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a b s t r a c t

Machine learning models can assist with metamaterials design by approximating computationally
expensive simulators or solving inverse design problems. However, past work has usually relied on
black box deep neural networks, whose reasoning processes are opaque and require enormous datasets
that are expensive to obtain. In this work, we develop two novel machine learning approaches to
metamaterials discovery that have neither of these disadvantages. These approaches, called shape-
frequency features and unit-cell templates, can discover 2D metamaterials with user-specified frequency
band gaps. Our approaches provide logical rule-based conditions on metamaterial unit-cells that allow
for interpretable reasoning processes, and generalize well across design spaces of different resolutions.
The templates also provide design flexibility where users can almost freely design the fine resolution
features of a unit-cell without affecting the user’s desired band gap.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Metamaterials are traditionally designed through empirical
rial-and-error or intuition [1] or computationally expensive topol-
gy optimization [1–5] which often produces designs out of
redetermined geometrical building blocks. Recently, machine
earning methods (ML) have gain popularity for metamaterial
esign. For example, machine learning models can be trained to
redict material properties from unit cells defined by a finite
et of pixels/voxels, and used as faster surrogate models for
omputationally expensive simulations [6–10]. Using deep gen-
rative models and neural network inversion techniques, some
ecent works [11–17] aim to directly solve the inverse design
roblem for metamaterials, i.e., generating the designs given the
arget property. However, the ML models used in these work are
sually gigantic black boxes, whose decision processes are hard to
nderstand. This is undesirable for scientific discovery purposes
ecause scientists may also want to gain insights into what
eometric features are important for a given target property,
uch a particular frequency band gap. In addition, these massive
odels are data hungry and not robust to distributional shift —

hey usually require a huge simulated dataset that covers most
f the design space. These models also tend to perform poorly on
atasets they have not seen before, such as unit-cells in a finer
esolution space.

∗ Corresponding author.
E-mail address: zhi.chen1@duke.edu (Z. Chen).
ttps://doi.org/10.1016/j.eml.2022.101895
352-4316/© 2022 Elsevier Ltd. All rights reserved.
In this paper, instead of relying on existing black box ap-
proaches, we propose two novel rule-based ML approaches for
metamaterial design that have major advantages:

• Interpretability: The approach allows us to discover inter-
pretable key patterns within unit-cells that are related to
a physical property of interest (see Fig. 1a and 1b). We
consider two types of patterns: (i) local patterns called shape
frequency features, which calculate the occurrence frequency
of certain shapes in the unit-cell; (ii) global patterns, called
unit-cell templates, which look for arrangements of con-
stituent materials in specific regions of the metamaterials’
unit-cells. The unit-cell templates are optimized with binary
integer programming to find global patterns within unit
cells that give the metamaterial a desired property.

• Leverages Multi-resolution Properties: An important obser-
vation underpinning our methodology is that a pattern in
the coarser resolution design space also exists in finer reso-
lution design space, with one coarse pixel replaced by many
finer pixels. As a result, if a pattern can robustly characterize
the target property at the coarse resolution design space, it
will also be predictive at the finer resolution design space. This
leads to computationally-efficient discovery of many valu-
able metamaterial designs possessing the desired properties.
In particular, our method allows us to construct a scaffold of
patterns that allows interpretable coarse scale information
discovered at low resolutions to be reliably transferred to
make accurate predictions for high resolution designs (see

Fig. 1c).

https://doi.org/10.1016/j.eml.2022.101895
https://www.elsevier.com/locate/eml
http://www.elsevier.com/locate/eml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eml.2022.101895&domain=pdf
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
https://github.com/zhiCHEN96/interpretable_ml_metamaterials.git
mailto:zhi.chen1@duke.edu
https://doi.org/10.1016/j.eml.2022.101895


Z. Chen, A. Ogren, C. Daraio et al. Extreme Mechanics Letters 57 (2022) 101895

s
o
i
t
t

m
I
h
p
p
k
p
o

2

m
p
i
m
a

B
u
d

Fig. 1. Examples of interpretable key patterns discovered by the proposed method. a. A shape frequency feature (this one is shaped like a ‘‘+’’). How frequently this
hape appears in the unit-cell is a useful predictor of a band gap. b. A unit-cell template, which considers specific global patterns in the unit-cell. Here, regardless
f whether we place stiff or soft materials at each green pixel in the unit-cell, as long as the stiff and soft materials are in the positions defined by the template
n yellow and purple, there will be a band gap within the user’s desired range. c. The patterns are learned from coarse resolution training data but can be robustly
ransferred to finer resolution, and generate fine resolution unit-cells with the target property. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
• Flexible Metamaterial Designs: Our unit-cell templates (e.g.,
the one in Fig. 1b) enables flexibility in unit-cell designs at
any resolution. Simply, unit-cell templates specify regions
where one can almost freely design unit-cell features with-
out changing the target band gap property (e.g., in Fig. 1b
constituent phases can be arranged at will in the green
regions determined by our algorithm). Such flexibility in
design might be useful to satisfy practicality constraints
such as connectivity or other design constraints such as
overall stiffness.

Section 2 discusses related works on ML approaches for meta-
aterial designs. In Section 3, we introduce the problem setting.

n Section 4, we provide the proposed methods and explain
ow they deal with the four core objectives of data-driven ap-
roaches that are important to materials scientists: (a) design-to-
roperty prediction; (b) property-to-design sampling; (c) identify
ey patterns; (d) transfer to finer resolution. We then evaluate
erformance of the proposed methods in Section 5 and test them
n practical applications. We discuss and conclude in Section 6.

. Related works

Metamaterials are architected materials with engineered geo-
etrical micro- and meso-structures that can lead to uncommon
hysical properties. As mentioned in the introduction, many ex-
sting works apply machine learning models for designing meta-
aterials, i.e., assembling constituent materials into metamateri-
ls that have specific physical properties.
Much past work focuses on structure-to-property prediction.

ecause of the expensive computational cost of numerical sim-
lations, these works train machine learning models (mostly
eep learning models) to approximate the simulation results [6–
2

10]. Using these ML models as a fast replacement of the sim-
ulator, materials satisfying the design objective can be found
more efficiently using rejection sampling, i.e., randomly pick-
ing a structure in the design space until it satisfies the de-
sign objective. However, given the immense size of the design
space, finding materials through rejection sampling can still be
computationally inefficient. Therefore, some recent works apply
deep generative models and neural network inverse modeling
[11–17] to train a more efficient materials sampler, aiming to
solve the inverse design problems for metamaterials, i.e., property-
to-structure sampling. See [18–20] for reviews on using deep
learning methods for metamaterial designs.

Almost all modern existing work on this topic uses black box
models like deep neural networks. Such approaches are unable to
answer key questions such as ‘‘What patterns in a material’s de-
sign would lead to a specific desirable property?’’ A link between
the specific design and the target property could be useful for
further research; i.e., to determine whether there is an agreement
with domain knowledge, and if not, to potentially discover new
knowledge.

Other work also stresses the importance of interpretability for
metamaterial design [14,21,22]. These works are very different
from ours, and cannot solve the challenge we want to address.
Ma et al. [14] try to make the latent space of deep generative
models interpretable. Their interpretable features describe gen-
eral geometrical information such as size and shape of holes in
the material but these properties are not associated with the
target property. In contrast, our goal is to find key patterns within
unit cells that result in the target property (in our case, a band
gap). Elzouka et al. [21] and Zhu et al. [22] also build rule-based
models, namely decision trees, but the design problems they are
solving are different and much simpler than the problem we try
to solve. Specifically, their materials are described by several con-
tinuous features, e.g., thickness of the materials, while we work
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Fig. 2. Input and target of our metamaterial design problem. a. 2-D phononic material constructed with the raw features. Upper Left: raw 15 dimensional input
eature vector. Lower left: the feature vector defines the triangle in the lower right of the unit-cell. The triangle is copied using lines of symmetry to define the
ull unit-cell. Right: the unit-cell is tiled to obtain the full material. For the Bloch–Floquet boundary conditions, the tiling is infinite in all dimensions; b. The design
bjective is the frequency band gaps.
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n pixelated metamaterials whose features are just raw pixels
ade of constituent materials. Discovering interpretable patterns
irectly from raw pixels is a more challenging and fundamental
roblem.
Another serious issue with using black box models like deep

eural networks is that they require large labeled training datasets
nd the training and testing data should come from the same
istribution so that the model generalizes between training and
est. However, constructing these large datasets is extremely
xpensive because the labels (i.e., material properties) of meta-
aterials are calculated by simulation, which is computationally
xpensive. In fact, this whole process could be so expensive that
ne might find it less expensive to use the simulator to get the
esults on the test set directly rather than go through the process
f collecting a training set at all. Note that deep generative mod-
ls like GANs [23,24] do not address the simulation bottleneck
ecause training a GAN requires co-training a generator and a
iscriminator which requires even more training data than just
raining a structure-to-property predictor. Ma et al. [25] propose
self-supervised learning approach that can utilize randomly

enerated unlabeled data during training to reduce the amount
f training data. However, this work can only handle structure-
o-property prediction but not the problem of inverse design
onsidered here. Our method instead alleviates this simulation
ottleneck through amulti-resolution approach: our unit-cell tem-
late models are trained using a (relatively small amount of)
oarse-resolution data but can extrapolate and generate a (large
mount of) finer-resolution metamaterial designs. This is helpful
ecause the coarse resolution space is much smaller than the
ine-resolution space, and gives us a bird’s eye view of what might
appen when we sample at the finer scale throughout the space
f possible metamaterials.

. Problem settings

Here, we introduce the settings of the metamaterial design
roblem we are trying to solve, including the inputs and target
f the dataset and their physical meanings.
We aim to design and characterize 2-D pixelated metamate-

ials made by tiling a 10 × 10 unit-cell. Such materials can be
tacked to form 3D structures, and can direct, reflect or scatter
aves, depending on the choice of unit-cell’s material selection
nd geometry. In our framework, the unit-cell is a square with
ide length a = 0.1 m. However, transferring to a different length
cale for a different application is easily doable by a simple scaling
3

ransformation on the dispersion relations. For a 10 × 10 unit-
ell, the pixel side length is 1 cm; for 20 × 20 unit-cell, the pixel
ide length is 0.5 cm. Each unit-cell is made of two constituent
aterials: one is soft and lightweight, with elastic modulus E
2 GPa1 and density ρ = 1,000 kg/m3, and the other is stiff

nd heavy with E = 200 GPa, and ρ = 8,000 kg/m3. These two
ets of material properties are representative of a polymer and
teel respectively. Our unit-cells are symmetric, with four axes
f symmetry (x, y and ±45◦). Under the symmetry constraints,
he coarsest resolution (10 × 10) unit-cell has only 15 irreducible
ixels. As a result, the raw input features of a sample in our
ataset is a 15-dimensional binary vector: 0 means the soft con-
tituent material in that location, and 1 means stiff constituent
aterial. Thus, the full coarse space can be characterized, having
15 total states. Fig. 2 shows how to construct a material from the
epresentation involving the 15 raw input features.

The material property we desire in our engineered materials
s a band gap within a specific frequency range, given by the user.
band gap is a range of frequencies within which elastic waves

annot propagate and are instead reflected.
To identify the existence of a band gap, one can examine

he effect of dispersion in metamaterials by calculating disper-
ion relations. Dispersion relations are functions that relate the
avenumber of a wave to its frequency, and they contain in-

ormation regarding the frequency dependent propagation and
ttenuation of waves. Dispersion relations are found by com-
uting elastic wave propagation solutions over a dense grid of
avevectors. A band gap exists when there is a range of frequen-
ies in the dispersion relation for which no wave propagation
olutions exist (see Fig. 2b).
Dispersion relation computations use Bloch–Floquet periodic

oundary conditions, i.e., they assume that a given unit-cell is
iled infinitely in space. The physics revealed in dispersion analy-
is (infinite-tiling) can be leveraged in more realistic finite-tiling
cenarios, as we will demonstrate later, which makes disper-
ion relation computations very useful for exploration and de-
ign of real materials. Our dispersion relation simulations are
mplemented using the finite element method.

More details about the simulation can be found in the Supple-
entary Information A.
We are looking for materials with band gaps in a certain

requency range. To define this task as a supervised classification
roblem, we create a binary label based on existence of a band

1 GPa is gigapascals, a unit used to quantify elastic modulus.
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ap in a given frequency range (e.g. [10, 20] kHz): 1 means one or
ore band gaps exist, 0 means no band gap exists. In other words,

f a band gap range intersects with the target frequency range, the
abel is 1, otherwise the label is 0. One can also flexibly adjust the
and gap label for different practical uses. For example, we can
et the label to 1 only when the intersection of the band gap and
he target frequency range is above a minimum threshold. We can
lso set the label to 1 when the band gap covers the entire target
ange, or even create a label for band gap properties in multiple
requency ranges.

. Method

This section introduces proposed methods. Section 4.1 ex-
lains the shape-frequency features and how they can be used to
ptimize different objectives. Inspired by the efficiency of shape-
requency features, we then propose unit-cell template sets in
ection 4.2.

.1. Shape-frequency features

We hypothesize that the occurrence of certain local features
n the metamaterials might contribute to the formation of band
aps. For example, certain local patterns/shapes in the materials
an lead to interference and thus cause band gaps. Because the
nit-cells are repeated, the location of such local patterns does
ot matter, as long as they occur frequently, the band gap can
e formed. Such physics intuition inspires us to propose shape-
requency features which calculates the number of times a pattern
ccurs in the unit cell divided by total number of locations.
Denote the unit-cell as a n × n binary matrix U ∈ {0, 1}n×n,

where Ui,j = 0 means pixel i, j is assigned to the soft material
and Ui,j = 1 when the pixel is assigned to the stiff material.

A specific shape s can be represented as a set of location offsets
Os whose elements are coordinates of pixels with respect to a
reference pixel. For example, a 2 × 2 square window can be
represented as {(0, 0), (1, 0), (0, 1), (1, 1)}. A 3 × 3 plus symbol as
in Fig. 1 can be represented as {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}.
or a specific unit-cell, the feature value corresponding to that
hape is computed by sliding the shape over the unit-cell and
alculating the fraction of times that it is entirely contained
ithin the soft material,

s =
1
n2

n∑
i=1

n∑
j=1

1

⎡⎣⎛⎝ ∑
(or ,oc )∈Os

Ui+or ,j+oc

⎞⎠ = 0

⎤⎦ , (1)

where 1[·] is the indicator function. It equals 1 if and only if all the
pixels in the shape are soft material (i.e.,

∑
or ,oc Ui+or ,j+oc = 0).

We would typically consider a collection of shapes, and have
one element in a unit-cell’s feature vector per shape. Thus, for
unit-cell i, the jth component of its feature vector corresponds to
how often the full shape j appears in its soft material.

In more detail, consider the collection of shapes, shown within
Fig. 3a (left). Note that this collection of shapes is the full set
used in the results section, not just examples of them. Again,
pixels of the stiff material are in yellow, and the soft material is
shown in purple. We slide each of the shapes (sliding windows)
over the unit-cell (Fig. 3a (middle)) and count the fraction of
positions over which the shape is fully contained within pixels
of the soft (purple) material. These fractions together form the
new representation for the unit-cell (Fig. 3a (right)). Note that,
to calculate the fraction, we should also consider the situation
where the sliding window is across the boundary of two unit-
cells, since the entire material is made by tiling the unit-cell.
Because the unit-cells are symmetric, the occurrence of the pat-
terns within the unit-cell are also symmetric: if we rotated the
4

patterns by 90◦, 180◦ or 270◦, the number of detections of the
pattern within the unit-cell would be identical. Note that the
shape-frequency features are different from standard convolu-
tion filters used in computer vision; details are discussed in
the Supplementary Information B. Theoretically, our method can
be generalized to nonsquare pixels and unit-cells as well, see
Supplementary Information E.

Once we calculate the shape-frequency features of the unit-
cells, they can replace the original raw features and be used
as the inputs of the machine learning models to predict the
band gap output. We show later in Section 5.1 that using the
shape-frequency features as inputs, machine learning models can
predict the existence of band gaps more accurately than using
raw features.

Since shape-frequency features are just new representations
of the unit-cells and they are written in vector form, any type
of machine learning model can be trained to predict band gap
existence, taking these features as inputs. These machine learning
models can not only be complex models like neural networks or
boosted trees, but can also be interpretable models (e.g., sparse
decision trees). Fig. 3b shows examples of sparse decision trees
that predict the existence of band gaps from shape frequency
features. When making predictions, the decision tree starts from
its root node, checking if the shape shown on the node appears
frequently in the unit-cell (e.g., if a 1 × 4 soft bar occurs in the
unit-cell more than 22% of all possible locations). If so, it goes
to the right branch; if not it goes to the left branch. The process
is continued until a leaf node (in green or orange) is reached. At
that point, it outputs the prediction of whether a band gap exists,
based on the majority vote of the training data within that leaf.
The paths denoted by red arrows in the trees in Fig. 3b show how
often the local patterns need to occur in the unit-cells to predict
an open band gap. More analysis of these discovered patterns can
be found in Section 5.3.

4.1.1. Optimizing precision and support
For regular binary classification problems, we hope the ma-

chine learning models have high accuracy for both positive sam-
ples (materials with band gaps) and negative samples (materi-
als with no band gap). This is also the objective if our goal is
to perform only structure-to-property prediction. However, for
the property-to-structure task, where our goal is to produce a
number of unit-cell designs with the target band gap property,
prediction accuracy is no longer a good metric. Instead, we hope
all unit-cells that are predicted to have a band gap actually have
a band gap, i.e., we prefer that the model has high precision.
We also hope the total number of discovered designs, i.e., the
support, meets the requirement of real applications. Thus, for
the property-to-structure task, our objective is a combination of
precision and support.

Most machine learning methods cannot directly optimize cus-
tom objectives with constraints, such as precision, constrained
by support. However, there are new approaches that permit
direct optimization of custom discrete objectives. We use GOSDT
(Generalized and Scalable Optimal Sparse Decision Trees, [26])
for this task, because it directly optimizes decision trees for
customized objectives. Different from traditional decision tree al-
gorithms which use greedy splitting and pruning, GOSDT directly
searches through the space of all possible tree structures, uses
analytical bounds to reduce a huge amount of search space, and
directly outputs a tree that optimizes the customized objective.
We programmed it to maximize the following custom objective

to optimality:
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Fig. 3. a. The process of calculating shape-frequency features. Left: Collection of shapes (sliding windows) used to create the shape-frequency features. Middle: An
xample 10 × 10 unit-cell design (tiled 4 times for better visualization). Right: Shape-frequency features of the unit-cell, which count the fraction of locations in
he unit-cell where the shape is present in the soft material; b. Optimal sparse decision trees built on shape-frequency features for predicting band gaps in different
requency ranges; red arrows denote the paths to band gap (BG) nodes. Blue text on the top-right tree breaks down how the decision tree predicts whether the
and gap exists using shape-frequency features. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
ax
tree

[
TPtree

TPtree + FPtree + ϵ
−

K
TPtree + ϵ

]
(2)

max
tree

[
P − FNtree

P − FNtree + FPtree + ϵ
−

K
P − FNtree + ϵ

]
. (3)

Here, K is a parameter that balances the precision and the sup-
port; ϵ is a small constant for numerical convenience; TP , FP , TN ,
FN mean true positives, false positives, true negatives and false
negatives. Eq. (2) shows precision (first term) and inverse support
(second term); we use inverse support so that if support is large,
the term diminishes in importance. The simplification in Eq. (3)
shows that the objective is monotonically decreasing with respect
to FNtree and FPtree. Theorem B.1 of [26] shows that as long as the
objective is decreasing with respect to FN and FP , we can
tree tree

5

find an optimal sparse decision tree using GOSDT’s branch and
bound algorithm.

4.1.2. Property-to-structure sampling
Because we optimize the precision using GOSDT, the false pos-

itive rate of our model will be low enough to work with. At this
point, we directly do rejection sampling using the decision tree to
produce unit-cell designs with the target band gap. Specifically, to
produce valid designs, the rejection sampling approach randomly
picks structures in the design space, evaluates whether each of
them are predicted to have a band gap, and outputs only these
relevant designs. After sampling, each accepted sample is evalu-
ated with the physics-based finite-element model to determine
whether a band gap is present.



Z. Chen, A. Ogren, C. Daraio et al. Extreme Mechanics Letters 57 (2022) 101895

P
O
1
2
3
4
5
6
7

f
r
s
r
t
c

c
d
a

m
s
e
S

4

m
o
u
i

Algorithm 4.1 Sampling Fine resolution Unit-cell Designs via Shape-frequency Features

Input: simulated coarse resolution (10 × 10) dataset D := {xi, yi}2
15

i=1, xi ∈ {0, 1}15: raw features; yi: band gap label
arameters: set of shapes S; tree sparsity regularization λ (see [26]); K , ϵ (see Section 4.1.1)
utput: raw features of a fine resolution unit-cell x̃
: calculate shape-frequency features xSFFi = SFF(xi,S) for all xi in the dataset (coarse resolution), see Section 4.1
: train an optimal sparse decision tree τ = GOSDT({xSFFi , yi}2

15

i=1, λ, K , ϵ), see Section 4.1.2
: while(True):
: randomly sample a binary vector x̃ as raw features in the fine resolution space
: calculate shape-frequency features x̃SFF = SFF(x̃,S) (fine resolution), see Section 4.1.3
: if τ (x̃SFF) = 1:
: return x̃
t
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4.1.3. Transfer to finer resolution

The raw feature space of finer resolution samples is different
rom that of coarse resolution samples. Therefore, for the finer
esolution data, we need to slightly modify the approach to obtain
hape-frequency features that are compatible with the coarse
esolution shape-frequency features. Suppose we want to transfer
he model from 10 × 10 to 20 × 20 space. Then, there are three
hanges in calculating the shape-frequency features:

• The window size should be doubled when moving from
coarse resolution to fine resolution;

• The stride of the sliding window should be 2 instead of 1;
• In counting the shape-frequency values, exact agreement

between the window and soft material (purple) should be
replaced with near exact agreement. In particular, when less
than 2 yellow pixels (stiff material) are found in the window,
we can consider this to be an agreement.

When using the shape-frequency features with these modifi-
ations, the decision tree model learned on the coarse resolution
ata can be directly applied to the fine resolution. Thus, we can
lso do rejection sampling on the fine resolution with the model.
Algorithm 4.1 shows the entire pipeline of using an opti-

al sparse decision tree built on shape-frequency features to
ample fine resolution designs with the target band gap prop-
rty. Visual illustration of the sampling process can be found in
upplementary Information C.

.2. Unit-cell template sets

Here, we introduce another interpretable machine learning
odel, called unit-cell template sets. Different from sparse trees
n shape-frequency features, which focus on local patterns, a
nit-cell template captures a global pattern for the unit-cell that
s related to the target properties. The unit-cell template is a n×n
matrix T ∈ {0, 1, ∗}

n×n, where Ti,j = 0 means the pixel is soft
material, Ti,j = 1 means the pixel is stiff material, and Ti,j = ∗

means the pixel could be either soft or stiff, i.e., a free pixel.

Definition (match). We say a unit-cell design U matches the unit-
cell template if and only if all pixels with value 0 on the template
are also 0 on the design, and all pixels with value 1 on the unit-
cell template are also 1 on the design. That is, ∀(i, j) such that
Ti,j ̸= ∗, we have Ui,j = Ti,j.

A unit-cell template set contains a set of unit-cell templates,
and the sample design is predicted as positive if and only if
it matches at least one unit-cell template in the set. Fig. 4a
shows an example of a unit-cell template set that consists of
five different templates. We proposed unit-cell templates be-
cause we found that some pixels in the unit-cells are more
important for the formation of band gaps than others. For the
 s

6

pixels that are not important, even if they are flipped, the band
gaps remain unchanged; we denote these as free pixels in the
unit-cell template. The free pixels identify unimportant regions
where changes do not affect the target band gaps, while the
other pixels form the key global pattern that leads to the band
gap. We aim to find a unit-cell template set that captures a
diverse set of global patterns related to the target band gap. The
relationships between unit-cell template sets and other machine
learning methods are discussed in Supplementary Information B.
Theoretically, our method can be generalized to nonsquare pixels
and unit-cells as well, see Supplementary Information E.

The training objective of the model is to find a small number of
unit-cell templates, such that the training precision of the entire
model is high enough, and the model covers as many valid de-
signs as possible, i.e., maximizing the support under a minimum
precision constraint. The reasons for optimizing precision and
support were explained in Section 4.1.1, and we set a limit for
the total number of selected unit-cell templates to encourage
the unit-cell template sets to contain a diverse set of unit-cell
templates. Because the total number of possible templates is
extremely large, the training process is divided into two steps,
a pre-selection of candidate unit-cell templates that filters out
useless templates to reduce the problem size (Section 4.2.1), and a
integer linear programming (ILP) formulation to optimally select
from the candidates obtained in the first step (Section 4.2.2).
Fig. 4b shows the unit-cell template sets learned by the pro-
posed algorithm for band gap prediction. More analysis of these
discovered patterns can be found in Section 5.3.

4.2.1. Pre-selection of templates
Here we consider symmetric unit-cell templates, because de-

signs in our dataset are all symmetric. By removing all symmetry
redundancy, the unit-cell template can be represented by its
irreducible pixels, i.e. a 15 dimensional vector t ∈ {0, 1, ∗}

15. The
otal number of possible templates is 315 which is approximately
4.3 million. This is too large for the ILP in the next step. However,
mong the 315 possible templates, most of them would never
e selected because either their precision or support is not high
nough. For example, a unit-cell template with precision 80% is
ot likely to be used if we want the entire model to have precision
bove 99%, i.e., we hope the unit-cells are all having the desired
and gap properties. Also, if the support of a unit-cell template,
.e., the total number of designs that match it, is very small
e.g., < 10), the model may not generalize well. Therefore, we
re-select the unit-cell templates by setting minimum thresholds
f precision and support, which reduces the search space only to
romising unit-cell templates. We select the unit-cell template as
candidate only when it meets the minimum thresholds.
Observing that the entries are all binary in the unit-cell de-
igns, we implement the precision calculation via bit operations,
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Fig. 4. a. An Example of a unit-cell template set. A unit-cell is predicted as positive as long as it matches at least one unit-cell template in the set; b. unit-cell
emplate sets learned for predicting band gaps in different frequency ranges. Note that because unit-cells are tiled, a large cross through the center is identical to a
quare on the border. (E.g., consider the two upper right unit-cells.).
hich significantly improves the speed of the pre-selection step.
ith the bit-operation implementation, the pre-selection steps of

ll 315 possible templates finish in 50 s. The number of unit-cell
emplates that remains is typically in the range of 6000 to 12000,
hich is now suitable for ILP.

.2.2. ILP for template selection
After the pre-selection step, we have a set of candidate unit-

ell templates. Since the pre-selection step significantly cuts
own the space of templates, we can directly formulate the
emplate selection as an optimization problem, and solve it to
rovable optimality. Specifically, we formulate a ILP to optimally
elect from the candidates. Suppose we have n designs and m
candidate templates. The goal of the ILP is to choose at most s
unit-cell templates (s ≪ m) whose union forms a model, such
that the support is maximized and the precision of the model is
7

at least p. Denote the true labels of all designs by a binary vector
y ∈ {0, 1}n, and the predicted labels by ŷ ∈ {0, 1}n. M ∈ {0, 1}n×m

denotes a matching matrix, where Mi,j indicates whether design
i matches template j (1 for match, and 0 for not match). Binary
vector c ∈ {0, 1}m denotes the chosen unit-cell templates, where
cj indicates whether template j is chosen (1 for choose, and 0 for
not choose). We solve the following ILP for template selection.

max
n∑

i=1

ŷi (optimizing support) (4)

s.t.
m∑
j=1

cj ≤ s (sparsity constraint) (5)

n∑
yi · ŷi ≥

(
n∑

ŷi

)
· p (minimum precision) (6)
i=1 i=1
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i
d

m∑
j=1

Mi,j · cj ≥ ŷi, i = 1, . . . , n (define ŷi) (7)

m∑
j=1

Mi,j · cj ≤ m · ŷi, i = 1, . . . , n (define ŷi) (8)

cj ∈ {0, 1}, j = 1, . . . ,m (9)

ŷi ∈ {0, 1}, i = 1, . . . , n. (10)

In this ILP, the objective (4) means maximizing the total num-
er of designs predicted as positive, which is the same as support.
onstraint (5) controls the sparsity, i.e., choose at most s unit-
ell templates. Constraint (6) guarantees training precision of the
odel is at least p. (7) and (8) constraints together define ŷi,
here ŷi = 1 if and only if design i matches at least one of the
hosen unit-cell templates. In particular, (7) says that if design i
oes not match any chosen template j (i.e., whenever cj is 1, Mi,j
appens to be 0), then ŷi will be set to 0. (8) will ensure that
f there is a match for design i to any of the chosen templates
which all have cj = 1), then this design is assigned ŷi=1. Using a
ommercial MIP solver, a problem with around 10000 candidate
emplates can be solved to optimality (when the current best
olution meets the upper bound of the best possible solution)
r near-optimality in about 10 min (running single-threaded on
ne core of a 2.66 GHz Intel E5640 Xeon Processor). If s = 5,
t can be solved to optimality all the time, and when s = 10,
he optimality gap (difference between current best solution and
n upper bound of the best possible solution as the percentage
f the upper bound) is always <20% for a run time of 30 min
running under the same environment); it is worthwhile to note
hat optimal solutions are often attained quickly, but the solvers
an take a while to prove that the solution is optimal. Note that,
f desired, one can set higher minimum precision and support
hresholds for the pre-selection step to make the problem even
maller, so that the ILP can be solved even faster. We choose s = 5
or all the experiments in the main paper.

The result of the ILP is our unit-cell template set.

.2.3. Property-to-structure sampling
After training the structure-to-property model, the resulting

nit-cell template set can be directly used to solve the inverse
roperty-to-structure problem. An easy sampling procedure to do
his is as follows: first, randomly choose a unit-cell template t
rom the unit-cell template set, where the probability to choose
ach template is proportional to its support; second, for all entries
n t that equal *, randomly assign value 0 or 1 to them. These
ampled unit-cells are likely to have the desired band gap.

.2.4. Transfer to finer resolution
The unit-cell template set naturally transfers coarse scale in-

ormation to finer resolutions. In particular, by subdividing each
ixel in the unit-cell template into four sub-pixels, we directly
btain a unit-cell template defined on a finer-resolution space.
Algorithm 4.2 shows the entire pipeline of using unit-cell

emplate set to sample fine resolution designs with the target
and gap property. Visual illustration of the sampling process can
e found in Supplementary Information C.

. Results

The results are organized according to four objectives we want
o achieve with the proposed methods, including (a) design-to-
roperty prediction; (b) property-to design sampling; (c) identify
ey patterns; (d) transfer to finer resolution. We evaluate how
ell the proposed methods can achieve these objectives, followed
y several tests involving practical applications in materials dis-
overy.
8

.1. Objective 1: Structure-to-property prediction

Here, we test how well the proposed methods can perform
tructure-to-property prediction. We chose five frequency ranges
[0, 10], [10, 20], [20, 30], [30, 40] and [40, 50] kHz) to predict
he existence of band gaps; these frequency ranges correspond
o five different binary classification problems. Using balanced
ccuracy (bacc) as the evaluation metric, we compare the pre-
ictive performance of a diverse set of ML models with and
ithout the shape-frequency features. We specifically consider

inear models like support vector machines with linear kernels
SVMs) and logistic regression (LR); tree-based models like CART,
andom forest (RF), and boosted trees (LightGBM [27]), as well
s neural networks including the multi-layer perceptron (MLP).
e also compare the proposed method with convolutional neural
etworks (CNNs), since they have been widely used in previous
orks of ML-based metamaterial design. The baccs of each model
rained on raw feature, SFF, and improvements of SFF over raw
eatures, are shown in Table 1 (a). We train each model 5 times
nd average the accuracy.
Our results show that using the shape-frequency features,

ather than the original raw features, improves the accuracy of
lassifiers for most machine learning methods, especially tree-
ased methods such as boosted trees, but with the exception of
LP (SFF decreases its in [0, 10] kHz, [10, 20] kHz, and [20, 30]
Hz).
One might expect CNNs to achieve great success in classifying

and gaps for 2-D metamaterials since the unit-cells share many
imilarities with images. However, LightGBM [27] built on shape-
requency features outperforms ResNet18 [28] in all ranges. In
ome cases, e.g., within frequency range [40, 50] kHz, simple
odels like CART outperform CNNs.
More details of the experiment (e.g., hyper-parameter set-

ings) can be found in Supplementary Information D.1.

.2. Objective 2: Property-to-structure sampling

Using the methods discussed in Sections 4.1.2 and 4.2.3, we
re able to solve the inverse design (property-to-structure sam-
ling) problem.
In practice, materials scientists need valid designs with the

arget property, but they do not require the set of all designs
ith the property. As such, our performance metric is precision,
ather than recall. We also calculate the support, which is the
otal number of testing samples predicted as positive, to ensure
he models can generate enough potentially-valid designs. Ta-
le 1 (b) lists the precision and support values from different
ethods. The methods we compared include GOSDT trained on
hape-frequency features (denoted SFF) with the objective in
ection 4.1.1, the unit-cell template set, and LightGBMs trained
n SFF and raw features.
In terms of precision, SFF+GOSDT and unit-cell template sets

ignificantly outperformed LightGBMs. This is probably owing
o the fact that the proposed methods directly optimize preci-
ion. LightGBMs maintain larger support, while the support of
FF+GOSDT and unit-cell template sets is much lower. But for
ractical use, it is sufficient that the model finds dozens of valid
esigns. The average sampling time of these methods and the re-
ults of unit-cell template sets with different sparsity constraints
an be found in Supplementary Information D.2.

.3. Objective 3: Show key patterns

One advantage of the proposed methods is model interpretabil-
ty; we aim to explicitly identify the key patterns learned from
ata that are related to the target property. In this way, domain
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Algorithm 4.2 Sampling Fine Resolution Unit-cell Designs via Unit-cell Template Set

Input: simulated coarse resolution (10 × 10) dataset D := {xi, yi}2
15

i=1, xi ∈ {0, 1}15: raw features; yi: band gap label
arameters: pre-selection support ψpre, pre-selection precision ppre, sparsity constraint s, minimum precision p
utput: raw features of a fine resolution unit-cell x̃
: pre-select candidate template set SpreT = pre-selecting(D, {0, 1, ∗}

15, ψpre, ppre), see Section 4.2.1
: run ILP to find optimal template set S∗

T = ILP(D, SpreT , s, p), see Section 4.2.2
: randomly pick a template t ∈ S∗

T
: expand t to fine resolution space, get t̃
: randomly set to 0 or 1 for all * elements in t̃, get x̃
: return x̃
Table 1
Summary of key quantitative results. The results are organized with respect to different objectives of data-driven metamaterials design. (a) structure-to-property
prediction; (b) property-to-structure sampling; (c) transfer to finer resolution.

(a) Structure-to-property prediction: Testing balanced accuracies (baccs) of different methods. We
mark the models with the best bacc in each frequency range in bold.

Model Frequency range

[0, 10] kHz [10, 20] kHz [20, 30] kHz [30, 40] kHz [40, 50] kHz

SVM
Raw 71.77% 73.88% 50.85% 54.93% 49.84%
SFF (ours) 75.62% 77.35% 67.96% 59.89% 49.93%
Improvement +3.85% +3.47% +17.11% +4.96% 0.09%

LR
Raw 78.03% 75.44% 56.31% 76.59% 90.96%
SFF (ours) 80.53% 79.55% 69.04% 76.9% 91.32%
Improvement +2.50% +4.11% +12.73% +0.31% +0.36%

RF
Raw 85.81% 80.04% 73.00% 77.66% 87.54%
SFF (ours) 85.52% 81.98% 74.53% 81.26% 95.35%
Improvement −0.29% +1.94% +1.53% +3.60% +7.81%

CART
Raw 84.74% 75.68% 63.40% 73.95% 86.82%
SFF (ours) 83.63% 80.13% 70.72% 79.73% 94.47%
Improvement −1.11% +4.45% +7.32% +5.78% +7.65%

MLP
Raw 90.72% 86.39% 78.15% 77.47% 65.90%
SFF (ours) 85.90% 82.55% 76.01% 77.69% 66.4%
Improvement −4.82% −3.84% −2.14% +0.22% +0.50%

LightGBM
Raw 91.32% 88.27% 81.11% 82.62% 77.76%
SFF (ours) 96.10% 90.97% 85.57% 90.01% 94.76%
Improvement +4.78% +2.70% +4.46% +7.39% +17.00%

CNN Raw 93.24% 89.76% 81.65% 79.56% 84.83%

(b) Property-to-structure sampling: Testing precision and support of different methods. Numbers in the table cells are formatted
as ‘‘precision, support.’’ The testing support here is calculated among 6554 testing samples (20% of the entire dataset).

Frequency range Raw+LightGBM SFF+LightGBM SFF+GOSDT (ours) Unit-cell template sets (ours)

[0, 10] kHz 80.77%, 2310 88.93%, 2169 95.77%, 89 98.53%, 339
[10, 20] kHz 93.52%, 4013 95.62%, 4063 98.11%, 423 98.68%, 758
[20, 30] kHz 86.94%, 3654 89.56%, 3811 94.15%, 205 94.08%, 203

(c) Transfer to finer resolution: Transfer precision of different methods.

Frequency range CNN+resizing LightGBM+resizing SFF+GOSDT (ours) Unit-cell template sets (ours)

20 × 20 20 × 20 20 × 20 20 × 20 40 × 40 80 × 80

[0, 10] kHz 18.0% 25.0% 72.5% 100.0% 100.0% 100.0%
[10, 20] kHz 58.0% 68.5% 73.5% 98.5% 99.0% 100.0%
[20, 30] kHz 39.5% 52.5% 25.0% 91.0% 96.0% 98.0%
experts can verify whether the learned rules are aligned with the
domain knowledge, or even discover new knowledge.

In Figs. 3b and 4b, we visualize the GOSDT+SFF and unit-cell
template set learned for band gaps in several frequency ranges
([0, 6], [6, 12], [12, 18], [18, 24], [24, 30] kHz).

In Fig. 3b, the top splits of each tree trained on shape-frequency
features seem to be looking for bars in the soft material. Taking
the top-right tree in 3b as an example, the root node checks if
the 1 × 4 soft bar occurs in more than 22% of the places in the
unit-cell. The unit-cell frequencies need to pass the thresholds to
get to the ‘‘band gap’’ node. All band gap nodes are on the left
9

branch of the deepest decision nodes in the trees. For instance,
the deepest decision node of the top-right tree checks if shape
17, two 1 × 4 soft bars 2 pixels away from each other, occurs
with more than 5% frequency in the unit-cell. To reach the band
gap prediction node, the sample needs to go to the left branch,
where shape 17 should occur with less than 5% frequency. This
indicates the unit-cells should not have too many soft material
patterns. In the field of elastic wave propagation, it is known that
the presence of stiff inclusions in a matrix of a softer material
may open a band gap due to scattering or resonant dynamics.
The trees we found seem to be looking for patterns that fit this
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escription: the deepest node encourages the existence of stiff
nclusion while the first node encourages more soft material.

The unit-cell templates (Fig. 4b) contrast with the shape fre-
quency features in that they explicitly identify global (rather
than local) patterns. In the unit-cell template sets for different
frequency ranges, we can observe the existence of soft circles
(closed curves) and stiff inclusions inside the circles, which are
responsible for the formation of band gaps. As the frequency
range moves higher, the size of the circle decreases. This supports
the physical intuition that the smaller the stiff inclusions, the
higher the frequency of the band gap.

5.4. Objective 4: Transfer to finer resolution

In Sections 4.1.3 and 4.2.4, we discussed how the proposed
methods can transfer coarse scale information to finer resolution
design space. To evaluate how well the model can transfer infor-
mation, we trained the models on coarse resolution (10 × 10)
unit-cells and tested them on finer resolution (20 × 20, 40 × 40
nd 80 × 80) unit-cells. Table 1(c) shows the transfer precision of
OSDT+SFF and unit-cell template sets for band gaps in different
requency ranges. Other ML methods are not directly comparable
ecause standard ML models trained on 10 × 10 data cannot
ake in 20 × 20 data. Therefore, we compared the proposed
ethods with baselines with slight modifications: we resized the

ine resolution (20 × 20) unit-cell to the original size (10 × 10)
and applied two algorithms (CNN or LightGBM) for rejection sam-
pling. As before, if the CNN or LightGBM model predicts that the
resized design has a band gap, we accept that sample, otherwise
we reject it. The resizing was done via bicubic interpolation.
Here, we did not compare with deep generative models such
as GANs. Although GANs (which are notoriously hard to train)
might generate materials faster than rejection sampling, their
precision can only be lower because GANs’ discriminators are co-
trained with the generator, and thus cannot be more accurate
than a CNN directly trained to predict only the target. For each
frequency range, we asked the trained models to sample 200 unit-
cell designs in finer resolution space, and ran the FEA simulation
to obtain the true band gap property for evaluating the transfer
precision. For the baseline models and GOSDT+SFF, we show
the results for 20 × 20 design space. As unit-cell template sets
performs extremely well on this task, and generates new designs
efficiently, we also show its results in 40 × 40 and 80 × 80
design space. Please see Supplementary Information C for visual
illustrations of how to sample fine resolution designs using each
model.

The results in Table 1(c) indicate that the unit-cell templates,
when transferred to all finer resolutions (20 × 20, 40 × 40 or
80 × 80), have very high precision, with almost no precision
drop compared to 10 × 10. GOSDT+SFF and other baselines do
not generalize as well as unit-cell templates to the finer resolu-
tion design space. GOSDT+SFF performs better than the resizing
baselines in [0, 10] kHz and [10, 20] kHz, but performs worse
than baselines in [20, 30] kHz. Interestingly, the transfer preci-
sions, of both GOSDT+SFF and unit-cell template sets, decrease
as frequency ranges moves higher, although unit-cell template
sets have a much slower precision decrease than GOSDT+SFF. A
possible explanation for the decrease of precision is that, in higher
frequency ranges, the band gaps are physically more related to
finer scale features that are not included in the coarse resolution
dataset. Since the models are trained on coarse resolution data,
they can only transfer physics that occurs in coarse patterns
to finer resolution design space, but cannot discover finer scale
physics without supervision. But as shown by the transfer pre-
cision results, we should emphasize that our unit-cell template
sets method was capable of extracting critical coarse resolution
10
features such that this decrease of precision at finer resolution
due to wave physics is minimized (the worst transfer precision
is still above 90%). One further potential improvement to this is
to add new samples at each finer resolution design space when
transferring between extreme scales.

In Supplementary Information D.3, we show additional results
on sampling with correlation between green pixels for unit-cell
template sets, which demonstrates the surprising flexibility of
unit-cell template sets in terms of designing at finer-resolution
design space.

5.5. Practicality test

In our method and simulations so far, we assumed the unit-
cell is tiled infinitely for computational convenience. However, a
unit-cell can only be tiled finitely in practice and the results can
differ for infinite and finitely tiled domains due to boundary con-
ditions. To test whether the designs found by our method work
in practice, we simulated the dispersion relations of finitely-tiled
materials made by unit-cell designs discovered by our method.
See Supplementary Information D.4 for results of the finite tiling
COMSOL simulation. The results show that our method is robust
under finite tiling.

In addition to the finite tiling test, we also tested the prac-
ticality of the proposed method on its ability to create a wave
demultiplexer (Fig. 5), in which waves with different frequencies
travel through the materials in different directions. That is, a
signal enters the demultiplexer, and there are three different
possible outputs; which one will be non-zero depends on the
frequency of the input signal. Specifically, we will build the de-
multiplexer to route signals from three different frequency ranges
in different directions.

We need 5 different materials to build the demultiplexer: one
material with band gaps covering all three ranges, one material
allowing band pass in all ranges, and three materials allowing
band pass in one range while blocking the other two ranges. We
use homogeneous stiff unit-cells for the material allowing band
pass in all ranges. For other materials, we train a unit-cell tem-
plate set to find 20 × 20 unit-cell designs with these properties,
and assemble the 5 unit-cells to build the demultiplexer (top
row of Fig. 5). The bottom row of Fig. 5 shows the how the de-
multiplexer successfully guides waves with different frequencies
(11.45, 13.97 and 15.55 [kHz]) towards different directions, which
was the goal of the experiment.

6. Conclusion and discussion

Our work shows the power of interpretable machine learn-
ing tools in material design. The approach has achieved both
mechanistic understanding, e.g., physically interpretable rules of
patterns that lead to band gaps, and designing new materials
with desired functionality. The approach has been demonstrated
to be predictive for both infinite domains and realistic finite
domains, and it has been able to design the material geometry for
a wave demultiplexer. Additionally, our multi-resolution frame-
work, which robustly carries coarse-scale knowledge to finer
resolutions, is potentially applicable to a wide range of materials
science problems.

Since our method learns robust coarse-scale features that can
generalize to finer-resolution design space, it might also be useful
in future studies for determining how to collect finer-resolution
training data for rapidly capturing fine-scale physics. Using these
new data, we might be able to fine tune the model so that it can
more efficiently capture physics at multiple scales.
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Fig. 5. Mechanical wave demultiplexer and the displacement fields for input signals frequencies. Each part of the demultiplexer was built using our discovered
unit-cells that have desired properties. Top: The demultiplexer and the unit-cell designs used to make the demultiplexer. Bottom: Magnitude of displacement fields
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