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Sparse Metapiles for Shear Wave
Attenuation in Half-Spaces
We show that shear waves traveling toward the surface of a half-space medium can be
attenuated via buried one-dimensional arrays of resonators—here called metapiles—
arranged according to sparse patterns around a site to be isolated. Our focus is on
shear waves approaching the surface along a direction perpendicular to the surface
itself. First, we illustrate the behavior of metapiles, both experimentally and numerically,
using 3D printed resonators embedded in an acrylic plate. Then, via numerical simulations,
we extend this idea to the case study of an idealized half-space and elucidate the influence of
various design parameters on wave attenuation. Results of this work demonstrate that sig-
nificant wave attenuation can be achieved by installing sparse resonating piles around a
selected site on the free surface of the medium, rather than placing resonators directly
underneath that same site. This work might have implications in metamaterial-based
wave attenuation applications across scales. [DOI: 10.1115/1.4063115]
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1 Introduction
In the context of vibration attenuation and elastic wave control,

metamaterials are mechanical systems featuring a wave-carrying
medium decorated with arrays of resonating units. Effectively,
each resonator acts as a tuned mass damper. When tuned all at
the same frequency, these resonators give way to frequency
regions of strong wave attenuation called locally resonant bandgaps
[1–3]. What makes metamaterials appealing from an application
standpoint is their capability of attenuating waves with wavelengths

much larger than the size of the resonators or their spacing [4–6]. A
wide variety of elastic media across different length-scales can be
turned into metamaterial systems by adding or embedding resonat-
ing units, arranged according to desired periodic or non-periodic
patterns; examples are metamaterial bars and beams [7,8], plates
[4,5], solids [1,9], and half-spaces [10,11]. In addition, the resonat-
ing units can be engineered to interact with all types of waves prop-
agating in these media, from flexural to longitudinal, shear and
surface-type. In this work, we are interested in attenuating waves
in half-spaces— semi-infinite domains characterized by a free
surface.
Depending on the location and nature of the excitation, several

types of waves can develop in a half-space. If the source is on or
near the surface, surface waves (e.g., of the Rayleigh type) will
travel through the medium. Metamaterial systems that can interact
with these waves feature above-surface or sub-surface resonators
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[10,12–18]. When the source is far below the surface, the waves that
travel in the medium are predominantly longitudinal- and shear-
polarized bulk waves. If the goal is to shield a location on the
surface from these waves, the most logical metamaterial design
would feature a number of resonating units located directly below
the target location [19]. In the seismic realm, one of the scenarios
where this problem is most relevant, this amounts to creating
metamaterial-like foundations [20–24].
Here, we are interested in the attenuation of shear waves that

are approaching the surface of a half-space from the depth
[25,26]. In particular, we propose the concept of metapiles: one-
dimensional arrays of resonators buried near the half-space
surface and located around—rather than underneath—a target
location to be isolated. The three-dimensional (3D) incarnation
of this concept is illustrated in the schematic of Fig. 1(a). We
demonstrate that, when properly designed, sparse arrangements
of metapiles allow to significantly attenuate shear waves that
impinge on the target location from the depth direction. The key
idea behind our concept is that, owing to their subwavelength
response, metapiles need not be adjacent to produce wave attenu-
ation effects. In other words, by engineering the distance between
piles to be narrower than the wavelength, we ensure that waves
cannot be transmitted along those paths between piles and are
instead attenuated. In a way, the behavior of metapiles is opposite
to that of resonant waveguides designed for wave transmission
[6,27,28], which instead feature paths that are comparable in
size to the wavelength.
Here, we concentrate on demonstrating the behavior of metapiles

in two-dimensional (2D) media. We first study this concept and its
underlying physics by embedding 3D printed arrays of resonators in
acrylic plates, as illustrated in Fig. 1(b). Numerical results on this
system are validated via experiments. Then, we extend our idea
to the case study of an idealized, semi-infinite medium and resort
to a simplified numerical model with “lumped resonators” to quan-
tify the performance of metapiles and the influence of various
design parameters, such as the characteristics of the resonators,
the number of resonators in a pile, the number of piles and the dis-
tance between piles. We demonstrate that, in the context of linear
elasticity and small amplitude waves, even a small number of
piles and a limited number of resonators can have significant
effects on wave attenuation. In turn, our findings open up avenues
for the application of metapiles in wave attenuation problems across
scales.
This work is organized as follows. In Sec. 2, we show our idea

via numerical simulations and experiments on a tabletop model.
In Sec. 3, we use a simplified model, representing an idealized half-
space, to study the influence of design parameters in more detail.
Conclusions and future outlook are discussed in Sec. 4.

2 Numerical and Experimental Proof of Concept
To understand the physics behind the behavior of our metapiles

and study their performance, we develop a 2D experimental
setup. The centerpiece of the setup, illustrated in Fig. 1(b), is a
large acrylic plate in which we embed metapiles, here represented
by arrays of 3D printed resonators. As discussed in this section,
the design is guided by limitations imposed by the maximum size
of the plate and by the minimum feature size allowed by our 3D
printer. Leveraging this setup and sets of transient and steady-state
finite element (FE) simulations performed in COMSOL MULTIPHYSICS,
we demonstrate the wave attenuation performance of metapiles, and
extract preliminary information on their behavior.

2.1 Resonator Design, Fabrication, and Testing. Our exper-
imental setup is based on the idea that an acrylic plate can be rep-
resentative of a semi-infinite medium. This choice is inspired by
our previous work on surface wave control [18]. We create meta-
piles by carving through holes on the acrylic plate and filling
them with composite resonators that feature polymeric springs
and metallic masses. Such resonators are common in the metamater-
ials literature [1,29–31]. In particular, our objective is to design
these resonators for shear wave attenuation. As a first step, we set
bounds on acceptable resonant frequencies. Considering the stan-
dard properties of polymethyl methacrylate, Young’s modulus
E = 5.5 GPa, Poisson’s ratio ν= 0.35, and density ρ= 1190 kg m−3,
we can readily calculate the wave speed for shear waves:
vs =

���������������

E/(2ρ + 2ρν)
√

≈ 1300m s−1. Assuming nondispersive propa-
gation of shear waves in the plate, the wavelength as a function of
frequency f is λs= vs/f. Since the size of the plate is limited to a
maximum of 1219 × 610 mm, and since this size needs to be large
enough to accommodate at least a couple wavelengths along the
shortest dimension, our frequency of operation has a lower bound
of approximately 4 kHz.
There are two ways of making polymer–metal composite resona-

tors. One way relies on surrounding the metallic mass with a soft
elastomeric layer [1]; this design is known to feature large
damping [31]. The other avenue, chosen in this work, features 3D
printed compliant springs made of a stiff elastomer [29,30]; this
combination is a better choice if the damping within a resonator
needs to be minimized. In this work, the 3D printed springs
are made of Shapeways polyamide (PA2200) and fabricated via
selective laser sintering. The properties of this material are:
Young’s modulus Ep= 1.7 GPa, Poisson’s ratio νp= 0.34, and
density ρp= 930 kg m−3 [32]. Our resonator of choice is illustrated
in Fig. 2(a), and it features a circular polyamide casing with circular
springs and a heavy mass at its center. The geometry of the resona-
tor is chosen via a trial-and-error process involving both simulations

Fig. 1 The concept of metapiles. (a) Sketch that illustrates the proposed idea of attenuating shear waves with
sparse metapiles in a three-dimensional half-space. (b) Experimental setup for proof of concept in two dimen-
sions. To provide an idea of the scale of the setup, we highlight the distance between the centers of two
resonators.
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and experiments—choosing among geometries where the inner
mass is connected to the circular casing via different numbers of
straight or curved ligaments—with the objective of obtaining a res-
onance in the 6 kHz range. The thickness of the polyamide walls is
t = 0.85 mm, the total diameter of the casing is do= 18 mm, the dia-
meter of the heavy mass is di= 8.4 mm, and the distance between
the center of the heavy mass and the center of one of the circular
springs is dc= 5.7 mm. For the heavy metallic mass, we choose
Grade 304 Stainless Steel, whose nominal properties are: Young’s
modulus Es= 193 GPa, Poisson’s ratio νs= 0.27, and density ρs=
8000 kg m−3.
To test this design, we consider as unit cell a strip of acrylic of

height h= 60 mm, width a= 20 mm, and out-of-plane thickness
b = 6.35 mm that features a circular hole of diameter do. The reso-
nator is press-fit into the acrylic and the two parts are bonded via
cyanoacrylate. This unit cell is tessellated along the x direction as
to form a 1D array. To simulate wave propagation in an infinite
array, we use finite element simulations with Bloch periodic bound-
ary conditions. The h dimension of the strip, perpendicular to the
direction of wave traveling, is chosen to be significantly larger
than a to simulate wave speeds that are comparable to those we
expect when the resonators are embedded in a large plate and are
not in proximity of the plate’s boundaries. The result of this analysis
is the band diagram shown in Fig. 2(b), where each circular marker
is automatically color-coded to identify specific modes of wave
propagation. For each point in the dispersion relation, we extract
the volume-average displacements in the direction of shear and

longitudinal wave propagation from the corresponding mode
shape and normalize them by the total volume-average displace-
ment for that same mode. If either of these ratios is greater than a
threshold, here set to 0.7, then the mode corresponding to that
point is considered shear- or longitudinally dominant; if this is
not the case, the point is colored in gray and corresponds to a
mixed mode of wave propagation. The blue markers correspond
to a longitudinally dominant mode that features a bandgap starting
at 6.1 kHz, where the mode flattens. As highlighted by the corre-
sponding mode shape at the edge of the Brillouin zone (correspond-
ing to the maximum k value), which features large motion of the
resonator and limited motion of the acrylic matrix, this gap is
caused by resonant dynamics. The red markers represent a shear
mode that also features a resonant bandgap starting at 5.9 kHz.
This is the mode we are mostly interested in. Of interest to our
experimental discussion is also the mode featuring out-of-plane res-
onant dynamics at 8 kHz.
Now that we have evidence of the presence of a shear wave

bandgap taking place at acceptable frequencies, and we validate
these predictions experimentally using a finite strip of 18 resonators.
Our experimental setup is illustrated in Fig. 3(a). The strip is glued
to a piezoelectric actuator capable of generating shear waves (Pana-
metrics Videoscan V150-RM), which imparts a wideband Ricker
signal centered at 10 kHz. The signal is created in MATLAB, fed to
a signal generator (Agilent 33220A), and amplified by a piezo
amplifier. To measure the shear component of the traveling wave
at various points of the structure, we place a Laser Vibrometer

Fig. 2 Unit cell design and periodic system response. (a) Unit cell for the one-dimensional tests, with its relevant
dimensions. Its out-of-plane thickness is b=6.35 mm. Bloch boundary conditions are applied to the long edges,
and free boundary conditions to the short edges. The inset illustrates the polyamide-steel resonator. (b) Numer-
ical dispersion relation of the unit cell in (a). The insets illustrate three distinct mode shapes (from lowest to
highest frequency: shear, longitudinal, and out-of-plane) at k=1/(2a). (Color version online.)

Fig. 3 Experiments on 1D specimens. (a) Experimental setup to test a one-dimensional array of resonators
embedded in acrylic. (b) Numerical (circular markers) and experimentally reconstructed (gray-scale colormap)
dispersion relations. (c) Numerical and experimental transmission curves.
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(Polytec) on a motorized linear stage and program the stage so that
the laser can acquire data at each resonator and, in particular, at
points where the resonator wall is directly in contact with the
acrylic material. Velocity signals are then recorded by an oscillo-
scope (Tektronix DPO3034) and postprocessed in MATLAB. To
provide a complete characterization of the measured mode of
wave propagation, we take the data at all measurement points and
use it to reconstruct a dispersion relation for the medium via a
2D-discrete Fourier transform of the space-time data we obtain.
The reconstructed dispersion is shown as a gray-scale colormap
in Fig. 3(b). We can see that the dark regions match the markers
corresponding to the numerical dispersion relation (same markers
as in Fig. 2(b)), especially around the point where the lower shear
branch flattens (near resonance).
Understanding the full extent of the bandgap from the experimen-

tally constructed dispersion plot is more challenging. To better
extract this information, we consider only the measured data at
the input (near the transducer) and at the output (the point of the spe-
cimen that is further away from the transducer). We then plot the
transmission (TR, output velocity divided by input velocity), and
we compare it to a numerical prediction obtained via harmonic
analysis in COMSOL, using a 3D model of the strip. Note that no
damping is used in these simulations. This comparison is illustrated
in Fig. 3(c). We can see that the numerical model captures the
experimental response for a wide range of frequencies, as high-
lighted by the proximity of peaks in the two sets of results. Addi-
tionally, both numerical and experimental results show a dip in
the transmission between 6 and 7.3 kHz, which can be ascribed to
the shear wave bandgap.

2.2 Experiments on Shear Wave Attenuation Via
Metapiles. After validating the behavior of our composite resona-
tors, we can proceed to provide an experimental demonstration of
the attenuation behavior of metapiles embedded in a larger acrylic
domain representing a half-space. While this idea could be extended
to 3D domains, we choose to validate it for a 2D medium for sim-
plicity. A picture of our experimental setup and a schematic with all
its relevant dimensions are illustrated in Figs. 4(a) and 4(b); recall
that an additional photo of this same setup is shown in Fig. 1(b).
The acrylic domain has width L= 1219 mm, height H= 610 mm,
and thickness b= 6.35 mm. Two regions of the bottom edge of
the plate, located 30 cm away from the vertical edges, are
clamped to an optical table via angle brackets. The same transducer
used for the 1D experiments is also glued at the center point of the
bottom edge of the plate, thus representing a finite-size source of
shear waves. Near the transducer, we attach a small acrylic block
onto the plate. This is needed to provide a measurement point for
in-plane shear waves that is accessible to the laser vibrometer. In
fact, to properly record in-plane shear waves, the laser should be

parallel to the plate itself since a single point vibrometer can only
measure velocities parallel to the laser beam. However, this is not
possible due to space limitations in our setup. As a consequence,
the laser is oriented at a relatively small angle (≈30 deg) with
respect to the plate and is therefore bound to record some unwanted
out-of-plane dynamics together with the desired in-plane vibration,
as will be discussed later. The measurement point on the acrylic
block near the source is used to record an input signal. At the top
edge of the plate, representing the free surface of our domain, we
also glue an acrylic block that is used to record the output response.
In order to create and test metapiles, we carve holes in the acrylic

plate by means of a computer numerical control (CNC) router, and
press-fit composite resonators identical to those introduced in Sec.
2.1. Resonators are located right below the top edge (the center of
the first resonator is located at a/2 from the top edge), and the
edge of the resonator of each pile is located at a distance D from
the vertical mid-line of the plate, so that the center of the resonator
is located at a distance of D+ do/2 from that same point. For our
experiment, given do= 18 mm, we choose D= 21 mm. This D
value is chosen so that the distance between piles 2D= 42 mm is
much smaller than the wavelength we expect at the resonance fre-
quency of the resonators, 223 mm. Our specimen features Nr= 5
resonators in each pile. The plate is excited with a 5 kHz-centered
Ricker signal, and the response signals at output and input locations
are used to produce a transmission plot.
The experimental setup is replicated using a 3D model in COMSOL.

Here, we perform a transient simulation using the same Ricker
signal as in the experiment and determine a transmission plot for
in-plane shear waves by recording the in-plane velocity at the
output and input locations. The wave source is modeled by applying
the input signal to a line of points running along the thickness of the
plate at the central location of the bottom edge.
A comparison between experimental and numerical transmission

curves is shown in Fig. 4(c). Our numerical simulations do not
feature any damping. To smoothen-out the numerical frequency
response and to make it resemble the response one would obtain
with moderate values of damping, we apply a moving average pro-
cedure. The response before and after the application of the moving
average is shown as gray and black curves in Fig. 4(c). The red
curve is the experimental transmission curve. We can see that
there is good qualitative agreement between numerics and experi-
ments up until 7 kHz. In particular, we can see that both sets of
data capture the small dip around 4 kHz, the amplitude increases
around 5 kHz, and the large dip that starts right below 6 kHz.
Based on our knowledge on the dynamics of these resonators
(Sec. 2.1), we understand that this larger dip is the onset of the
bandgap induced by the metapiles. After 7 kHz, we can see that
the numerical response increases again, while the experimental
one experiences a second large dip. We claim that this second dip
is due to undesired out-of plane dynamics of the plate that are

Fig. 4 Experiments on shear wave attenuation via metapiles. (a) Photo and (b) schematic of the 2D experimental
setup, featuring a large acrylic plate and two metapiles. (c) Numerical and experimental transmission curves. The
averaged numerical curve is obtained from amoving average of the raw data. The experimental results, due to the
limitations of our setup, account for both in-plane and out-of-plane motion. (Color version online.)
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picked up due to the inclination of the laser. This conjecture is cor-
roborated by the fact that the band diagram in Fig. 2(b) shows that
our resonators present an out-of-plane resonance in the neighbor-
hood of 8 kHz—the frequency at which we see the second dip in
Fig. 4(c). In conclusion, this preliminary experiment demonstrates
that shear wave attenuation in a half-space can take place even if
we use spaced-out arrays of resonators. Next, we will use numerical
simulations to better understand this attenuation phenomenon.

2.3 Numerical Generalization and Parametric Study. In
order to probe the effects of various metapile parameters on the
attenuation performance, it would be necessary to test many differ-
ent spatial resonator configurations. This is very impractical to do
experimentally. However, since we have validated our numerical
simulations with experimental results for a specific choice of param-
eters, we now resort to numerical simulations to perform a limited
parametric study, using the same modeling strategy as in Sec. 2.2.
In particular, we keep the same identical resonators as in previous
sections, and vary D, the distance between the edge of a metapile
and the location to be shielded, and Nr, the number of resonators
in each metapile. To compare the performance of various configu-
rations, we define a metric of wave attenuation performance as illus-
trated in Figs. 5(a) and 5(b). We compute the transmission of a bare
acrylic plate without resonators and extract a baseline curve, i.e., the
linear fit of the response in a frequency range around the bandgap,
here chosen to be from 4 kHz to 10 kHz. This procedure, shown in
Fig. 5(a), is done to account for the slope of the response curve in
the range of interest. When we consider a system with resonators,
we first smoothen out the numerical transmission with a moving
average filter. Then, we consider as bandgap a continuous region
that includes the expected resonance 6 kHz and that remains
below the baseline. The area of that region is our measure of
attenuation.
For each metapile configuration of interest, we extract the atten-

uation area and normalize it by the area obtained for a compact array
of 20 × 5 resonators located right below the location to be shielded.
The transmission plot and attenuation area for this reference config-
uration are shown in Fig. 5(b). By considering the normalized areas
for combinations of D= 0.25–4 cm and Nr= 1–9, we can extract
information to compile the design map shown in Fig. 5(c). To
better appreciate the extent of the attenuation area for each metapile
configuration, one can see all transmission plots in Fig. 6. From this
data set, we can conclude that configurations with more resonators
in the metapile and with less distance between piles perform better
in terms of wave attenuation. In particular, from the map in
Fig. 5(c), we can see that the performance of the best metapile con-
figurations (with low D and high Nr) is approximately 30% of the

performance of the reference configuration—a “metafoundation”
featuring a number of resonators an order of magnitude larger
than any metapile configuration. From these plots, we can also
appreciate that D has much larger effects than Nr, as highlighted
by the fact that configurations with metapiles close to each other,
but featuring a few resonators, perform better than configurations
with many resonators per pile but with far-away piles. This is not
surprising since, for D= 4 cm, the distance between piles of 2D=
8 cm is much closer in magnitude to the shear wavelength in the
acrylic plate.

3 Case Study and Parametric Analysis With a
Simplified Model
The results illustrated in Sec. 2 give us some preliminary infor-

mation on the wave attenuation performance of metapiles.
However, two aspects make vast parametric studies based on the
model used in Sec. 2 impractical: (1) the size limitations of our
experimental setup that does not allow us to increase the distance
between piles without incurring in significant boundary effects
and (2) the fact that our COMSOL models are based on an accurate
rendering of each resonator, and are therefore computationally
expensive. Thus, we build a new model where resonators are sim-
plified as spring-mass systems connected at single nodes of the half-
space. We also take advantage of this new model to concentrate on a
case study that, albeit presenting significant idealizations, more
closely resembles a potential application of our system. We there-
fore consider an elastic half-space with soil-like properties and
use the software SAP2000, a structural engineering oriented FE plat-
form that is ideal for such simplified models. With this software, we
investigate the effects of different layouts of metapiles and their
characteristics on shear wave attenuation. Note that by no means
we claim this to be an accurate representation of a ground vibration
attenuation problem. Steps necessary to apply this idea in this
context are mentioned in the conclusions. Using this idealized
model, we study the effects of resonator properties (including
mass and damping) and metapile properties such as the number
of resonators in each metapile, the distance between metapiles,
and the number of metapiles. From this point onwards, the word
model will refer to this SAP2000 model only.

3.1 The Numerical Model. The half-space model, illustrated
in Fig. 7(a), has a base of 400 m, a depth of 20 m, and a mesh of
four-nodes 1 m× 1 m elements. We assume plain strain conditions.
The half-space is assumed to be linear elastic, isotropic, and homo-
geneous. Soil conditions are modeled assuming a density of the

Fig. 5 Numerical parametric study for the acrylic half-space. (a) Transmission curve of the bare plate (no reso-
nators). TRb is the baseline transmission in the 4–10 kHz range of interest, obtained by fitting the transmission
with a first-order polynomial. (b) Extraction of the attenuation measure from the transmission of a configuration
with resonators. This specific configuration, featuring 20× 5 resonators located right below the target location, is
used as reference to benchmark attenuation performance. The shaded area is obtained by intersecting the trans-
mission with the TRb line. (c) Evolution of the attenuation performance with Nr, the number of resonators in a
metapile, and D, the distance between the edge of one metapile and the output measurement point. The attenu-
ation measure for each case is normalized by the area of the attenuation region in the benchmark case (b).
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material of 1700 kg m−3, an elastic modulus of 7.07 GPa, and a
Poisson’s ratio of 0.3. We consider a damping ratio of 5%. Fre-
quency domain analyses are performed by applying a horizontal
(shear) harmonic base displacement of 0.05 m to the baseline of
the model. Frequencies of excitation are selected in the 0–25 Hz
range. We introduce absorbing boundary conditions using
dampers, as proposed by Lysmer and Kuhlemeyer [33]. On the
boundaries, we choose damping constants c1= 1 N s m−1 and
c2 = 0.25 N s m−1 along the horizontal and vertical directions,
respectively, as studies show that this assumption leads to a

reasonable wave absorption [34,35]. To reduce wave reflections
at the lateral boundaries of the domain, we also choose a lateral
extension of the domain that is more than eight times its height
[36]. The size of the mesh is selected to meet the requirements pro-
posed by Lysmer and Kuhlemeyer, as each element has dimensions
much smaller than λ/8, where λ is the wavelength corresponding to
the maximum frequency of interest f. For the analyses discussed in
this work, λ/8= vs /8f= 16 m, being vs= 396 m s−1 and f= 3.1 Hz.
Finally, to perform a transmission analysis, we record the lateral
displacement at an input point located at the midpoint of the

Fig. 6 Complete map of the transmission results that yields the parametric gray-scale colormap in Fig. 5(c)

Fig. 7 (a) Elastic half-space model in SAP2000. (b) Top panel: comparison between the response of the soil
medium and the response of the same medium with five layers of resonators located below the surface. The res-
onators are tuned at the first peak of the soil response. Ps is the amplitude of the soil response at 3.1 Hz. Bottom
panel: difference between the transmission of the soil medium and that of the same medium with resonators. A
difference greater or smaller than zero indicates that the resonators have attenuated or amplified the response,
respectively. The bottom panel indicates measures of attenuation used for the parametric study.
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baseline of the model, and at an output point (also called location to
be isolated or control node) located at the midpoint of the upper
boundary. For the half-space without resonators, we compare the
peaks of the numerical transmission, shown as a black curve in
Fig. 7(b), to the theoretical solution available in the literature
[37]. This comparison yields a perfect match. Our frequency of
interest is 3.1 Hz, corresponding to the first shear resonance of
the half-space.
Metapiles are modeled as arrays of resonators located at pre-

scribed nodes of the mesh; thus, we assume that each resonator
occupies an area of 1m× 1m. Since we are interested in shear
wave attenuation, the resonators are only capable of lateral
motion. An example of transmission for a configuration featuring

five rows of resonators located below the whole upper boundary
of the domain is shown as a (((red line in the top panel of
Fig. 7(b). These resonators are all tuned to resonate at 3.1 Hz;
thus, the response has the same shape (but different amplitudes)
as that of a single tuned mass damper, with the original peak of
the half-space being replaced by an anti-resonance accompanied
by two adjacent and distinct peaks. To quantify the effects of the
resonators on the response of the model, we plot the difference
between the transmission of the soil medium and that of the
medium with resonators, as shown in the bottom panel of
Fig. 7(b). A difference greater than 0 corresponds to attenuation
regions, while a difference smaller than 0 means that the resonators
have amplified the response. This plot clearly highlights that

Fig. 8 Parametric study on the simplified half-space model. Various configurations of resonators are here com-
pared as a function of peak attenuation Patt/Ps, effective attenuation (Patt−Pamp)/Ps, and bandwidth BW. (a) Res-
onator arrangement, featuring five rows of resonators homogeneously distributed below the free surface, used to
study the influence of the resonators parameters. (b) Designmaps obtained from (a), detailing the influence of the
resonators’ mass m and damping factor ξ. (c) Generic metapile configuration with two arrays of resonators that
are equidistant from the control node. (d) Design maps obtained from (c), detailing the influence of the distance
betweenmetapile arrays and control node D, and the influence of Nr, the number of resonators in each array, with
parameters m=2 t and ξ=5% fixed. (e) Configuration with more than two metapiles. (f) Design maps obtained
from (e), detailing the influence of the number of metapiles located on the same side of the control node Np
and their distance s, with m=2 t, ξ=5%, D=10 m, and Nr=5 fixed.
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attenuation at 3.1 Hz comes at a cost: the response is amplified at
other frequencies. We then define the following metrics of attenua-
tion: (i) the peak attenuation, defined as Patt/Ps, where Patt is the
maximum attenuation and Ps is the soil response at the resonance
peak of 3.1 Hz; (ii) the effective attenuation, which is meant to
account for the presence of amplification regions and is defined
as (Patt−Pamp)/Ps, where Pamp is the maximum amplification; and
(iii) the bandwidth BW, i.e., the frequency range where a peak
attenuation greater than 5% is detected.

3.2 Parametric Study. We begin our parametric study by
investigating the influence of the characteristics of the resonators
on the attenuation. This comparison is carried out by considering
five rows of resonators homogeneously distributed below the free
surface. This configuration is illustrated schematically in Fig. 8(a).
We let the mass of each resonator range from 0.25 t to 2.5 t, and
the equivalent viscous damping factor of the resonator from 2% to
16%. We keep the natural frequency of the resonator constant at
3.1 Hz and therefore vary the stiffness of the resonator to tune its
response. From the charts of Fig. 8(b), it is interesting to observe
that the peak attenuation is generally better for higher mass and
lower damping. We can see that, in this configuration featuring a
large number of resonators, even resonators with low masses and
high values of damping yield a ≈95% attenuation of the peak.
Similar trends are observed for the bandwidth, which peaks for
large masses at about 0.45 Hz. It is less straight-forward to make
meaningful considerations for the effective attenuation; the only
interesting feature of this map is the presence of an outlier for
ξ = 8% andm= 1 t. For this combination of parameters, the effective
attenuation is smaller than 0 and indicating amplification of the
signal. This highlights the importance of also considering amplifica-
tion effects in addition to attenuation—an aspect that is discussed in
other works [38] and whose detailed investigation in the case of
metapiles deserves a separate treatment. Since a mass of 2 t and a
damping of 5% allow to obtain a significant response attenuation,
we fix these reasonable parameters in the following analyses.
To study the effects of varying numbers of resonators Nr in a pile

and of their distance from the control node D, we build the model
illustrated in Fig. 8(c). Figure 8(b) shows that when resonators
are homogeneously distributed below the surface, the peak attenu-
ation for a mass of 2 t and damping of 5% amounts to 99%.
Figure 8(d ) shows that the peak attenuation we obtain with only
two metapiles located at any distance from 10 to 30 m is still signif-
icant. This amounts to 86% for Nr= 5 and increases up to 97% for
Nr= 10. Not surprisingly, deeper metapiles yield better peak atten-
uation. As D increases, we can see that the peak attenuation
decreases since the distance between piles 2D is now approaching
129 m and the wavelength in the soil at 3.1 Hz. Note that values
of D larger than 50 would compromise the validity of the model
since the piles would be too close to the left and right boundaries
of our domain. The effective attenuation map yields less intuitive
results and features a minimum at D= 30 m and Nr= 8. Finally,
we can see that the bandwidth decreases as we increase D and
decrease Nr.
We also analyze the influence of the number of adjacent meta-

piles, by fixing m= 2 t, ξ = 5%, Nr= 5, and D= 10 m. We call Np

the number of adjacent piles per side of the control node, as
shown in Fig. 8(e). We call s the distance between piles. The
wave attenuation performance of these configurations is shown in
Fig. 8( f ). Increasing Np, while keeping D constant, increases the
attenuation performance of the system in terms of peak attenuation,
effective attenuation, and bandwidth. The distance between piles s
does not have a significant influence on the attenuation perfor-
mance, illustrating that D is a much more significant parameter.

4 Conclusion
In this article, we have shown the shear wave attenuation proper-

ties of metapiles buried in a 2D elastic half-space. First, we

demonstrated via numerical simulations and experiments that
cm-scale metapiles embedded in an acrylic plate can attenuate
waves, when their distance is smaller than the wavelength in the
medium of interest. Then, we numerically extended this idea to
waves propagating in an idealized soil medium, here intended as a
case study, and we used a simplified model to illustrate the influence
of various design parameters on the wave attenuation performance.
To the best of our knowledge, our work represents a necessary

step toward finding ways to minimize the number of resonators
needed in metamaterials-based wave attenuation. Future work
might be directed toward: (i) the extension of this idea to 3D half-
spaces and to (ii) longitudinal wave attenuation, and (iii) the reali-
zation of metapiles with spatially varying distributions of resonance
frequencies to widen the frequency bandwidth of the wave attenu-
ation regime [24]. If one wanted to explore the application of our
idea in the context of ground vibration attenuation, it would be
important to evaluate the performance of metapiles in real soil
media, known to hinder some of the wave attenuation effects exhib-
ited by metabarriers [39,40], consider soil–structure interaction
effects [26], and finite wave amplitudes. Another important
aspect that would deserve to be investigated is the coupling
between metapiles and the structure to be isolated [38]. In particu-
lar, the effects of undesired vibration amplification should be care-
fully considered.
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