center of the lattice by a force
that results from the current that flows along a wire that we suspend above the lattice. We model damping using a dashpot term.
Putting everything together, the proposed model for the experimental setup is a damped, driven variant of a vector FPUT lattice.

Although a breather is defined as a spatially localized and time-periodic structure, it is useful to label different types of
breathers. Linear systems with an impurity or a defect (e.g., with a particle of lighter mass than the other particles) have isolated
points in their spectra that lie above the spectral edge. We call these modes “defect localized modes” [32]. In the presence
of nonlinearity, breathers can bifurcate from these modes and can exist for frequencies other than the linear defect frequency.
We studyrsuch’ breathers in the present work, and we use the term “nonlinear localized modes” (NLMs) [33] for breathers that
manifest in this way. (Such solutions have also been called “defect breathers” in other settings [34].) By contrast, we use the
term “intrinsic localized modes” (ILMs) for breathers that do not manifest via a defect or an impurity. One way for ILMs, which
we do not investigate in the present paper, to manifest is via a modulation instability of plane waves [10]. In addition to breathers,
other Kkinds of orbits — such as quasiperiodic and chaotic ones — can also occur in nonlinear lattices. For example, such orbits
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FIG. 1: (a) Picture (from a video frame that was used for particle motion tracking) of our experimental setup. The yellow arrow indicates the
direction of the external excitation. (b) Sketches of the (top) normal and (bottom) defect particles. (€¢) Magnetic dipole—dipole interactions in
experiments (open gray circles) and fitted model using Eq. (2) (solid black curve).

have been identified in strongly nonlinear damped, driven granular chains [35, 36], suggesting that such solutions may also be
present in damped, driven magnetic lattices. In the present work, we.examine such NLM states, their stability, and the modes
that arise as a result of instabilities.

Our paper proceeds as follows. We present our experimental setup'in Sec. II, and we detail the corresponding model equations,
linear theory, and numerical methods in Sec. III. We give the.main numerical and experimental results in Sec. IV, where we
explore NLM profiles, spatial decay, parameter continuations, and.nearly time-quasiperiodic orbits. We conclude and discuss
future challenges in Sec. V.

II. EXPERIMENTAL SETUP

We place a 2D lattice on an air-bearing table,to make the magnetic particles (which constitute the nodes of the lattice) levitate.
The lattice consists of 127 magnetic particles that are hexagonally packed. We glue 36 of these particles to the boundaries,
and 91 of them are free to move [see Fig. 1(a)]. Each:particle is a 3D-printed disk with a hole in the center, where we attach
a neodymium magnetic cylinder. We glue a thin piece of cover glass at the bottom to make the surface smoother and thereby
improve the levitation of the particles.«We build the defect particle, which is located in the center of the lattice, by directly
attaching the magnet on the glass without'the 3D-printed structure. This particle has a lighter mass and serves as a defect [see
Fig. 1(b)]. The mean mass of a normal‘disk particle is 138.2 mg + 3.1 mg (where we measure the standard deviation from a
sample of 20 particles). The defect particle has a mass of 81.6 mg, which corresponds to 58.68% of the normal particle mass.

We excite the defect particle using an external magnetic field that we generate using a conductive wire that we place over the
particle at a height of 3 mm. Wegenerate the AC current that flows through the wire from a Lock-In amplifier (SR860 500 kHz
DSP Lock-in Amplifier), and we amplify it with an audio amplifier (Topping TP22, class D). The equation that describes the
force that the wire exerts on amagnet a distance 7 from it is

I,LL()M h2 - 1"2
Fuire(r) = 2 (W2 4+r2)2°

ey

where h is the height of the wire from the plane of floating discs, [ is the wire current, jo = 47 - 10~7 N A~2 is the magnetic
permeability, and M = 7.8 - 1073 Am? is the magnetic moment of the floating disc. See the appendix for the derivation of
Eq. (1). We use harmenic excitations in our experiment, so the current through the wire is I(¢) = aly sin(27 ft), where f is the
drive frequency (in Hz), a is the drive-voltage amplitude (in Volts), and Io = 0.1 A V~! is the current per unit voltage that we
measure in the wire.

The magnets.repel each other. In the ideal situation of a perfect dipole—dipole interaction, the magnetic force between two
repelling magnets is

Fmagnet (’r) = Ar? 5 (2)

whete 7 is the distance (in meters) between the two center points of the magnets, p = —4, and A = 3ugM?/27. Although
Eq. (2) is reasonable for large separation distances, we obtain better agreement by empirically determining A and p. Because

20
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the force between two magnetic dipoles is too small to measure directly, we create a pair of plastic plates, with 25, magnets
attached to each plate. We position the plates to align each pair of cylindrical magnets from opposite plates'through their radial
directions. We measure the repulsive force as a function of the displacement between these two plates,in a materials tester
(Instron ElectroPuls E3000). The distance between the magnets on each plate is large enough (specifically, itis 2.5/cm) so that
we can neglect interactions between magnets that are not aligned. The distance between a magnet on the first plate.and the non-
aligned magnets on the other plate is larger than 25 mm. As one can see in Fig. 1(c), the interactionsforce already tends to 0 for
distances that are significantly smaller than 25 mm. Consequently, the measured force is approximately equal to the’sum of the
repulsive force of the 25 isolated magnet pairs. We fit the data using Eq. (2), which yields p ~ —4.2.and A ~ 3.8 - 10~ 12N /mP
[see Fig. 1(c)].

We monitor the motion of the central particle using a laser vibrometer (Polytec CLV-2534), and ‘'we Tecord the dynamics of
the rest of the lattice using a digital camera (Point Grey GS3-U3-41C6C-C) with a frame rate.of 90 fps. We analyze the images
using digital-image-correlation (DIC) software (VIC-2D) to determine each particle’s yelocity. We inspect half of the lattice, as
the cables that are connected to the driving wire block most of the system’s other half [see Fig.'1(a)]. Due to imperfections at the
bottom of the glass disks (e.g., dust, scratches, and so on) and the fact that mass is not distributed evenly on a disk, a few particles
start to rotate when they are levitated by the air that flows out of the air-bearing table: The image-correlation software then loses
track of them. We ignore these rotating disks in our subsequent analysis. To estimate the.value of the damping coefficient v of
a linear dashpot term, we excite the center particle in the experiment and let the resulting temporal amplitude decay to rest once
we switch off the excitation. We then perform a linear regression on the logarithm of the temporal data to obtain an estimate
for the decay rate 3, where we are assuming an exponential decay that is propottional to e”*. We then choose y by minimizing
the objective function |8 — B,(7)|, where B, (7) is the real part of the eigenvalue that is associated with the defect mode of
the linear system with damping but no driving. (See Eq. (13) with a = 0.). We.do this because the linear defect mode in the
damped, undriven system decays exponentially to 0 with a rate of 3,-(5). We give details of the linear problem in Sec. III B.
This procedure yields v ~ 10.52 - 1073N s/m. The lattice particles.ar¢ always in motion with at least small speeds, even in the
absence of excitation. This is due to interactions with the @irflow from the table and imperfections (e.g., nonaxisymmetric mass
distributions) of the particles. We use this motion to estimate the noise inthe system. To evaluate the amount of noise, we record
the lattice motion without excitation as a comparison; see the appendix for details about the nose estimation. We summarize the
values of all parameters in Table L.

TABLE I: Summary of the parameter values in our experimental setup.

Description Symbol Value (measured) H Description Symbol Value (fitted)

Mass of bulk magnet M,y 138.2 mg Magnetic coefficient A 3.8-107" N/m?
Defect mass Ms 81.6 mg Nonlinearity P —4.2
Static-equilibrium distance é 13.7 mm Damping coefficient ¥ 10.52 - 107N s/m
Wire height h 3 mm Magnetic moment M 7.8-107% A m?

III. THEORETICAL SETUP
A. Model Equations

Our goal is to study.NLMs in a 2D hexagonal lattice. In selecting equations to model the system that we described in Sec. II,
we seek the simplest possible model that incorporates the ingredients (nonlinearity, discreteness, and appropriate dimensionality)
that are essential for NI\Ms and also yield reasonable agreement with experimental data. It is in this spirit that we develop our
model equations. After doing so, we briefly discuss model simplifications.

We consider a hexagonally packed lattice of magnets. We use the lattice basis vectors e; = (1,0) and e; = (1/2,/3/2).
Let @ lt) = (Bn.n(t), Ym.n(t)) € R? denote the displacement from the static equilibrium of the magnet at position p =
0(me1+mnes) in the plane [see Fig. 2(a)], where ¢ is the center-to-center distance between two particles at static equilibrium. The
lattice indices'7 and n take the values m,n € {—w, —(w — 1),...,0,...,w — 1,w}, where w is the number of magnets along
an-edge of the hexagon. The lattice boundary is given by the hexagon with magnets at positions (wd cos(jm/3), wd sin(jn/3)),
where 5. € {0, 1,...,w — 1} [see Fig. 2(b)]. For our fixed boundary conditions along the edge of the hexagonal boundary,
A 4(t) = 0if |m +n| > w.

One can express the distance between the magnet with index (m, n) and one of its nearest neighbors in terms of the displace-
ments &, », and ¥y, , of the magnets from their respective static-equilibrium positions. Once we determine this distance, we
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FIG. 2: (a) Orientation for our convention of indexing particles in a hexagonal lattice./The m axis and n axis meet at an angle of 6 = 7/3.
(b) A hexagonal lattice with w = 6 magnets along each edge of the lattice. The empty circles,and solid center circle represent the locations of
the magnets in static equilibrium. The outer hexagonal boundary is the solid gray hexagon that encloses the lattice. On the boundary, the solid
points represent fixed (i.e., immovable) magnets. There are w + 1 such magnets along each edge of the boundary. The solid circle represents
the defect particle, which has index (m,n) = (0, 0).

compute the resulting force using Eq. (2). Summing the forces from each of the six nearest neighbors and applying Newton’s
second law leads to the following equations of motion:

Mm,nt-lm,n = _FO(Qm—)—l,n - qm,n) - Fl(qm,n+1 9 qm,n) + F—l(qm,n - qm—l,n+1) (3)
ext

+F0(Qm,n - Qm—l,n) + Fl(qm,n — Qm,n—l) - F—l(Qm+1,n—1 - qm,n) - ’qu,n + men(t) .

The vector functions F;(q) = F;(z, y) € R? have a magnitude of

|F(z,y)|=A [\/(5cos(9j) + )2+ (0sin(6;) +y)2| , 0;= m je{-1,0,1}.

The mass of the magnet with index (m, n) is My, . The dashpot term yQ., » is a phenomenological term that we add to account
for damping. Using such a term has yielded reasonable agreement with experiments in other, similar lattices [19, 37, 38]. The
quantity F,ejftn is the external force that'we apply to the magnet at (m,n). In the present article, we consider excitations via a
wire that is directly above the center of the lattice. The magnitude of the excitation is given by Eq. (1). Therefore,

h®—x,
I cos(¢) G252
S (1) = asin(ersfr) 2LoM o ramnl | | )
T\ sin(g) 1o—too

(h2+:‘/(2),0)2

where ¢ is the angle of the excitation and F%’l‘tn = 0 when m # 0 and n # 0. In our experiments and in most of our numerical

computations, the excitation angleis'¢ = /2, so we excite only the y-component of the center magnet. We will also explore
some other excitation/angles. As we discuss in the appendix, the lattice forces dominate the dynamics. The wire has only a small
effect on magnets other/than the one in the center of the lattice. For example, at static equilibrium, the force that is exerted on
the center magnet by the'wire is two orders of magnitude larger than the force that the wire exerts on the center magnet’s nearest
neighbors. Compare the results from inserting 7 = 0 and r = § into Eq. (1).

In our model, we ignore effects beyond nearest-neighbor coupling of the magnetic interactions. It is known that such long-
range effects.can alter-the structure of localized modes. For example, it was shown in [39] that the spatial decay of breathers can
transition/from exponential spatial decay to algebraic decay in lattices with algebraically decaying interaction forces (as is the
case in our model) for lattices with sufficiently many sites. More recently, Molerén et al. [38] studied NLMs in a 1D magnetic
lattice using asmodel with long-range interactions. Although the differences between long-range and nearest-neighbor lattices
that were considered in [38] are detectable, they are still small. For example, at static equilibrium, the force that is exerted on the
center magnet’by its nearest neighbors is one order of magnitude larger than that exerted by its next-nearest neighbor. (Compare
the results from inserting » = § and » = 20 into Eq. (2).) Therefore, to keep our model as simple as possible, we ignore such
small long-range effects.

In'our analysis of experimental data, we ignore magnets that are rotating, so our model does not account for rotation. This
leaves air resistance as the primary source of damping. Given the size of the magnets and velocities that we consider, we employ
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FIG. 3: (Color Online) (a) Contour plot of the bottom dispersion surface. We show the irreducible Brillouin zone as the triangle with
magnets at the points that we mark by M, K, and I'. (b) Contour plot of top dispersion surface:s"(¢) Band structure along the edge of the
irreducible Brillouin zone [also see the triangle in panel (a)] for the bottom (dashed gray curye) and top (solid black curve) dispersion surfaces.
The horizontal dashed curve corresponds to the defect-mode frequency f = 9.17 Hz in a finite-dimensional system with a mass ratio of
Ms /M, =~ 0.5868, where M denotes the mass of the defect magnet and M, denotes the mass of the other (“bulk”) magnets.

a linear dashpot [40]. We also assume that the magnets stay in a plane., We validate the many assumptions that we made in
formulating the model in Eq. (3) via a direct comparison with experimental results in Sec. I'V.

For the remainder of the manuscript, we fix all parameters of the model (and we summarize them in Table I), except for the
excitation amplitude a, frequency f, and angle ¢. We will specify these in our various examples. In all cases, we examine
a lattice with a single defect particle in the center and a hexagonal boundary with a length of w = 6 magnets (see Fig. 2).
Importantly, we do not fit the parameter values to the reported experimental results. Instead, we determine them beforehand
using the procedures that we detailed in Sec. II.

B. Linear Analysis

We start with the basic linear theory of localized modes'for our hexagonal magnetic lattice. We are particularly interested
in modes with frequencies that lie above/the cutoff frequency of the pass band. We first derive an analytical expression for
the cutoff frequency, which is straightforward for an infinite-dimensional Hamiltonian system (i.e., with all integers m and n,
along with @ = 0 and v = 0). We then numerically,estimate the frequency of a linear mode that is associated with the defect
in the finite-dimensional Hamiltonian system. Finally, we compute linear localized modes in the associated finite-dimensional
damped, driven system.

Assuming small strains, such that

|qm:i:1,n - q'm,n|
1)

one can Taylor expand to obtain

|qm,n:i:1 - qm,n| <1 |qm:t1,nq:1 - qm,n|

1
— 5 ’ 5

<1, &)

Fj(a) ~ Fj(qo) + DF;(qo)q,

where DF; is the Jacobian matrix of F ;. Using this notation, the linearized equations of motion are

Mm,nélm,n = _DFO(qm+1,n + qm—l,n) - DFl(qm,n+1 T qm,n—l)

— DF _1(dm—1,n+1 + Am+1,n—1) + 2(DFo + DF1 + DF _1)Qm 1 , (6)
where
a; b; :
DFj: ’ JE{_lvovl}v
¢ dj
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1
2 6
3
4 with
5 ~ ~
6 a_1=pd, b_1=0, c.1=0, d1=4;
7
8 34+p; V3(p—1); 1+ 3p
=—=9 bp = ——=6 =0b do= 0,

9 Qo 1 ) 0 4 ) Co 05 0 4
10
11 a1 = ap, bi = —bo, c1 = —co, d; = do,
:g where 6 = A§P~!. For a monoatomic system (in which all magnets are identical, such that M, ,, = My), the linear system has
14 plane-wave solutions
12 qm,n = 9o €Xp <7’(km+ g(k+\/§£))> €th, qo € CQ: kang ER;
1; where the wavenumbers k, ¢ and angular frequency w = w(k, £) satisfy the dispersion relationship
19 9 Wq +wq * \/(wa + wd)2 — 4(wawd — wbwc)
20 w(k, £))* = : )
21 2
22 with
23
24 wa(k, €) = (—2a_1 cos(k) — 20 cos(k/2 + V/3/20) — 2amcos(k /2= V/3/20) + 2(a_1 + o + 1)) /M,
25 and coefficients a; € {a;,b;,¢;j,d;} (with j € {—1,0,1}){ In Fig.:3(a,b), we show contour plots of the two dispersion surfaces
26 from Eq. (7). In Fig. 3(c), we show the dispersion curves along the edge of the irreducible Brillouin zone. The cutoff value of
27 the pass band has the wavenumber pair (k, ¢) = (0, 27/3), which,is where the dispersion curve attains its maximum value. For
28 the parameter values in Table I, the cutoff frequency is f, = w(0,2m/3), /(27) ~ 8.77 Hz, where w_ corresponds to the top
29 dispersion surface.
30 The presence of the lighter defect introduces/a linear mode into the system that is localized in space and oscillates with a
31 frequency above the cutoff frequency of the linear moneatomic system. With the light-mass defect at the center of the lattice,
32 we write
33
34 Ms, n=0and m=0

My, otherwise,
36
37 where (0,0) is the index of the mass defect with'mass My, the quantity M), is the mass of a magnet in the “bulk” (i.e., the
38 non-defect mass), and My < M. We numerically compute the linear modes of the system with a mass defect, and we are
39 thereby able to consider finite lattices. "We use a hexagonal boundary with an edge length of w = 6 magnets [see Fig. 2(b)]. One
40 can embed this lattice into a square matrix of size N x N, where N = 2w — 1 is the number magnets along the n = 0 line of
41 the lattice. Let X (¢) be the N x"N-matrixywhose (m, n)th entry is <, (¢), and let Y (¢) be the N x N matrix whose (m, n)th
42 entry is Ym,n(t). We enforce thesfixed hexagonal boundaries by setting the displacements of magnets with indices (m,n) such
43 that |m + n| > w to 0. We define the N x N matrix operators L,, through
44
45 LY =oyDY + YD+ a_1(ETYET + EYE - 2Y), 9)
46 where a; € {a;,b;,¢;,d;} (with 7 €{—1,0,1}); the N x N tridiagonal matrix D has 1 entries on the super-diagonals and
47 sub-diagonals, 2 entries along the diagonal, and 0O entries everywhere else; E is an N x N matrix with 1 entries along the
48 super-diagonal and'0 entries everywhere else; and E7 is the transpose of E. With these definitions, Eq. (6) becomes
49 5
50 Mo X(t) = Lo X(t) + LyY (¢),
51 .
52 MoY(t)=L.X(t) + LY (t), (10)
?3 where M is anV X N matrix in which all entries except the (0, 0)th entry (which is equal to Mj) are equal to M},. The operation
55 o.denotes pointwise multiplication (i.e., the Hadamard product). The system (10) has solutions of the form X (t) = Xe™! and
56 Y (1) = Ye™*, where X and Y are N x N time-independent matrices and
> MoX L, Ly\ (X

o a

58 —w? ) = 1] (1D
59 MoY L. Lq Y

60



Page 7 of 18 AUTHOR SUBMITTED MANUSCRIPT - NJP-112573.R1

coNOULT A~ WN =

aoauuuuuuuuuuuUubdDdDDADDDMNDMNDAEADAEDNDNWWWWWWWWWWNDNNNNNNNNN=S =S 23 3992009299
O VWO NOUEAEWN=-_O0UVONOOTULLAARWN—_LOVONOOCULLDDAWN—_OUVONOOCULLDDWN=—__OOVONOOUVD, WN=O

7

One can cast Eq. (11) as a standard eigenvalue problem by letting A = —w? and unwrapping the X and Y matrices into
equivalent row vectors and reshaping the block matrix (with entries given by L,,) into a corresponding 2N %% 2N2 matrix. One
can then numerically solve the resulting eigenvalue problem to obtain 2N? eigenvalues and their corresponding modes. Using
the values in Table I and w = 6 (which yields N = 11), we see that two eigenvalues (each with'a frequeney.of v/~ \/(27) =
w/(2m) = fq = 9.17) lie above the cutoff frequency f. ~ 8.77 Hz. The rotational symmetry of/order 6 of the hexagonal
lattice suggests that eigenvalues come in nearly resonant triplets, rather than in pairs [41]. Although thisis indeed true for a
homogeneous hexagonal lattice, the presence of the defect splits the largest nearly resonant tripletinto a pair of eigenvalues with
a frequency above the cutoff (representing the defect frequency) and a single, non-repeated eigenvalue. The spatial structure
corresponding to the three largest eigenvalues confirms that there are only two defect modes«In particular, the spatial structure
of the modes that correspond to the frequency f; is localized [see Fig. 4(a,b)]. The spatial structure of.the mode that corresponds
to the next-largest eigenvalue is spatially extended [see Fig. 4(c)].

Now suppose that there is driving and damping. Near the (X (¢),Y (¢)) = 0 background state, equations (10) yield the
following approximate system:

Mo X(t) = Ly X (t) + LyY (t) — vX (t) + aA cos(@)sin (2aff) , (12)
MoY(t) = L. X(t) + LY (t) — vY (t) + aA'sin(e) sin(27 ft) , (13)
where A is an N x N matrix that has all 0 entries except for the single nonzeroentry

Y
Aoo = 2mh2n.

We obtain A by expanding the external drive function E®** nearjthe vanishing displacements and maintaining the leading,
non-vanishing term. We can then find solutions of the system(12,13) in.the form

X(t) = X, cos(2m ft) + Xy sin(2n f#), ¥i(b)= Y cos(27 ft) + Yy sin(2m ft), (14)

where we obtain the N x N matrices X 1, XQ, }71 and 172 by substituting Eq. (14) into Egs. (12) and (13) and then solving the
resulting system of linear equations.

We use root mean square (RMS) quantities as our prineipal diagnostic for evaluating our results, such as in our numerical
continuations. Most commonly, we compute the RMS of the velocity of the y-component of the center particle (i.e., 9o,0). In
this case,

foT U3.0(t) dt
RMS = T 3
where T' = 1/f is the period of the excitation frequency. We show a plot of the RMS of the linear state (14) in Fig. 4(d) as
a function of the excitation frequency forasfixed amplitude of ¢« = 0.01 mV and an excitation angle of ¢ = 7/2. The lone
resonant peak above the cutoff pointis close to the estimated defect frequency f; ~ 9.17 Hz.

In Fig. 4(e), we show a frequency sweep in our experiment for « = 4 mV and ¢ = /2. We show the theoretical values of the
cutoff frequency f. =~ 8.77 Hz and defect frequency f; ~ 9.17 Hz that we found in Sec. III B as vertical solid and dashed lines,
respectively. We see that the experimental resonant peak is close to the theoretical value. To obtain a cleaner resonant peak, we
use an excitation amplitude thatis large enough to overcome the noise of the system. One such amplitude is @ = 4 mV. As we
will see in Sec. IV, anexcitation amplitude of @ = 4 mV is already in the nonlinear regime of the system.

C. Numerical Methods for the Computation of Nonlinear Localized Modes and Their Stability

For the remainder.of our paper, we focus on how the presence of nonlinearity affects the “defect-induced” linear localized
modes of/the system [see, e.g., Fig. 4(d)]. We refer to these solutions, which are localized in space and periodic in time, as
nonlinear localized modes (NLMs). We compute them numerically in the following manner. We compute time-periodic orbits
of Eq. (3) with.period T' = 1/ f to high precision by finding roots of the map G = x(T") — x(0), where x(7) is the solution of
Eq. (3) at time 7" with initial condition x(0) and x € R*V * is the vector that results from reshaping the matrix with elements
Tm,n> Yy @m n, and Y, , into row vectors and concatenating them into a single vector. We obtain roots of the map G using
aJacobian-free Newton—Krylov method [42] with an initial guess of our linear state (14). We perform numerical continuations
a using pseudo-arclength algorithm [43] with the excitation frequency f or amplitude a as our continuation parameter. We
determine the linear stability of each solution x by solving the variational equations V' = DG - V with the initial condition
V(0)/= I, where I denotes the identity matrix and DG is the 4N? x 4N? Jacobian matrix of the right-hand side of Eq. (3)



coNOTULT A~ WN =

aouuuuuuuuuuuUubdDdDdDDADDNDNMNDMNDAEADAENDNDNWWWWWWWWWWNDNNNNNNNNN=S =S 23 9 92200299
O VWO NOULEAWN=_O0O0UVOONOOTULDADAWN=—_LOUVONOOCULLAAWN=—_OUVONOOCULLAAWN=—_OOVONOOULD, WN=O

AUTHOR SUBMITTED MANUSCRIPT - NJP-112573.R1 Page 8 of 18

8
(a) (b) (©

000000 ° 000000 T B
- 0000000 o 000000d o
” oocooooooo . coedecooen [X.

0000000000 00000080008
coococoeo0cooo |, ocococooeocoococo I, 0000 e 0eee o oW,
coocooeoooo K coocoeocococoo K cooeedeecee I

000000000 00 000 Y 00
0000000 01 00000000 01 cogegeco 01
000000 0 000000 0 L XoXo). ) ) 0

(d) (e

100

80

60

40

:
: :
: 2 ;
! ;
p ; :

7 75 8 85 9 95 10 7 75 8 85 9. 95 10
Frequency [Hz] Frequency [Hz]

RMS [mm/s]

oS
N

FIG. 4: (a,b) Shapes of the two modes with defect frequency f; ~ 9.17 Hz of the linear Hamiltonian system (6) with w = 6 magnets along
each edge of the boundary. The color intensity at each point (m, n) corresponds t0.,/%2, , + 92, . (¢) Shape of the mode that corresponds
to the cutoff frequency f. ~ 8.77 Hz for the same system asin (a,b) (d) Root mean square (RMS) of 90,0 of the linear damped, driven
solution (14) as a function of the drive frequency f with excitation amplitude a== 0.01 mV and ¢ = 7/2. (e) RMS of the velocity of the
center particle of the experimental frequency sweep with a = 4 mV. and ¢.= /2.
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FIG. 5: Nonlinear localized mode _of Eq. (3) that we obtain using a Newton—Krylov method for a = 4 mV, ¢ = 7/2, and f = 9.3 Hz. (a)
A surface plot of the NLM. We show.the RMS velocity of each magnet in the lattice. (b) Intensity plot of the NLM, where the color intensity
corresponds to the RMS. (c¢) Floquet multipliets o (blue markers) that are associated with the NLM in the complex plane. We show the unit
circle in gray. All multipliers lie within or omthe unit circle, indicating that this solution is stable. (d) In the top panel, we show local maxima
of the time series of 70,0 whenevolving zero initial data (i.e., the initial values of all variables are equal to 0) for a = 4 mV, ¢ = 7/2, and
f = 9.3 Hz. We approach the value 70,0 ~ 99.8 mm/s of the stable NLM. (See the black line.) In the bottom panel, we show the Fourier
transform of the final 5 seconds of the time series of ¢y, o. This reveals a single large peak at frequency f ~ 9.3 Hz.

evaluated at the solution x [44]. We calculate the Floquet multipliers, which we denote hereafter by o, for a solution by
computing the eigenvalues of the matrix V (7T'). If all of the Floquet multipliers of a solution have an absolute value that is less
than or equal tQ 1, we say that the solution is “linearly stable”. Otherwise, we say that the solution is “unstable”. The Floquet
multipliers only give information about the spectral stability of the solutions, and marginal instabilities that are associated with
unit Floquet multipliers and nonlinear instabilities are possible. Therefore, we verify stability through numerical simulations.
In our continuation diagrams, solid blue segments correspond to stable parameter regions and dashed red segments correspond
to unstable.regions. We compute the Floquet multipliers after we obtain a solution with the Newton—Krylov method to avoid
repeatedly solving the large variational system. Such a computation would be necessary if we were using a standard Newton
method, because the Jacobian of the map G is V(T') — I.
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IV. MAIN RESULTS
A. Numerical NLMs

Using the Newton—Krylov method that we described in Sec. III C, we obtain a time-periodic solution with f =9:3 Hz, a = 4
mV , and ¢ = 7/2. Additionally, because f = 9.3 > 8.77 = f., this solution is localized in space [see Fig. 5(a)]. The dominant
peak is at the center of the lattice, the magnets that are adjacent to the center magnet at angles't/3, 27/3, 47/3, and 57/3
have the next-largest amplitudes [see Fig. 5(b)]. This is not surprising, because we are exciting the lattice along the ¢ = 7/2
direction. The Floquet multipliers that are associated with this solution each have a magnitude that is no more than 1, indicating
that the solution is stable [see Fig. 5(c)]. Indeed, upon simulating Eq. (3) with the initial values of all variables equal to 0 (i.e.,
“zero initial data”) and f = 9.3 Hz, a = 4 mV, and ¢ = 7/2, the dynamics approaches this stable NLM. [See the top panel of
Fig. 5(d).] As expected, the Fourier transform of the corresponding time series is localized around the frequency f ~ 9.3 Hz.

The spatial decay of the tails of the NLM depends on which direction of observation one considers. For example, if one
measures the RMS velocity of the magnets that lie along the 6 = 7 /3 direction, the decay appears to be exponential or faster.
See the solid blue squares in Fig. 6(a), which shows the RMS velocity versus distance.from the origin (following the § = 7/3
direction) in a semilogarithmic plot for the NLM from Fig. 5 [i.e., for the NLM with fi= 9.3 Hz, a = 4 mV, and ¢ = 7/2].
This is consistent with the spatial decay properties of breathers in continuous-space settings, such as the ones in the quintic
Ginzburg-Landau equation that were studied in [45]. The tails of the breathets.in [45] decay at rate e~*" /\/r, where b > 0 is a
constant. The solid yellow circles in Fig. 6(a) illustrate a similar decay for the magnets along the § = 0 direction for our NLM
solution, although we observe some modulation in the decay profile, in contrast to the dynamics when 6§ = 7/3. (Modulations in
spatial decay have been studied in other settings, such as in the biharmonic ¢* model [46].) We observe similar decay properties
for an NLM with f = 9.3 Hz, a = 5.5 mV and ¢ = 7/2 [see Fig.6(b)].

B. Experimental NLMs

In our experiments, it is difficult to initialize theé'system with predetermined positions and velocities. To obtain an NLM, we
excite the system with a small amplitude (¢ = 1‘mV).which weincrease gradually to the value a = 4 mV over about 3 minutes.
Because we predict that there is a stable NLM at the resulting parameter values, we record data for sufficiently long (specifically,
after 90 periods of motion have elapsed) once we attain the valie a = 4 mV. We track the velocities at the center particle with a
laser vibrometer (see Sec. II), and we record the time series of the magnet velocities using an oscilloscope. [See the top panel of
Fig. 6(c).] As expected, we obtain dynamics that are periodic in time, as we can see not only with the time series but also via its
Fourier transform [which we show in the bottom panel.of Fig. 6(c)]. We obtain similar experimental results for an amplitude of
a =5.5mV.

To examine the spatial decay of the experimental NLM, we record the positions of the magnets in half of the lattice using
a digital camera (see Sec. II). By numerically, differentiating the positions, we obtain an estimate for the velocities of these
magnets. We were unable to do a complete full-field realization, because the DIC loses track of some magnets (if, e.g., the
magnets begin to spin). However; we captured enough data to compute the decay along the two primary directions (§ = 7/3
and 6 = 0) that we examined in our numerical NLMs. For data that we obtained with f = 9.3 Hz, a = 4 mV, and ¢ = 7/2, the
open blue squares in Fig. 6(a).show the decay along the § = 7 /3 direction and the open yellow circles show the decay along the
6 = 0 direction. The horizontal dashed line is our estimated mean value of the noise (see Sec. II). We show the experimental
decay rates along with our numerical results. Although the numerical values overestimate the RMS velocity, the agreement is
still reasonable, especially for the center magnet. We find similar decay properties in our experiment with f = 9.3 Hz, a = 5.5
mV, and ¢ = 7/2. [See the open markers of Fig. 6(b).]

Recall that we do not/tune the numerical results to fit the experimentally obtained NLM solution. Instead, we determine each
of the parameter values beforehand, as described in Sec. II.

C. Frequency Continuation

In Figs.4(e) and 6(a,b), we demonstrate that our model (3) agrees reasonably well with our experimental data. We now conduct
a series of numerical computations in the form of parameter continuation (see Sec. III C for a description of our procedure) to
get a better sense of the role of the nonlinearity in Eq. (3) and its interplay with the disorder (at the central magnet) and the
discretenessyof the model. We return to our experiments in Sec. IV D to see what nonlinear effects we are able to capture in the
laboratory.

We first perform continuation with respect to the excitation frequency f for a fixed excitation angle ¢ = 7 /2 for various values
of the excitation amplitude a. We thereby generate nonlinear analogs of the linear resonant peak that we showed in Fig. 4(d). In
Fig. 7(a), we show frequency continuations for our two drive amplitudes, « = 4 mV and a = 5.5, of the NLMs from Fig. 5 and
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FIG. 6: (a) Decay of the NLM in the # = /3 (blue squares) and § = 0 (yellow circles) directions for a drive amplitude of a = 4 mV,
drive angle of ¢ = /2, and drive frequency of f = 9.3 Hz. We show the RMS velocity versus.the distance to the origin of the lattice. We
show experimental results as open markers and the numerical results as solid markers that are connected by lines. The dashed horizontal line
is an estimation of the noise floor of the system (see the appendix). (b) The same as panel (a);:but for.a drive amplitude of a = 5.5 mV. (c)
Time series (top panel) of the center particle of the experimental NLM and the corresponding Fourier transform (bottom panel) with ¢ = 7/2,
f = 9.3 Hz, and @ = 4 mV. Despite the presence of some noise, the solution is predominantly periodic in time. Indeed, the Fourier transform
of the time signal is highly localized around the frequency f = 9.3 Hz.

Figs. 6(a,b). From comparing these frequency continuations to the linear caseiin Fig. 4(d), we see that the nonlinearity deforms
the peak, which becomes narrower and starts to bend towards higher frequencies. The nonlinearity also destabilizes the solutions
at some critical frequency; this occurs at f ~ 9.29 Hz for a/= 4 mV.and at fi# 9.31 Hz for a = 5.5 mV. Therefore, the NLM in
Fig. 6(c) is unstable. Our numerical computations predicted this NLM to be unstable, so it is notable that we are able to access it
in our experiments. Although this seems to imply that our theory. is inconsistent with our experiments for the parameter values
f =~ 9.31 Hz and @ = 5.5 mV, the instability of the NLM for these parameter values is rather weak (with max(|o;|) =~ 1.007).
We observe instability only after many periods when we perturb the NLM along the eigenvector that is associated to the unstable
Floquet multiplier o =~ 1.007. See the top panel of Figure 7(b). However, if we initialize the dynamics with zero initial data, we
approach and stay close to the NLM solution that we obtained via a Newton—Krylov method, even after 200 periods of motion.
See the bottom panel of Figure 7(b). This suggests that solutions with weak instabilities can still attract nearby points in phase
space, at least initially, and that our numerieal prediction for f ~ 9.31 Hz and ¢ = 5.5 mV is consistent with our experimental
observations. Figure 7(c) is the same as Figure 7(a), but now the color scale corresponds to the magnitude of the maximum
Floquet multiplier. This illustrates that the magnitude of the instability is weak throughout most of the solution branch. The
instability has its largest growth rate (with max(|o;|) ~ 2.15) at the peak of the resonant curve. The onset of instability of
the NLM with @ = 5.5 mV occurs due to a pair of.ccomplex conjugate Floquet multipliers that depart from the unit circle at
approximately f = 9.31 Hz. As the frequency decreases, additional multipliers depart from the unit circle. In Figure 7(d),
we show the Floquet spectrum for f = 9.2 Hz, indicating that there are purely real multipliers (corresponding to exponential
growth) and complex multipliets (corresponding to oscillatory instabilities). Although we show only the principal branches of
the NLMs in Fig. 7(a), it is possible that other bifurcations also occur. Indeed, the non-real nature of the Floquet multipliers
that depart the unit circle suggest that'there may be other types of solutions, such as quasiperiodic ones. We investigate this
possibility in Sec. IV D. At smallerdrive frequencies (within the pass band), the solutions on the main branch of NLMs can be
stable. We do not investigate such solutions in depth, however, because they are spatially extended (and hence outside the scope
of the present paper).

In Fig. 8(a), we showithegradual’bending of the resonant peak for progressively larger excitation amplitudes with ¢ = 7/2. In
particular, for a = 15 mYV, the peak bends so far that additional solutions emerge at f ~ 9.3 Hz. However, these large-amplitude
solutions are very unstable, and we were not able to access them either in our direct numerical simulations or in our experiments.
Indeed, as we willidiscussin Sec. IV D, we observe different types of dynamics at such excitation amplitudes. We can also tune
the excitation angle ¢ and thereby deform the resonant peak in a different way. For example, when we fix the excitation angle
to ¢ = 0 (i.e., ‘an _excitation along n = 0), the resonant curves are qualitatively similar to those for ¢ = /2 for excitation
amplitudestofia =1, @ = 2, and a = 4 [see Fig. 8(b)], although the stability properties are slightly different. For the large
excitation of ¢ ="15 mV, the resonant curve bends even farther toward higher frequencies. Even greater qualitative differences
occur for'¢. = /3 (i.e., an excitation along m = 0); see Fig. 8(c). In this case, for small-amplitude excitations, the resonant
peak has a unimodal shape, as expected. However, as we consider gradually larger excitation amplitudes, an additional peak
begins.to emerge from the main solution branch, leading to a two-humped profile in the dependence of the RMS velocity on
the frequency. This deformation is noticeable for relatively small excitation amplitudes. Specifically, we observe the existence
of.multiple ‘solutions even for excitation amplitudes that are as small as a = 3 mV, for which there is bifurcation at frequency
f ~9.28 Hz.

The frequency continuation with the excitation angle ¢ = 7/3 is more representative of “typical” angles than the special
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FIG. 7: Frequency continuation of NLMs. (a) Continuation’ with respect to frequency for a fixed excitation angle ¢ = 7/2 for the two
amplitudes, @ = 4 mV and a = 5.5 mV, that we.considered in Fig. 6. (b) In the top panel, we plot the local maxima of the time series of
Yo,0 when we perturb the NLM with f = 9.3 Hz and'a.="5.5 mV along the eigenvector that is associated with the largest-magnitude Floquet
multiplier. The size of this perturbation is/equal to 5% of the amplitude of the solution. The solid black line shows the corresponding value
of the local maximum of the NLM that we obfain via a Newton—Krylov method. In the bottom panel, we plot local maxima of the time series
when evolving zero initial data with afixed frequency f = 9.3 Hz and amplitude drive a = 5.5. (¢) The same as panel (a), but with color
intensity and disk radius corresponding.to the magnitude of the largest Floquet multiplier (small blue disks are stable, whereas large red disks
are unstable). The instabilities are fairly weak, except near the peaks of the resonant curves. (d) Floquet multipliers o (markers) that are
associated with the NLM at a drive frequency of f = 9.2 Hz in the complex plane. We show the unit circle in gray. The presence of multipliers
that lie outside the unit circle (red markers) indicate that this solution is unstable.

cases ¢ = /2 and ¢'= 0. For example, even by decreasing the angle slightly from ¢ = 7/2 to ¢ = 897 /180, we observe
the additional branch in/the frequency continuation [see Fig. 9(a)]. We show a plot of an NLM at frequency f = 9.2 Hz that
belongs to the main braneh.(ite., the branch with smaller-amplitude NLMs) of the ¢ = 897 /180 continuation in Fig. 9(b). It has
a similar profileto the NLM in Fig. 5. We show a plot of an NLM from the additional (i.e., larger-amplitude) branch at f = 9.2
Hz in Fig. 9(c). The solutions along this branch have secondary amplitudes in the —7 /3 direction. It appears that the asymmetric
nature of the drivesis.responsible for the excitation of this additional solution, whose profile is distinct from the solutions in the
main branch.

D. Drive-Amplitude Sweeps

We now return to the effect of large-amplitude excitations for the parameter set — namely, ¢ = 7/2 and f ~ 9.3 Hz — in
our Jaboratory experiments. Our bifurcation analysis revealed that the NLM solution at this parameter set destabilizes for larger
amplitudes, although sometimes the instability is so weak that the NLMs are effectively stable on short enough time scales [see
Fig. 7(b)]. We also observed that a large-amplitude branch of NLM solutions emerges at the parameter values ¢ = /2 and
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FIG. 8: (a) Frequency continuation with an excitation angle of ¢ = 7/2 for excitation amplitudes @ = 1 mV, a = 2 mV, a = 4 mV, and
a = 15 mV. (b) Frequency continuation with ¢ = 0 fora = 1 mV, a = 2 mV, a = 4 mV, and a = 15 mV. Note that the curve corresponding
to a = 15 mV also crosses itself to form a loop, just like in panel (a). (¢) Frequency continuation with'¢ = /3 fora = 1 mV, a = 1.5 mV,
a=2mV,and a = 3 mV.
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FIG. 9: (a) Frequency continuation with an excitation amplitude of a = 3 mV for excitation angles of ¢ = 897/180 and ¢ = 7 /2. Our
continuations for ¢ = 897/180 and ¢ = 7 /2 are indistinguishable when we are outside the parameter region in which the ¢ = 897/180
continuation has an additional branch of NLM solutions. (b) Profile of the NLM for f = 9.2 Hz that belongs to the lower branch (i.e., the
smaller-amplitude NLM branch) of the ¢ =897/ 180 continuation. (c) Profile of the NLM for f = 9.2 Hz that belongs to the upper branch of
the ¢ = 897 /180 continuation.
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FIG. 10: (a) Our upsweep (dashed gray curve) and downsweep (solid black curve) of the drive amplitude a in our experiment. (b) The
magnitude of the Fourier transform of the time series for the velocity of the center particle normalized by the height of the peak at f =~ 9.3
Hz for (top panel) our experiment and (bottom panel) our numerical computation for an excitation amplitude ¢ = 5.5 mV. The dashed gray
curve(is the small-amplitude state (in the form of an NLM) that we obtain from the upsweep, and the solid black curve is the large-amplitude
state that we obtain from the downsweep. (c¢) The upsweep (dashed gray curve) and downsweep (solid black curve) of the amplitude in our
numerical simulations.
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f = 9.3 Hz for sufficiently large excitation amplitudes [see Fig. 8(a)].

To study the dynamics at larger amplitudes in experiments, we initialize the system with a small-amplitude excitation (of
a = 1 mV) and gradually increase the amplitude in increments of 0.05 mV. For each step, we run the system for 90 periods,
which allows sufficient time to settle to a steady state if there is one. We record the RMS of the velocity of the:center magnet for
the final 5 seconds. We call this procedure an amplitude “upsweep”. We use an analogous procedure when we start with a large
excitation amplitude, which we gradually decrease in steps of size 0.05 mV. We call this procedure.an amplitude “downsweep”.
We show our experimental results for the upsweep and downsweep in Fig. 10(a). For sufficiently small amplitudes (specifically,
for @ £ 4.5 mV) both the upsweep and downsweep approach the same NLM, suggesting that'there is a single stable branch
of NLMs for a 5 4.5 mV. However, for a Z 4.5 mV, there appear to be two different statesjywe obtain the small-amplitude
states when we perform an upsweep and the large-amplitude states when we perform a downsweep. The small-amplitude states
have the form of an NLM. The experimental result in Fig. 6(b) is an example of the small-amplitude state for a = 5.5 mV.
The large-amplitude states are also localized, but they are no longer periodic in time. Ansinspection of the Fourier transform of
the large-amplitude state for a = 5.5 mV reveals other peaks in the spectrum (in addition.to'apeak at the excitation frequency
f = 9.3 Hz). In the top panel of Fig. 10(b), we show the Fourier transform of both the large-amplitude state and the small-
amplitude state. The small-amplitude state (i.e., the NLM) has no peaks for lowerfrequencies;whereas the large-amplitude state
has peaks at approximately f = 8.9 Hz and f = 6.2 Hz; this is suggestive of quasiperiodie/behavior.

We obtain qualitatively similar results when we perform analogous upsweeps and downsweeps in numerical computations.
We also observe the emergence of two states in these computations [see Fig. 10(c)]. In our computations, the large-amplitude
state departs from the branch of NLM:s for excitation amplitudes that are slightly larger (specifically, for a £ 5.1 mV) than in our
experiments. The amplitude @ ~ 5.1 mV is roughly where the numerical NLM branch destabilizes. As in our experiments, these
large-amplitude states are not periodic in time. One can also observe the presence of secondary peaks in their Fourier transforms
in our numerical solutions, although the locations of these peaks are slightly different than in our experiments. See the bottom
panel of Fig. 10(b). Although these numerical large-amplitude states have features that are similar to those of time-quasiperiodic
states (given the multiple incommensurate peaks in the Fourier transform), it is also possible that these large-amplitude states
are weakly chaotic. One issue is that we were unable to detect.asymptotically stable time-quasiperiodic orbits for parameter
values that correspond to the experiments. If such solutions were attractors, it would be straightforward to determine if the
large-amplitude states are time-quasiperiodic ones by plotting Poincaré sections of the orbits.

To clarify the nature of the large-amplitude states, we modify the parameter values slightly to obtain stable time-quasiperiodic
solutions. We perform amplitude upsweeps and downsweeps for the parameter set ¢ = 7/2, f = 9.65 Hz, and M;, = 125 g. We
use a different drive frequency from our prior calculationsybecause the smaller mass M, = 125 g leads to a cutoff frequency
of f. ~ 9.01 Hz and a defect frequency of .f; ~ 9.36 Hz. The amplitude sweeps with these parameter values lead to a well-
defined large-amplitude branch of solutions that.bifurcates from the main branch of periodic ones (the NLMs) [see Fig. 11(a)].
In Fig. 11(a), we show three solid markers to/point out the locations of three solutions: a large-amplitude state that appears to be
either time-quasiperiodic or time-chaotic in'black, the NLM (in gray), and a stable time-quasiperiodic orbit (in red). We show
a plot of a projection of the Poincaré section‘imithe (¥, 77) plane in Fig. 11(b) for the two states that are not time-periodic. The
orbit in the bottom panel reveals a wellsdefined invariant curve, illustrating the quasiperiodic nature of the solution. We show the
Fourier transforms of these two non-periodic states in Fig. 11(c). Both have a secondary peak in the spectrum, demonstrating
that the solutions are indeed non-periodie.in time (because of the incommensurate peaks in the frequency spectra). Laboratory
experiments for this modified parameter set yield similar results. In particular, there is a well-defined large-amplitude branch of
solutions that bifurcates from a branch ef time-periodic solutions [see Fig. 11(d,e)]. The Fourier transform of one of the large-
amplitude states also has a secondary peak in the spectrum, an indication that the state is nearly quasiperiodic. For simplicity,
we henceforth use the term,‘quasiperiodic” for such a state.

Because the numerical computations and experiments with the mass M, = 125 g reveal the existence of time-quasiperiodic
orbits that bifurcate from the main branch of time-periodic NLMs, it is reasonable to conclude that these quasiperiodic solutions
persist when we continue the parameters to the original parameter set M, = 138.2 g and f; = 9.3. This suggests that the
large-amplitude branch‘in Fig{ 10(a,c) consists of time-quasiperiodic solutions.

V. CONCLUSIONS

We hayve demonstrated, both experimentally and numerically, the existence of nonlinear localized modes in a 2D hexagonal
lattice of repelling magnets. By exploring the effects of nonlinearity numerically using frequency continuation and experimen-
tally using amplitude sweeps, we revealed the emergence of both time-periodic NLMs and time-quasiperiodic localized states.
We have also established that our experimental setup is a viable approach for fundamental studies in nonlinear lattice systems
that go beyond what can occur in 1D chains. We found that the smaller-amplitude NLMs that we considered are stable, whereas
progressively larger excitation amplitudes led to instabilities and more complicated dynamics, including time-quasiperiodic and
potentially time-chaotic behavior. We also explored the anisotropy of the hexagonal lattice by considering different excitation
angles and examining the nature and decay of the states along these angles.
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FIG. 11: (a) The upsweep (dashed gray curve) and downsweep (solid black curve) for our numerical simulations with M; = 125 g and
f = 9.65 Hz. Three states exist when we use an excitation amplitude of @= 9.2 mV. Two of the states (the black and red dots) are not
periodic in time, and the other state (the gray dot) is time-periodic. We obtain the state that is indicated by the red dot by simulating zero initial
data for 90 periods of motion. (b) In the top panel, we/show a projection of the Poincaré section of the solution that is represented by the black
dot in panel (a). In the bottom panel, we show a projection of'the Poincaré section of the solution that is represented by the red dot in panel (a).
(c) The magnitudes of the Fourier transforms of the solutions in panel(b). (d) The upsweep (dashed gray curve) and downsweep (solid black
curve) for our experiments. (e) The gray curve is.the experimental time series of the small-amplitude state that we obtain from the upsweep for
an excitation amplitude of a = 8 mV. The solid black curve is the time series of the large-amplitude state that we obtain from the downsweep
for an excitation amplitude of a = 8 mV. (f) The magnitude of the Fourier transform of the time series of panel (e) normalized by the height
of the peak at f = 9.5. The gray curve corresponds to the small-amplitude state, and the solid black curve corresponds to the large-amplitude
state.

Our work paves the way for many future studies. For example, although our parameter continuation in frequency revealed
several families of solutions, thete are undoubtedly — given the complexity of the studied system — several other ones (including
possibly exotic ones) to discover. Other avenues of future work include the study of refined models — such as ones that account
for nonlinear damping (or, more.generally, a more elaborate form of damping [47-49]), rotational effects (which can be rather
important [50, 51]), and/or long-range interactions [38] — of our lattice system. Each of these aspects will add elements of
complexity, but they also may lead to other types of interesting dynamics, such as the possibility of breather solutions with
algebraically decaying tails in'space [38, 39]. It is also possible that the inclusion of rotational effects and/or more sophisticated
damping models mayshelp improve:matches with laboratory experiments. Such models have an associated cost of being more
complicated and hence more cumbersome to analyze and simulate. Our attempt in the present paper has been to explore the
principal features of the.interplay of discreteness, local disorder, and nonlinearity in a hexagonal lattice of magnets. Breathers
in heterogenous’hexagonal magnetic lattices (e.g., ones with a repeating pattern of two masses) may lead to the existence of
intrinsic localized modes and are also worthy of future study. In that context, the study of band gaps, instabilities, and nonlinear
modes and their propagation is another topic of substantial ongoing interest.
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Appendix

Derivation of the external force from the wire: To derive the external force that the wire exerts on a magnet, we first define
our coordinate system. We choose a set of orthogonal unit vectors , Z, and § that are centered on the wire and oriented such that
the wire is aligned with the § axis [see Fig. 12(a)]. We model the magnetic moment p of the magnet using the Gilbert model of
a magnetic dipole [52].:

Fwire == (/L : V) B ) (15)

which describes the force that acts on the dipole due to the magnetic field B. In our setup, the wire carries an electric current [
that generates the magnetic field B(r, z) = B,.(r, 2)7 + B,(r, z) 2. Evaluating B at the position —hZ 4 r7 of the magnet yields

Tpo BN 2
B(r,—h) = ————— (sinf 7+ cosf z2)/, (16)
(r.=h) 21vhZ 4 12 ( )
where 119 is the magnetic permeability and 6 is the angle between B and p. We are assuming that we can neglect the dynamics
along the 2 axis, so we are interested only in the 7 component of the force. Inserting Eq. (16) into Eq. (15) and taking y = M2,
we obtain

TpuoM h2=r2

Fyire = M aT‘BZ (7‘, Z)f - 27 (h2 + 7"2)2 i

a7

which corresponds to Eq. (1). In our coordinates, we place the wire'inan orientation in the plane that is spanned by the lattice
basis vectors e; = (1,0) and e; = (1/2,+/3/2). Howevery it is straightforward to write Eq. (17) in coordinates in the {ey, s}
basis by including a parameter ¢ that accounts for the excitation angle. For instance, for the central magnet, we may write

h?—22
TpgM COS(¢) (h2+z§;)0)2 )
: hZ%—y2 )
T T 1

ext __
FO,O .

which corresponds to Eq. (4).
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FIG. 12: (a) Schematic illustration of the intetaction between a single magnet and a wire in the (7, 2) plane, which is orthogonal to the direction
of the wire. We use “E.P.’to denote the static-equilibrium position of the magnet. (b) Squared magnitudes of the forces that result from lattice
interactions (solid blue curve):and the external drive from the wire (dashed red curve) for the NLM from Fig. 5(a) during one period of motion.
Specifically, we plot [F§6“(¢)|* using the solid blue curve and |F§(¢)|* using the dashed red curve. (c) The experimentally measured
velocity time series of the center unit in the undriven lattice (i.e., the background noise, which we show in the red curve on the left) and after
stabilization when we drive it at « = 4 mV and f = 9.3 Hz (the blue curve on the right). We use the RMS of the noise to estimate the noise

level in Fig:'6.

Comparison of external and internal nonlinear forces: Although the form of the force that describes the external drive is
specific to our experimental setup, the dynamics are dominated by the lattice forces. For example, in Fig. 12(b), we compare the
forces that result from the wire (see Eq. (18)) and the force from the lattice for the NLM of Fig. 5(a). The lattice forces are

F’l,zijt’;jce = _FO(q7n+1,n - q7n,n) - Fl(qm,n—l-l - qm,n) <t F—l(qm,n - q'm—l,n+1)

+F0(qm,n - qm—l,n) + Fl(qm,n - qm,n—l) - F—l(qm+l,n—l - qm,n) .

19)
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However, it important to acknowledge that the effective “defect” that is produced by the force (19) is responsible for the presence
of the corresponding linear defect frequency and hence for the associated NLMs in the presence of nonlinearity.

Noise Estimation: Even if we do not apply an external drive to the lattice, the particles still exhibit detectable motion. This
is due to interactions with the air flow from the table and to imperfections (e.g., nonaxisymmetric mass distributions) of the
particles. To estimate the noise floor of the system, we measure the velocity time series of the center particle is when.there is no
drive. The corresponding RMS velocity is the noise estimation. We find that the RMS velocity of the noise is’6% of the RMS
velocity of the system when we drive it at 4mV [see Fig. 12(c)].
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