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Stimulus responsive elastomers are advanced engineered materials that perform desired functionalities
when triggered by external stimuli. Liquid crystal elastomers (LCEs) are one important example that
exhibit reversible actuation when cycled above and below their nematic-to-isotropic transition temper-
ature. Here, we propose a micromechanical-based model that is centered on the evolution of the chain
distribution tensor of the LCE network. Our model, framed within the statistical model of the chain net-
work, enables a mesoscale description of their mechanical response under an external thermal stimulus.
We compare the model to prior experimental observations of the bending response of 3D printed LCE ele-
ments with controlled director alignment.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Several stimulus-responsive polymers have the ability to exert
mechanical work when exposed to environmental cues. This has
led the materials science community to devote attention to devel-
oping, testing, and modeling these materials. As a result, multiple
untethered sensors and actuators have been developed for the next
generation of soft robots and other shape-morphing applications
(Shahinpoor and Schneider, 2008; Aguilar et al., 2007; Schattling
et al., 2014; Fu et al., 2018; Guragain et al., 2015; Cao and Wang,
2016). A better understanding of the impact that polymer chem-
istry has on mechanical properties will allow us to develop new
materials that are capable of unprecedented functions.

Liquid crystal elastomers (LCEs) represent an interesting class of
responsive polymers that combine mechanical properties of both
fluids and solids (Saeva, 1979). Their molecular structure exhibits
preferred orientations, akin to liquid crystals (LCs) (De Gennes
and Prost, 1993; Warner and Terentjev, 2007). LCs are made of
elongated rigid molecules (nematic mesogens) whose preferential
orientation is retained in a medium. This orientation can be quan-
titatively described through a director parameter tensor (Warner
and Terentjev, 2007) and the deviation from this average direction
is described by the order degree of the mesogens embedded in the
polymer network. LCEs are obtained by weakly cross-linking liquid
crystal mesogens to a highly deformable elastomeric network
(Finkelmann et al., 2001). By combining the deformability of the
entropically-dominated elastomeric network with the capacity
for reorientation of the nematic mesogens, LCEs can undergo
exceptionally large deformations (up to 300–400% with respect
to the reference configuration) when an external stimulus induces
a phase transformation between their nematic and isotropic states.

The orientation of the nematic mesogens can be manipulated by
thermal, electric or magnetic fields, light, and mechanical stimuli
(Stephen and Straley, 1974; Terentjev and Warner, 2001;
Mitchell et al., 1993). Importantly, the large deformations induced
by these external stimuli are reversible and are accompanied by
large force or torque outputs. The properties mentioned above
make LCEs compelling materials for several applications, including
soft robotics, artificial muscles, and deployable structures such as
tunable mirrors, to name a few (Kotikian et al., 2019; Ohm et al.,
2012).

Multiple fabrication methods have recently been introduced to
create LCEs with controlled mesoscale architectures in both two
and three dimensions (Surjadi et al., 2019; Ware et al., 2015;
Kim et al., 2019; Davidson et al., 2020; Waters et al., 2020;
Aharoni et al., 2018; Kowalski et al., 2018; Guin et al., 2018). Of
these, 3D printing is perhaps the most flexible method, as it
enables local control over the director alignment and composition
within 3D LCEs (Kotikian et al., 2018). However, to fully realize the
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Nomenclature

ah Material-dependent parameter defining the sponta-
neous deformation in LCE

b Kuhn’s length of a chain segment
ca Number of active chains per unit volume (chain concen-

tration)
Ch right Cauchy-Green deformation tensor

D ¼ Lþ LT
� �

=2 Symmetric rate of the deformation tensor

E Young modulus
E Green-Lagrange deformation tensor
F; Fij; Fh Deformation gradient tensor
G Shear modulus
kB Boltzmann constant
L ¼ _FF�1; Lij Velocity gradient tensor
J Polymer volume change
n Unit vector defining the nematic order orientation in the

3D space
N Number of segments in a polymer chain belonging to a

single network
P First Piola stress tensor related to the mechanical defor-

mation
Q ;Q Nematic order tensor and order parameter of the LCE,

respectively
r End-to-end distance of a polymer chain
R Rotation tensor

t Time
T Absolute temperature
TNI Absolute temperature for the LCE phase change
u0 rð Þ;u rð Þ Normalized distribution function of the polymer’s

chains in the stress-free and in the current state, respec-
tively

u0n Normalized distribution function of the material in the
initial nematic state (non-isotropic)

q0 rð Þ;q rð Þ Distribution function of the end-to-end vector in the
stress-free and in the current state, respectively

l0;l distribution tensor in the initial (stress-free) and in the
current state of the polymer, respectively

ln;lnp Distribution tensor corresponding to the chain distribu-
tion function of a nematic network un and its corre-
sponding expression in the principal directions frame
of reference, respectively

k Stretch of the single polymer chain
w Deformation energy for a single chain
W0;W Network’s deformation energy per unit volume in the

stress-free and in the current configuration, respectively
Wext Mechanical energy associated to the external forces
p Hydrostatic pressure
P Total potential energy per unit volume of material
r Cauchy stress tensor
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power of these emerging fabrication methods, there is a need for
simulation tools that adequately model their physico-chemical
and mechanical behavior and predictively design the desired LCE
microstructure to achieve the desired functionality.

Here, we assess the mechanical response of LCE-based elements
to thermal stimuli through a quantitative, physics-based microme-
chanical model. Results from simulations are compared to experi-
mental data from (Kotikian et al., 2019) and to theoretical results
from (Agostiniani and DeSimone, 2017). The paper is organized
as follows: Section 2 is devoted to illustrating a statistical descrip-
tion of the microstructure of elastomers. In Section 3, we present a
mechanical model for LCEs that is based on this statistical
approach and we discuss its computational implementation. In
Section 4, we comment on the experiments performed in
(Kotikian et al., 2019), to which we compare our computational
results. We present the numerical simulations and the obtained
results in Section 5. Finally, we outline our conclusions and outlook
in Section 6.
2. Statistical-based description of LCE mechanics

2.1. Basic concepts

LCEs consist of an amorphous arrangement of entangled linear
chains joined at discrete points to form a network, whose behavior
can be quantitatively described using a statistical approach. Due to
the disordered nature of elastomeric networks, their microstruc-
tural state is dominated by entropic energy rather than by the
standard enthalpic-like deformation energy typical of crystalline
materials. Each chain in a network is usually assumed to be com-
posed of N rigid (Khun’s) segments of length b. This arrangement
is well described by the random-walk theory (i.e., freely-jointed
chain model, or FJC) (Doi, 1996). Upon stretching, the chain elon-
gates, and its entropic energy reduces. However, only finite exten-
sions can take place because the rigidity of the constituting
93
segments allows for a maximum length of the deformed chain
(i.e., the distance between the endpoints of the chain) to be equal
to its contour length Nb, corresponding to a maximum stretch limit
kmax ¼

ffiffiffiffi
N

p
.

Based on this concept, the use of a statistical description of the
chain distribution within the network is a suitable way of defining
the physical state of the polymer. In a stress-free state, the chain
end-to-end vectors r can be assumed to be distributed in the 3D
space according to the following expression

q0 rð Þ ¼ cau0 rð Þ ð1Þ
where ca represents the number of mechanically active chains (i.e.
chains joined to the network at both of their extremities), and u0

is the normalized distribution function which is usually adopted

to be Gaussian. Namely, u0 rj jð Þ ¼ 3
2pNb2

� �3
2
exp � 3 rj j2

2Nb2

� �
(Vernerey

et al., 2017). This is characterized by a mean value r ¼ 0 and stan-
dard deviation b

ffiffiffiffiffiffiffiffiffi
N=3

p
). The integral over the chain configuration

space (i.e. the space of all the possible chain lengths and orienta-
tions) of the distribution function q0 rð Þ provides the number of
mechanically active

chains:ca ¼ q0 ¼ RX hqi0 dX ¼ R2p
0

Rp
0

RNb
0
q0 rð Þ r2dr

 !
sinhdhdxIn the

absence of any chain loss (microscopic damage) or gain (such as
what occurs in self-healing mechanisms), the number of mechani-
cally active chains must remain constant in time, i.e.
ca tð Þ ¼ hq tð Þi ¼ const. We note that the chain concentration, i.e.
the number of fully connected chains per unit volume, is related
to the standard shear modulus G of the material through the
well-known simple expression G ¼ cakbT , where kB and T are the
Boltzmann constant and the absolute temperature, respectively
(Doi, 1996).

Statistical descriptions of elastomer mechanics often adopt the
affine deformation hypothesis which requires the polymer chains
to assume the same deformation of the continuum in which they
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are embedded (Kuhn and Grün, 1942). According to the statistical
approach, the physical state of the polymer is completely known
once the distribution of r is available. Therefore, the knowledge
of how the function q rð Þ changes in time suffices to fully determine
the mechanical state of the material.

The distribution function q tð Þ evolves in time due to mechanical
deformation, the strain rate effect, chain ruptures, chain rearrange-
ment in a transient network, change in the nematic order of a LCE,
etc. (Vernerey et al., 2017). Fig. 1 illustrates schematically how the
distribution function evolves as a function of deformation.

In polymer physics, the mechanical energy stored in a single
chain is usually made to depend on the modulus of the end-to-
end vector. According to Gaussian statistics (Rubinstein and
Colby, 2003) and for moderate stretch values, the elastic energy

of a single chain is given by w rð Þ ¼ 3kBT
2Nb2

rj j2, while the elastic poten-

tial energy per unit volume of the polymer is:

DW ¼ W�W0 þ A ¼
Z
X
q r; tð Þ � q0 rð Þ½ �wdXþ A

¼ cah u r; tð Þ �u0 rð Þ½ �wi þ p det Fð Þ � 1½ �

¼ 3cakBT

2Nb2 h u�u0ð Þ rj j2i þ p det Fð Þ � 1½ � ð2Þ

Here, the presence of the difference q r; tð Þ � q0 rð Þ is justified by
the fact that the energy of the polymer is non-zero in its stress-free
state. Namely, W0 ¼ hq0wi > 0 for the distribution q0 correspond-
ing to F ¼ 1, where F ¼ @x=@X ¼ 1þ @u=@X is the deformation gra-
dient tensor, 1 is the second order identity tensor, and u is the
displacement field. Meanwhile, p is the hydrostatic pressure,
which serves the role of a multiplier constraint in order to fulfill
the incompressibility condition (mathematically expressed by
J ¼ det Fð Þ ¼ 1).

By introducing the distribution tensors, l0 ¼ hu0ðr; t ¼ 0Þr � ri,
l ¼ huðr; tÞr � ri referred to the initial stress-free and to the cur-
rent deformed configuration, respectively, the previous energy
expression (2) can be rewritten as follows (Vernerey et al., 2017):

DW ¼ 3cakBT

2Nb2 tr l� l0

� �þ p det Fð Þ � 1½ � ð3Þ

In the stress-free state, the chains’ distribution of the end-to-
end distance is usually assumed to be Gaussian, so the distribution

tensor l0 assumes the simple diagonal form: l0 ¼ Nb2

3 1 (Vernerey
et al., 2017). Once the elastic potential energy is known, the stress
state in the material can be obtained by recalling that the power
per unit volume of the material is expressed by:
Fig. 1. Scheme of the end-to-end vector distribution field in a material point of the
polymer in the stress-free state (a) and its counterpart in a stretched state
corresponding to an elongation along the x direction (b). The color map intensity is
proportional to the value of the distribution function uðrÞ.
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@DW
@t

¼ D _W ¼ r : D ð4Þ

where r is the Cauchy stress and D is the symmetric part of the

velocity gradient tensor L, D ¼ sym L= Lþ LT
� �

=2, being L ¼ _FF�1.

In (4), the time rate of the energy DW is required. For an isother-
mal process ( _T = 0), it is given by (Vernerey et al., 2017):

D _W ¼ 3cakBT

2Nb2 h _u� _u0ð Þ rj j2i þ ptr Lð Þ ¼ 3cakBT

Nb2 l� l0

� �
: Lþ ptr Lð Þ ð5Þ

in which, due to material incompressibility, tr Lð Þ=1 : L = 0, while the
time derivative of the distribution function is provided by Eq. (7)
below (Vernerey et al., 2017). From (4) and (5) the Cauchy stress
tensor can be finally explicitly written:

r ¼ J�1PFT ¼ 3cakBT

Nb2 l� l0

� �þ p1 ð6Þ

The last expression of the time rate of the energy DW in (5) has
been obtained by applying the integration by parts on the term
h _u� _u0ð Þ rj j2i after expressing the time derivative of the chains’
end-to-end distance probability distribution functions u, as shown
in Eq. (7) below and by recalling the definition of the distribution
tensor l (Vernerey et al., 2017). It is worth mentioning that the
time derivative _u0 of the initial probability distribution function
u0 is generally non-zero since it quantifies the change of u0 per
unit time due to an applied deformation rate quantified by the ten-
sor L. By harnessing the conservation of the chain density during
the deformation process (because of the absence of any damage
or self-healing mechanisms), the time evolution of the distribution
function _u in (5) can be determined from the relation
D
Dt

R
V u r; tð ÞdV ¼ 0, which states the invariance in time of the chain

concentration ca, i.e. the number of chains in the volume V must be
constant in time. By leveraging Reynolds’ transport theorem, the
material time derivative of the function u for an incompressible
medium becomes (Vernerey et al., 2017):

_u ¼ @u r; tð Þ
@t

¼ �ru � _r �u r � _rð Þ ¼ � ru� r þu1ð Þ : L
¼ � ru� rð Þ : L ð7Þ
Since the chain distribution space is embedded within a single

point of the material and we are assuming an affine deformation,
both the deformation gradient F and velocity gradient L can be
considered to be homogeneous throughout the chain configuration
space; thus, in Eq. (7) the rate of chains’ deformation expressed as
_r ¼ Lr has been used, where _r can be viewed as the velocity of a
point r in the chain distribution space.

It is worth mentioning that, according to the freely-jointed
chain model (FJC) adopted here, the mechanical response of the
polymer is characterized by only the shear modulus G and the
incompressibility constraint, while the quantities N and b of the
chain do not play a role. The dependence on the last-mentioned
parameters arise, for instance, when the chain energy is written
by adopting the Langevin statistics (Doi, 1996). According to this
assumption, the chain stretch is limited to be k � kmax ¼

ffiffiffiffi
N

p
; this

entails that when the chain elongation tends to its contour length,
i.e. rj j ! rmax ffi Nb, the corresponding chain force tends to infinity,
as the chain is assumed to be made of N rigid segments of equal
length b.

2.2. Application of chain configuration statistics to LCEs

The first models to describe the behavior of liquid crystals (in
the nematic, smectic and cholesteric phases) were mainly molecu-
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lar force interaction-based and were aimed at obtaining the energy
density of the material (Oseen, 1933; Frank, 1958). Continuum
models that are based on the conservation of mass, linear and
angular momentum, and energy laws were developed in subse-
quent works (Ericksen, 1961; Leslie, 1968, 1992; Ennis et al.,
2006). Approaches based on the elastic and nematic deformation
of LCEs (Jin et al., 2010; Biggins et al., 2009, 2012) and models that
specifically describe the mechanical behavior of structural ele-
ments made of LCEs (such as plates, membranes, etc.) have been
also developed (DeSimone, 2010; Agostiniani and DeSimone,
2017; Mihai and Goriely, 2020; Kowalski et al., 2018; Cirak et al.,
2014). These modeling approaches have been applied to functional
designs of LCE elements, which include materials that respond to
external stimuli and undergo shape morphing (Ambulo et al.,
2017; Jin et al., 2011; Fu et al., 2018).

The main physics-based theory of LCEs relies on the fundamen-
tal development of Warner, Terentjev et al. who extended the clas-
sical molecular rubber elasticity to nematic elastomers by
accounting for the molecular shape anisotropy induced by the liq-
uid crystalline order, i.e. by the nematic coupling to networks
(Warner et al., 1988; Bladon et al., 1993, 1994). Nematic elas-
tomers are characterized by the field of the director rotations –
constituting an internal degree of freedom field – enabling the
material to show spontaneous distortions, instabilities, and defor-
mations. All of them take place at low energy cost. In nematic elas-
tomers, the nematic preferential direction can be hindered in its
rotation and this mechanism interacts with standard elasticity of
the network (Bladon et al., 1993, 1994).

Within this context, our approach is similar to the classical
molecular rubber elasticity-based model of LCEs (Warner and
Terentjev, 2007; Warner et al., 1988; Bladon et al., 1993, 1994).
It is based on the statistical description of the network arrange-
ment through the use of the distribution tensor whose definition
and meaning have been illustrated in Secttion 2.1 for a standard
polymer. It accounts for a preferential chain orientation that is dri-
ven by the nematic mesogens. The model has a general applicabil-
ity without any restriction to particular structural elements, is
easily adaptable to elastomers characterized by multiple networks,
allows to simply account for strain-rate effects and damage
mechanics, and is readily implementable in a computational
framework. As a matter of fact, when chain failure – responsible
for the material micro damage – has to be accounted for, we must
have _ca tð Þ ¼ h _q tð Þi � 0. Therefore, if a proper chain failure criterion
is available (for instance based on the chain force exceeding a max-
imum bond force f b, i.e. fj j ¼ @w rð Þ=@rj j � f b), the probability dis-
tribution function uðt; rÞ can be updated accordingly. In such a
case, it happens to be huðt; rÞi � hu0ðrÞi ¼ 1.

We now describe how the statistical model discussed in Sec-
tion 2.1 is suitable for modeling elastomers that have an orienta-
tional arrangement. The polymer chains in these cases have a
preferential orientation due to the constraint provided by LC rods,
which can be described quantitatively by the nematic order (also
called the order parameter) (Warner and Terentjev, 2007).

Ordinary polymers in their stress-free state are usually charac-
terized by a uniform distribution of their chains’ orientations in 3D
space; this implies that the distribution function is spherical (i.e.
isotropic, with the corresponding distribution tensor l0 character-
ized by three identical eigenvalues, l01 ¼ l02 ¼ l03). This distribu-
tion changes upon deformation by following the evolution law
expressed by (9). Meanwhile, the chain backbones of nematic poly-
mers are distorted according to the nematic ordering of the meso-
gens even in their stress-free state. This property can be described
by introducing a proper non-isotropic distribution function u0n.

In light of this discussion, the statistical theory described previ-
ously for standard polymers also applies to elastomers that are
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characterized by a nematic order if the standard isotropic chain
distribution function in the stress-free state is replaced by the fol-
lowing anisotropic distribution function u0n (Warner and
Terentjev, 2007):

u0n rð Þ ¼ 3
2pNb

� �3
2 1

det ‘0

� �1
2

exp �3r � ‘�1
0 r

2Nb

" #
ð8Þ

where ‘0 ¼ ‘0?1þ ð‘0k � ‘0?Þn� n is the so-called step-length ten-
sor of the chain distribution, expressing the anisotropy of the poly-
mer chains at the time instant just after the initial cross-linking. ‘0?
and ‘0k are the effective initial step lengths, measured parallel and
perpendicular to the director n, of a freely jointed chain, respec-
tively (Warner and Terentjev, 2007; Warner et al., 1988). Here,
‘0k 	 ‘0? in a highly ordered chain network. When the network is
in the isotropic state, the averaged square of the end-to-end dis-

tance is given by hr2i i ¼ Nb2

3 ; i ¼ 1;2;3 (Doi, 1996), and the step
length tensor reduces to ‘0 ¼ b1. According to the definition of
the distribution tensor given in Section 2.1, we introduce here the
distribution tensor related to the statistical chain distribution pro-
vided by Eq. (8), lnðr; t ¼ 0Þ ¼ l0nðrÞ ¼ hu0nðrÞr � ri. At the time
of cross-linking, assumed to coincide with the initial stress-free
state, the chains’ end-to-end distancee distribution is provided by
the function q0n (or equivalently by its normalized counterpart
u0n) and we have l0n ¼ Nb

3 ‘0, being Nb the contour length of a poly-

mer chain. Moreover, trl0n ¼ 3 Nb2

3 , irrespectively of the value of the
nematic order parameter (see Eq. (10)).

In generic non-isotropic network chains, the distribution tensor
l0n, corresponding to the distribution functionu0n has three differ-
ent eigenvalues (l01;l02;l03), so it can be expressed in its principal
directions’ frame of reference as:

l0np ¼ RTl0nR ¼
X3

i¼1
l0imi �mi ð9Þ

where R represents a proper second order rotation tensor and mi is
the versor of the i� th principal direction at t ¼ 0. When the princi-
pal directions of l0n coincide with the axes of the coordinate frame
of reference, it can be expressed simply as l0np ¼ l0idij; i; j ¼ 1;2;3.

A simple interpretation of these eigenvalues can be introduced
by considering the standard deviation of the end-to-end distance
component, hr20ii, evaluated in the i-th principal direction:
l0i ¼ hr20ii; i ¼ 1;2;3. In other words, these eigenvalues provide
the standard deviation of the end-to-end distance in the three prin-
cipal directions of l0n. In this case, the distribution tensor can be
represented geometrically by an ellipsoid with semi-axes l0i,
i ¼ 1;2;3, oriented along the principal directions of l0n. This illus-
tration allows us to visualize the distribution of the chains’ end-to-
end vectors in the spatial domain of the polymer, whose preferen-
tial orientation is henceforth considered to be caused by both the
deformation and by temperature-dependent nematic preferential
orientation of the liquid crystal rods.

In absence of any deformation, at a generic time instant t of the
temperature evolution problem, the chain distribution tensor of
the nematic polymer written in its principal directions frame of
reference (here assumed to be aligned with that of the Cartesian
coordinate frame of reference) can be related to the order param-
eter of the nematic phase of the liquid crystal polymer at the tem-
perature TðtÞ as frame of reference (the subscript p is omitted in
ln tð Þ for sake of simplicity) (Warner and Terentjev, 2007):

ln tð Þ ¼ Nb
3

‘ tð Þ ¼ Nb
3

b

1� QðtÞ 0 0
0 1� QðtÞ 0
0 0 1þ 2QðtÞ

2
64

3
75 ð10Þ
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where QðtÞ ¼ h32 cos2 hðtÞ � 1
2i is the order parameter at the time t,

and the mesogen units have been assumed, by way of example, to
be preferentially aligned with the 3rd direction (z�axis) of the
Cartesian coordinate frame of reference. In this expression,
h tð Þ ¼ hðTðtÞÞ is the temperature-dependent angle formed by the
mesogen axes and their average direction n of alignment at the time
t. By observing Eq. (10) and considering the diagonal form of lnp

when its principal directions are superposed to the coordinate axes,
it can be recognized that l1 ¼ hr21ðtÞi ¼ l2 ¼ hr22ðtÞi / 1� QðtÞ and
l3 ¼ hr23ðtÞi / 1þ 2QðtÞ. In general, it happens to be that
ln tð Þ ¼ Nb

3 ‘ tð Þ ¼ Nb
3 b ð1� QðtÞÞ1þ 3QðtÞn� n½ �.

The parameter QðtÞ quantifies the degree of alignment of the
molecular axes of the rods that constitute the liquid crystal phase
of the elastomer. A nematic LCE shows a transversally isotropic
mechanical behavior. In writing (10), we assume that the isotropic
plane is the x; y plane, while the LC mesogens are aligned in the z-
direction. Let’s consider Eq. (10) at the time of cross-linking, i.e. at
t ¼ 0; the value Q ¼ 1 indicates a nematic order where all the rods
are perfectly aligned along the z direction, while the value Q ¼ 0
refers to randomly oriented rods, such as in a perfectly isotropic
arrangement of polymeric chains that has no nematic character.
When 0 < Q < 1, the rods display an intermediate degree of align-
ment along the z axis, and the intensity of the dispersion increases
as Q ! 0. When Q ¼ � 1

2, all the LC rods belong to the x; y plane.
From (10), it can be shown that the nematic order tensor Q 0 (also
called the de Gennes order tensor (De Gennes and Prost, 1993;
Warner and Terentjev, 2007) represents the deviatoric part of the
normalized tensor l0n. It is defined as follows:

Q 0 ¼ Q
2

3n� n� 1ð Þ ¼ 1
2

3
l0n

Nb2 � 1
� �

ð11Þ

or equivalently, by using the step length tensor, Q 0 ¼ 1
2

‘0
b � 1
� �

(Jin
et al., 2010).

It is worth recalling that, when the material undergoes a
mechanical stretch, the distribution tensor lðtÞ changes accord-
ingly. At a generic time t, it contains information on the average
chain stretch in different directions. By considering Eq. (7), its time
rate can be expressed as (Vernerey et al., 2017):

_lL tð Þ ¼ h _u tð Þr � ri ¼ h � ru tð Þ � rð Þ : L tð Þ½ �r � ri ð121Þ
¼ huðtÞr � riL tð Þ ¼ L tð Þl tð Þ þ L tð Þl tð Þ½ �T ð122Þ

where the subscript _lL has been used to indicate that the time vari-
ation is affected by the deformation only. In order to get the final
result, the integration by parts on the first term in Eq. (121) has
been used, further rr ¼ 1 and the boundary terms have been
neglected since they decay to zero at the boundary of the chain con-
figuration space, i.e. u rj j ! 1ð Þ ¼ 0.

2.3 Energy of a nematic elastomer

At a generic time t, the free energy (having an entropic nature)
per unit volume of the material, is obtained by adding up the free
energy of the chains contained in such a volume, averaged over the
chain conformation space, i.e. (Warner and Terentjev, 2007;
Warner et al., 1988):

W ¼ �cakBThlnuni ¼
3cakBT
2Nb

tr ‘�1hr � ri� �þ C ð13Þ

where the distribution function in the current state, given by Eq. (8),
has been used, while C is an additive constant that can be neglected.
By using the affine deformation hypothesis, the current end-to-end
vector is simply expressed through the deformation gradient tensor
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as r ¼ Fr0, so the free energy density is expressed by using the indi-
cial notation as follows (Bladon et al., 1994):

W ¼ 3G
2Nb

tr ‘�1
lk hFkjr0jFlir0ii

� �þ � � � ¼ G
2
tr ‘0ijFkj‘

�1
kl Fli

� �þ � � � ð14Þ

having used the result hr0ir0ji ¼ Nb
3 ‘0ij (in the isotropic state it is

hr0ir0ji ¼ Nb2

3 dij) (Warner and Terentjev, 2007); it represents an
extension of the free energy provided by the classical rubber elastic-
ity theory (Doi, 1996). The energy density variation, expressed by
using Eq. (14), evaluated with respect to the initial stress-free state
for which we have W0 ¼ 3G=2 becomes:

DW tð Þ ¼ G
2

tr F‘0F
T‘�1

� �
� 3

h i
ð15Þ

Now, by assuming that the polymer initially has a chain
arrangement described by the distribution tensor l0np provided
by Eq. (10) at t ¼ 0, i.e. l0np ¼ lnpðt ¼ 0Þ, the energy per unit vol-
ume of the polymer given by Eq. (3) can be rewritten by consider-

ing that trl0np ¼ Nb
3 tr‘0 ¼ 3 Nb2

3 (see Eq. (10) in Secttion 2.2). The
following expression is obtained:

DW tð Þ ¼ W tð Þ �W0 ¼ 3G

2Nb2 tr ln tð Þ � l0n

� �
¼ G

2
tr
3ln tð Þ
Nb2 � 3

� �
ð16Þ

By considering how the order tensor transforms between the
reference and spatial domain, Q ¼ J�1FQ0F

T (Warner and
Terentjev, 2007), and using Eq. (11), the relation between the dis-
tribution tensor in the current deformed configuration and the ini-
tial step length tensor can be found to be:

ln ¼ Nb
3

F‘0F
T ð17Þ

At the time of cross-linking, i.e. at t ¼ 0 prior to deformation,
the previous relation leads to lnðt ¼ 0Þ ¼ l0n ¼ Nb

3 ‘0 as already
mentioned above.

It is also worth recalling the microscopic Maier-Saupe theory of
the phase transition in nematic liquid crystals, which is applicable
only to homogeneous phases and is based on a molecular field
treatment of long-range contributions to the intermolecular poten-
tial (Maier and Saupe, 1958). It allows predicting the orientational
properties of nematic elastomers whose molecules interact via an
orientation-dependent potential. According to such a theory, a
molecule interacts with an appropriately chosen external field
whose role is to replace the interaction with all the other mole-
cules. The probability distribution function for the orientation of
a molecule in presence of the external field can be expressed

through the Gibbs distribution, / rð Þ ¼ 1
Z exp � w rð Þ

kBT

� �
, where Z is

the partition function (or configuration integral) used in classical

statistical mechanics. It is defined as Z ¼ RX exp � w qð Þ
kBT

� �
dq (where

q is a set of parameters defining the state of the system and w qð Þ
is the conformational (free) energy), and describes the statistical
properties of a system in a thermodynamic equilibrium (Gō and
Scheraga, 1976; Lifson, 1964). By considering a chain network sys-
tem, whose strands obey the FJC model in the Gaussian regime and
the function w rð Þ is that provided in Section. 2.1, the partition func-

tion becomes Z ¼ 2pNb2
3

� �3=2
, and finally, we arrive at the standard

distribution function shown in Section. 2.1, i.e. / rj jð Þ ¼ u0 rj jð Þ.
From this perspective, the microscopic Maier-Saupe theory can
be reduced to the statistical description of LCEs.
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3. Mechanics of stimulus-responsive LCE

3.1. Extension of the statistical chain distribution to ordered chain
arrangement

Elastomers become responsive to external stimuli by harness-
ing the active character of molecules or moieties embedded in their
network backbone. Mechanophores are examples of molecules
that undergo physical or chemical transformations in the presence
of mechanical stresses (Silberstein et al., 2013; Brighenti et al.,
2019). During activation, their polymer chains are reconfigured,
and a reverse process returns these chains to their initial state.

A transition between the two states occurs when a sufficient
amount of energy is imparted to the system, allowing the energy
barrier that separates the two states to be overcome (Brighenti
et al., 2019; Hänggi et al., 1990). Within this context, when LCEs
are exposed to a sufficiently intense source of thermal energy or
light, they lose their initial nematic order and assume a disordered
isotropic mesogen arrangement. We denote as DGni the energy bar-
rier that must be overcome for there to be a transition from a
nematic state to an isotropic state (the forward process). The
energy barrier for the reverse transition to occur is denoted as
DGin (the backward process). This isotropic to nematic phase tran-
sition occurs when the temperature is lowered below the LCE’s
material-dependent transition temperature TNI (Fig. 2).

The function s Tð Þ in Fig. 2.b represents how the order parameter
QðTÞ changes with temperature. It can be thought of as an activa-
tion function and lies within the interval 0 < s < 1. At a tempera-
ture close to the threshold temperature TNI , there is a transition
from the fully nematic (Q ¼ 1) to the fully isotropic (Q ¼ 0) state.
The sigmoid function (also called the logistic function) is a simple
and suitable expression for this type of activation function s Tð Þ.
Here, it is expressed by s Tð Þ ¼ QðTÞ ¼ Q0

1þexp
T�TNI

c

, where Q0 is the ini-

tial value of the nematic order and c is a material-specific constant
parameter, while TNI is the nematic-isotropic transition tempera-
ture. The time derivative of the order parameter is given by

_Q ¼ ds
dT

dT
dt ¼ � exp

T�TNI
c

Q0c
s2 _T . The corresponding time derivative of the

network distribution tensor is:

_ln ¼ @ln

@t
¼ 2

Nb2

3
_Q �WQ þ QW

� �
ð18Þ

being W ¼ 1=2 r _u�r _uT
� �

the spin tensor (Zhang et al., 2019).
This tensor is zero when the order parameter is constant in

time, such as when the temperature is constant ð _T ¼ 0) or when
the temperature is well below the TNI temperature.

Since we now have the time derivatives related to the deforma-
tion and to the nematic-isotropic transition (we assume these
Fig. 2. Schematic of the energy vs nematic order for a LCE (a). Transition from the ordere
the TNI (b). The two states, namely the nematic and the isotropic correspond to two pot
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derivatives are independent of each other), it is possible to deter-
mine the temporal evolution of the distribution tensor so that it
is fully known at any time instant s during the thermo-
mechanical process:

l tð Þ ¼ ln 0ð Þ þ
Zt
0

_lL sð Þ þ _ln sð Þ½ �ds ð19Þ

being l t ¼ 0ð Þ ¼ ln t ¼ 0ð Þ ¼ l0n the initial distribution tensor of the
material, while the total chain distribution tensor rate has been
expressed as _lL þ _ln, i.e. the evolution of the network chains is
due to both the mechanical deformation and the nematic change
induced, for instance, by a temperature variation of the material.

Now, the distribution tensor can be inserted into Eq. (6) to get
the stress state in the material,

r tð Þ ¼ 3cakBT

Nb2 lðtÞ � l0n

� �þ pðtÞ1 ð20Þ

Here, the hydrostatic pressure pðtÞ can be determined from the
boundary conditions of the problem.

3.2 Computational aspects

The problem formulated above can be conveniently rewritten in
its variational form through the stationary condition of the poten-
tial energy P. We consider a region of material occupying the
domain B0 bounded by @B0. The first variation of P in the refer-
ence configuration has the following form:

dP ¼
Z
B0

dWdV þ dWext

¼
Z
B0

dWe Fð ÞdV �
Z
B0

B � dudV �
Z
@B0

t � dudA ¼ 0; ð21Þ

where Wext is the energy of the external mechanical loads B and t,
which correspond to the prescribed body forces and the surface
tractions, respectively. The variation of the functional (21) with
respect to the displacement field u yields:

duP ¼
Z
B0

@W
@ru

drudV �
Z
B0

B � dudV �
Z
@B0

t � dudA

¼
Z
B0

r � P � B½ �dudV þ
Z
@B0

P � N � t½ � � dudA ¼ 0 ð22Þ

The variational statement can be discretized by introducing a
proper discretization of the displacement field and of its gradient,
i.e.:

up ¼
Xnn
i¼1

N½ �iu


i;r � up ¼ rX

Xnn
i¼1

N½ �iu


i ¼

Xnn
i¼1

B½ �iu


i ð23Þ
d state (Q ¼ 1) to the isotropic one (Q ¼ 0) when increasing the temperature above
ential wells of the free energy function.
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The subscript p refers to interpolated quantities that are
obtained by using the corresponding nodal values indicated with

u


i. In the discretization above, nn is the number of nodes, and N½ �i

and B½ �i denote the standard shape function and the compatibility
matrix associated with the i� th node, respectively. The dis-
cretized form of the energy stationarity is a force balance condi-
tion. For a single finite element having volume Ve

0 and outer
surface Ae

0, we have:

Rf geu ¼ Rf ge;intu � Rf ge;extu

¼
Z
Ve
0

B½ �TPdV �
Z
Ve
0

N½ �TBdV þ
Z
Ae
0

N½ �TtdA ¼ 0f g ð24Þ

This provides the condition of a vanishing residual force vector
Rf geu, defined as the difference between the nodal forces (corre-

sponding to the internal stress state, Rf ge;intu ), and the correspond-
ing nodal values of the external actions, Rf ge;extu . Upon
linearization of (24), the above-stated residual force vector must
be made to vanish by considering the whole problem domain dis-
cretized by ne finite elements. The solution is obtained by itera-
tively solving the following system of equations:

K½ �TDu ¼ �Ru; with K½ �T ¼ Ane
e¼1 K½ �eT ; ð25Þ

where Ke
T ¼ @Re

u
@u ¼ RVe

0
B½ �T @2W

@E2
B½ �dV is the standard tangent stiffness

matrix, E is the Green-Lagrange deformation tensor, andA indicates
the assembly operator.

For the sake of clarity, a brief description of the main steps of
the computational multi-scale analyses is reported hereafter. Ini-
tially, the material is assumed to be in the stress-free state and
the displacement field is zero everywhere. As the time goes by,
the temperature distribution is evaluated at the Gauss points of
the discretized domain by solving the standard Fourier heat con-
duction problem. The temperature increase is thus related to the
change of the nematic order of the material and therefore both
the distribution function un as well as the distribution tensor ln

evolve, providing all the information required to evaluate the
stress state of the material (see Eq. (20)).

By using the above described theoretical framework applied at
the finite element’s Gauss point level, the internal stress state of
the material, governed – in absence of any applied mechanical
deformation – only by the nematic-isotropic transition, leads to a
vector of element’s nodal forces corresponding to such a stress

state, Rf ge;intu . Such a nodal force vector, together with the external
forces nodal vector Rf ge;extu , provides the element’s unbalanced
residual force vector Rf geu (24), whose norm must be brought
throughout the iterative solution procedure to a value smaller than
a suitably small tolerance. The incremental nodal displacement
correction vector Du is determined at each iteration and used to
update the current nodal displacements vector of the discretized
problem. The staggered scheme for the solution of the thermal
and the mechanical problems can be conveniently adopted to solve
the coupled problem, provided that the time step is sufficiently
small, can be conveniently adopted to solve the coupled problem.
Both the problems are solved by accounting for the large displace-
ments taking place in the material. It is worth noticing that the
numerical assessment of the distribution tensor through the com-
putation of the integral hunr � ri over the 3D chain configuration
space requires a big computation effort. In fact, for each finite ele-
ment the computational cost is proportional to M3 � NGP where, at
a single Gauss point M ¼ Mx ¼ My ¼ Mz is the number of quadra-
ture points used for discretizing each direction of the 3D chain
space, and NGP is the total number of Gauss points within the finite
element.
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Thus, in order to calculate the current distribution tensor lnðtÞ
starting from its initial counterpart (assumed to be known),
l0n ¼ ln 0ð Þ, it is more convenient to use Eq. (19); this approach
requires evaluating the rates _lL and _ln, as illustrated above.. In
particular, if only the temperature change takes place in the mate-
rial, the knowledge of _ln suffices to evaluate lnðtÞ.

4. Experimental observations on 3D printed LCEs

Here, we briefly summarize the experimental results on 3D
printed LCEs from Kotikian et al. (2019) which serve to both test
and validate our model. In this prior study, reversible hinges were
made by 3D printing LCE bilayers with orthogonal director align-
ment using high operating-temperature direct ink writing (HOT-
DIW) connected to two rigid acrylate plates (see Fig. 4a). Each
LCE layer exhibits a large contraction along the printing direction
(parallel to the director alignment) and an expansion in orthogonal
direction, the resulting strain mismatch across the bilayer induces
a bending response when the hinge is heated above TNI. We com-
pare the predictions from our model to the experimentally
observed response.

Two oligomeric LCE inks with pre-cross-linking transition tem-
peratures (or ‘‘TNI”) of 24 �C and 94 �C (referred to as LTNI and HTNI

inks, respectively) were synthesized. These values were obtained
via differential scanning calorimetry (DSC) measurements, but
after the inks were cross-linked during the 3D printing process,
the transition between the fully nematic and fully isotropic states
occurred over a range of temperatures: LTNI specimens started
bending near 25 �C and become fully isotropic at 92 �C, while the
HTNI specimens start bending near 60 �C and become fully isotropic
at 127 �C. The difference in transition temperatures occurs due to
disparities in ink design, namely backbone flexibility and cross-
linking chemistry. Different bending angles are obtained upon
heating by programming the length, width and chemistry of the
LCE bilayers.

Data from standard tensile tests on LCE bilayers with perpen-
dicularly oriented mesogens (Fig. 3a1), as well as on the acrylate
material, are reported in Fig. 3b–d. These results are used to deter-
mine the main mechanical parameters needed for the statistical
model discussed previously, such as the chain concentration per
unit volume, which is related to the material’s shear modulus.

To characterize the behavior of these LCE hinges, each specimen
has been heated in an oil bath (see Fig. 4a) to switch the material
from the transversally isotropic (i.e., nematic) state to the isotropic
one. Bending angles were measured as a function of temperature,
by imaging the folding process with a camera. The results for spec-
imens that are 0.25 mm thick and have varying width are shown in
Fig. 4. We refer the reader to Kotikian et al. (2019) for more details
on specimen fabrication and characterization.

5. Numerical simulations and discussion

In order to test and validate our model, in this section we pre-
sent some numerical simulation results and compare them with
experimental measurements. In particular, we firstly investigate
a simple case of a monodomain nematic elastomer sample, while
in the second case we investigate the thermal variation-induced
bending response of soft actuators constituted by a bilayer hinge
of LCE, see Section 4.

5.1 Simulation of a temperature-driven monodomain LCE sample

The temperature change-induced deformation of a rectangular
sample strip made of polysiloxane monodomain nematic
elastomer (Clarke et al., 2001) is considered in this sub-section.



Fig. 3. Scheme of the specimen made of two acrylate plates joined with an LCE actuator (a1) and of the acrylate bar. Stress–strain testing results for a single layer made of low
LTNI LCE (b) and high HTNI LCE (c). Stress–strain testing results for the acrylate polymer constituting the two bats of the LCE device (d). Adapted from Kotikian et al. (2019).

Fig. 4. Schematic of the bending experiments (a). Experimentally measured rotation vs temperature for the specimens with different sizes of the LCE hinge part. LCE with
lowest actuation temperature LTNI (b), and highest actuation temperature HTNI (c). Adapted from Kotikian et al. (2019).
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The LCE element has an initial length L0, while the nematic director
in the undeformed state is oriented parallel to the (vertical) y-axis
(Fig. 5). We adopt here the Q � T relationship reported in
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Section 3.1; in order to investigate the effects of the material-
dependent parameter c, three different values for such a constant,
namely c ¼ 6;10;16, are adopted. In the experimental test the
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specimen is cooled down to about 30 �C from an initial tempera-
ture of about 120 �C, making the specimen expand in the y-
direction because of the isotropic-nematic transition (ky � 1). See
dotted lines in Fig. 5a,b (Clarke et al., 2001). On the other hand,
since the above-mentioned transition is fully reversible, we start
our FE simulations from an initial nematic state at nearly room
temperature T ¼ 30 �C with Q0 ¼ 0:46 and heat up the LCE ele-
ment above the nematic transition temperature TNI ¼ 86 �C
(Clarke et al., 2001). This induces the isotropization of the material
with a consequent contraction in the y-direction (ky � 1). The ini-
tial conditions of the experimental and of the numerical simulation
are indicated by the blue and red square in Fig. 5b, respectively. In
order for the results to be compared, for sake of comparison only
the absolute value of the stretch difference between different
states is meaningful.

Overall, the model results are in reasonable agreement with the
experimental ones, both in term of the nematic order (Fig. 5a) and
stretch evolution (Fig. 5b) with the temperature change. It can be
appreciated that lower values of the parameter c (e.g. c ¼ 6) lead
to a sharp nematic-isotropic transition, while to greater values of
c corresponds a more gradual one.

The deformed shapes of the LCE element are obtained from the
numerical simulations at two different temperatures and by adopt-
ing the three above-mentioned values of c are reported in Fig. 5c, d;
at T ¼ 60 �C (points A1;B1 and C1 in Fig. 5a) and at T ¼ 110 �C
(points A2;B2 and C2 in Fig. 5a), respectively. Interestingly, the ele-
ment with the lowest c is the least contracted at T ¼ 60

�
C < TNI ,

since Q changes only slightly up to this temperature; when a
higher temperature T ¼ 110 �C > TNI is considered, the contraction
is similar to those obtained by adopting the other values of c, so for
a sufficiently high temperature above the TNI , the deformation is
almost independent of c which plays a role only during the
transition.
Fig. 5. Comparison between experimental measurements (Clarke et al., 2001) and simul
Experimental and numerical ky � T curves (b). Experimental stretches are reported with
respect to the left-hand side one. Comparison of the undeformed (grey) and deformed (
T ¼ 60

�
C (A1;B1 , C1) (c) and at T ¼ 110

�
C (A2;B2, C2) (d). (For interpretation of the refere

article.)
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5.2 Numerical simulation of a 3D printed LCE elastomer element

In this section, we describe numerical simulations of the ther-
mally induced response of LCE elements discussed in Section 4.
Two LTNI hinges (one with h ¼ 0:25 mm and w ¼ 1 mm, the other
with h ¼ 0:50 mm and w ¼ 2 mm) and two HTNI hinges (one with
h ¼ 0:25 mm and w ¼ 1 mm, the other with h ¼ 0:25 mm and
w ¼ 2 mm) have been considered. Since we wish to capture a full
transition from a nematic to an isotropic state, we conduct our
simulations of LTNI specimens assuming a transition temperature
of TNI ¼ 50 �C. For the HTNI LCE, we assume TNI ¼ 95 �C. As dis-
cussed in Section 4, both of these temperatures lie about halfway
within the range of experimentally observed actuation and should
not be confused with the TNI values obtained via differential scan-
ning calorimetry (DSC) for pre-cross-linked LCE inks (Kotikian
et al., 2019). In our frame of reference (shown in Fig. 4a), the bot-
tom halves of the LCE elements are printed such that the mesogens
are aligned with the z-direction, while the upper halves are aligned
with the x-direction. By fitting to experimental tests results, the
coefficient c of the function s Tð Þ has been assumed to be equal to
c ¼ 10. The analyses are performed assuming a plane stress condi-
tion and fast heat transfer through the material because of the
small size of the specimens (see Fig. 3a). Though heating in the
angle measurement experiments were conducted in an oil bath
(Kotikian et al., 2019), we assume heating via a hot plate in contact
with the bottom face of the actuators in our simulations. Due to the
fast rate of heat transfer, the bending angles should be very similar
under either heating method. The temperature evolution within
the material is determined by solving the heat conduction problem
in the whole element, while adopting a thermal conductivity coef-
ficient equal to j ¼0.2 W/mK and a specific heat of C ¼1050 J/Kg K
(Anderson, 1966; Choy, 1977; Wen, 2007). The thermal expansion
of the material is assumed to be negligible within the temperature
ations of the Q � T dependence for different values of the material parameter c (a).
respect to the right-hand side vertical axis, while numerical ones are reported with
light blue) shapes of the element provided by the model for different values of c, at
nces to color in this figure legend, the reader is referred to the web version of this
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range considered. It is worth mentioning that the values of the
thermal conductivity and of the specific heat do influence the time
evolution of the temperature field within the material. Meanwhile,
the temperature distribution is nearly uniform and does not
depend on such a coefficient at steady state.

It is worth mentioning that the problem of finding the 3D shape
shown by nematic elastomer sheets undergoing spatially inhomo-
geneous deformations has been considered in several researches
(Modes et al., 2011; Aharoni et al., 2014; Mostajeran, 2015;
Plucinsky et al., 2016; Griniasty et al., 2019). As a matter of fact,
the variation of the spatial orientation of the local director field
can lead to a surface with a Gaussian curvature, i.e. a non-
developable surface; in this perspective, when the application of
nematic sheets as actuators is concerned, the inverse problem of
Fig. 6. Scheme of the nematic bilayer with the adopted reference frame of
reference. e1; e2; e3 are the unit vectors identifying of the coordinate axes x; y; z.

Fig. 7. Rotation angle vs temperature (measured at the bottom of the beam) for the LTNI

the FE, experimental (Kotikian et al., 2019) theoretical data obtained from the theory in
perpendicular to the nematic order director (b).

Fig. 8. Bending angle vs temperature for the LTNI LCE hinge with thickness h ¼ 0:25;0:5
theoretical model prediction (Agostiniani and DeSimone, 2017) (a). Engineering strain p
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finding the director field required to get a desired deformed shape,
represents a crucial task that has also been considered in the liter-
ature (Aharoni et al., 2014; Mostajeran, 2015; Griniasty et al.,
2019).

In the following, we compare our statistical mechanics
approach to a rigorous theoretical model that is suitable for
describing the bending of nematic plates (Agostiniani and
DeSimone, 2017). According to this approach, a region of the LCE
that has nematic order defined by the director n (i.e. the unit vector
representing the local order of the nematic mesogens) deforms
spontaneously when an isotropic-to-nematic transition occurs.
This deformation is quantified by the following right Cauchy-
Green deformation tensor (Agostiniani and DeSimone, 2017):

Ch ¼ FT
hFh ¼ a2=3h n� nþ a�1=3

h 1� n� nð Þ ð26Þ

where ah is a material-dependent parameter that varies with tem-
perature and it is fitted from the experimental data. It can also be
a function of the plate thickness h; however, in this study we
assume ah to be constant for each specimen. It is worth recalling
that the rigorous theoretical approach proposed in (Agostiniani
and DeSimone, 2017) has been derived for vanishingly small spon-
taneous shape change; however, the above-mentioned theoretical
model has been here considered for sake of providing an approxi-
mate comparison – in term of the order of magnitude of the
temperature-change-induced deformation and the corresponding
bilayer rotation – with our numerical results based on the microme-
chanical model presented in the previous sections.

In Eq. (26) n ¼ e3 in the lower layer while n ¼ e1 in the upper
one (Fig. 6). Once the right Cauchy-Green deformation tensor Ch
LCE hinge with thickness h ¼ 0:25 mm and width w ¼1 mm. Comparisons between
Agostiniani and DeSimone (2017) are reported (a). Engineering strain parallel and

0 mm and width w ¼ 1;2, respectively. FE analysis results are compared with the
arallel and perpendicular to the nematic order director (b).



Fig. 9. Profiles of the temperature (a), of the order parameter Q (b) and of the longitudinal strain ex (c) along the LTNI LCE hinge centerline vertical section (h ¼ 0:25 mm,
w ¼ 1 mm) provided by the present model. Different values of the dimensionless temperature Tb=TNI are considered, namely 0.75, 1.25 and 1.75.

Fig. 10. Temperature pattern (left column) within the LTNI LCE hinge at different dimensionless temperatures, Tb=TNI ¼ 0:75 (a1), Tb=TNI ¼ 1:25 (b1), Tb=TNI ¼ 1:75 (c1).
Corresponding order parameter patterns at the same dimensionless temperatures (right column). A temperature increase corresponds to a decrease of the order parameter
which induces the rotation angle h to raise.

Fig. 11. Rotation angle vs temperature (measured at the bottom surface of the LCE
element) for the HTNI LCE hinge with thickness h ¼0.25 mm and width w ¼1 and
2 mm. Comparison between the FE results, experimental (Kotikian et al., 2019) and
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is known, we can determine the deformation taking place in the
two layers of the element and evaluate the radius of curvature
and the arising rotation angle h (see Fig. 4a).

A temperature dependence similar to that adopted for the
nematic order QðTÞ (see Secttion 3.1) is adopted here for the term
ah, which is assumed to range between a minimum value of 1.001
(at room temperature) and a maximum one of 1.15 (above the TNI

temperature).
We compare the results from the statistical mechanics model

and the theoretical ones obtained from the plate model from
Agostiniani and DeSimone (2017) to the LTNI LCE experiments first.
The rotation vs LCE bottom temperature is displayed in Fig. 7a,
while the strain measured at the top point of the central vertical
cross section of the LCE element vs temperature is represented in
Fig. 7b. We note that in experiments, the absolute value of the
transverse deformation is smaller than of the longitudinal defor-
mation because the material is incompressible. This difference is
not captured as clearly in the numerical results due to the adoption
of a 2D plane stress model. The deformations parallel and perpen-
theoretical (Agostiniani and DeSimone, 2017) data are shown.
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Fig. 12. Profiles of the temperature (a), of the order parameter Q (b) and of the longitudinal strain ex (c) along the HTNI LCE hinge centerline vertical section (h ¼ 0:25 mm,
w ¼ 2 mm) provided by the present model. Different values of the dimensionless temperature Tb=Tni are considered, namely 0.40, 0.65 and 0.92.

Fig. 13. Temperature pattern (left column) within the HTNI LCE hinge at different dimensionless temperatures, Tb=TNI ¼ 0:40 (a1), Tb=TNI ¼ 0:65 (b1), Tb=TNI ¼ 0:92 (c1).
Corresponding order parameter patterns at the same dimensionless temperatures (right column). A temperature increase corresponds to a decrease of the order parameter
which induces the bending angle to increase.
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dicular to the nematic direction obtained numerically have been
reported for three points placed at different positions along the
vertical line: point A at g ¼ 2y0

=h ¼ 0:8, point B at g ¼ 0:55 and
point C at g ¼ 0:3.

The rotation angle as a function of temperature hðTÞ provided by
the model underestimates the rotation measured experimentally,
while it fits well with the theoretical model. We note that the ini-
tial angle h of the specimen at room temperature is negative due to
the residual stresses that arise during 3D printing. For sake of com-
parison, the numerical values of the rotation have been shifted so
that they start from the same initial value. The discrepancy
between simulations and experiments in this case may be due to
the presence of residual stresses in the as-fabricated materials,
which are not accounted for in the model. On the other hand, the
strains measured parallel to the initial mesogen alignment (x direc-
tion) and the one evaluated perpendicular to that direction (y) fol-
low reasonably the measured deformations (Fig. 7b) for a
monolayer LCE specimen.

The rotation angle as a function of temperature and the parallel
and normal strains for two different geometries of these LCE hinges
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are reported in Fig. 8a and b, respectively. There is little difference
between the folding angles obtained for each LCE geometry.

The distributions of temperature, nematic order, and strain ex
along the vertical centerline of a LTNI LCE element (h ¼0.25 mm
and w ¼1 mm), according to results from the FE implementation
of the model, are reported in Fig. 9 for three different values of
the bottom boundary temperature Tb (measured at y ¼0) to transi-
tion temperature TNI ratio. Increasing temperature causes the order
parameter to decrease. Consequently, the top layer of the LCE ele-
ment contracts in the x-direction and the bottom layer expands,
which induces bending.

Fig. 10 illustrates the contour map of the temperature T (left
column) and of the order parameter Q (right column) for an ele-
ment with h ¼0.5 mm, w ¼2 mm, and the same above-
mentioned Tb=TNI ratios. In the simulation, the nematic order
quickly reduces from its initial value, tending toward zero more
rapidly in the bottom part of the LCE directly exposed to the heat
source.

Fig. 11 shows the rotation computed by the proposed model as
a function of the LCE’s bottom boundary temperature for the HTNI
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case. The two analyzed geometries have h ¼0.25 mm, but differ in
having w ¼1 and 2 mm. Experimental results from Kotikian et al.
(2019) as well as theoretical results from Agostiniani and
DeSimone (2017) are also reported for comparison. There is very
good agreement for the widest LCE hinge while the rotation evalu-
ated by the model slightly underestimates the behavior of the nar-
rower sample at high temperatures.

Fig. 12 shows the distributions of the temperature, nematic
order, and strain ex along the vertical centerline of an HTNI LCE ele-
ment for three different values of the bottom boundary tempera-
ture (Tb) to transition temperature (TNI) ratio. Here, h ¼0.25 mm
and w ¼2 mm. As with the LTNI LCE, a temperature increase leads
to a decrease in the order parameter and causes bending, though
not as pronounced as in the case of the LTNI LCE.

Fig. 13 shows the contour map of the temperature T (left col-
umn) and of the order parameter Q (right column) for the element
with h ¼0.25 mm, w ¼2 mm and for some values of the Tb=TNI

ratios. Again, the nematic order quickly reduces from its initial
value of 0.3 to zero more rapidly in the bottom part of the LCE
directly exposed to the heat source, leading to an expansion in
the direction transversal to the initial nematic orientation.

Hence, we have shown that a statistical mechanics approach
can be effective in modeling the bending behavior of LCE bilayer
actuators. There is good correspondence between results from
the model with prior theoretical work (Agostiniani and
DeSimone, 2017) and with experiments, except in the case where
the residual stresses that arise from the LTNI LCE printing process
are significant (Kotikian et al., 2019).

6. Conclusions

In this paper, we presented a mechanical model of liquid crystal
elastomers (LCEs) that undergo changes in nematic order in
response to thermal stimulus. Starting from a statistical-based
micromechanical model that captures the evolution of the network
chain distribution tensor, we arrive at a mesoscale description of
the mechanical response of LCE under an external heat stimulus.
The parameters involved can be tuned easily, and they all have a
clear physical meaning. The microscale model allows us to describe
the response of LCE elements at the continuum scale (through
proper upscaling) and is suitable to be implemented in a generic
computational framework. We conducted several parametric anal-
yses and the results provided by the model were compared with
experimental and theoretical results from the literature. The
micromechanical approach is a promising tool for the analysis
and design of LCE actuators. A better understanding of the impact
on nematic arrangement and material properties (prescribed using
modern 3D printing technologies, for example) can lead to struc-
tures whose responses to environmental stimuli are precisely
tuned according to the application of interest.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The work was supported by the Army Research Office (ARO)
Grant W911NF-17-1-0147 (to C.D. and C.M.) and by a NASA Space
Technology Research Fellowship to C.M. The experimental work
was supported by the Harvard MRSEC (NSF DMR-2011754 to
J.A.L. and A.K.) and the ARO MURI Grant W911NF-17-1-0351
104
(J.A.L.). R.B. and M.P.C. gratefully acknowledge the support from
European Union’s Horizon 2020 research and innovation program
(H2020-WIDESPREAD-2018, SIRAMM), under grant agreement No
857124.
References

Agostiniani, V., DeSimone, A., 2017. Rigorous derivation of active plate models for
thin sheets of nematic elastomers 1081286517699991 Math. Mech. Solids.
https://doi.org/10.1177/1081286517699991.

Agostiniani, V., DeSimone, A., 2017. Dimension reduction viaC-convergence for soft
active materials. Meccanica 52 (14), 3457–3470. https://doi.org/10.1007/
s11012-017-0630-4.

Aguilar, M.R., Elvira, C., Gallardo, A., Vázquez, B., Román, J.S., 2007. Smart polymers
and their applications as biomaterials. Top. Tissue Eng. 3 (6).

Aharoni, H., Sharon, E., Kupferman, R., 2014. Geometry of thin nematic elastomer
sheets. Phys. Rev. Lett. 113, (25). https://doi.org/10.1103/
PhysRevLett.113.257801 257801.

Aharoni, H., Xia, Y., Zhang, X., Kamien, R.D., Yang, S., 2018. Universal inverse design
of surfaces with thin nematic elastomer sheets. Proc. Natl. Acad. Sci. 115 (28),
7206–7211. https://doi.org/10.1073/pnas.1804702115.

Ambulo, C.P., Burroughs, J.J., Boothby, J.M., Kim, H., Shankar, M.R., Ware, T.H., 2017.
Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater.
Interfaces 9 (42), 37332–37339. https://doi.org/10.1021/acsami.7b11851.

Anderson, D.R., 1966. Thermal conductivity of polymers. Chem. Rev. 66 (6), 677–
690. https://doi.org/10.1021/cr60244a004.

Biggins, J.S., Warner, M., Bhattacharya, K., 2009. Supersoft elasticity in polydomain
nematic elastomers. Phys. Rev. Lett. 103,. https://doi.org/10.1103/
PhysRevLett.103.037802 037802.

Biggins, J.S., Warner, M., Bhattacharya, K., 2012. Elasticity of polydomain liquid
crystal elastomers. J. Mech. Phys. Solids 60 (4), 573–590. https://doi.org/
10.1016/j.jmps.2012.01.008.

Bladon, P., Terentjev, E.M., Warner, M., 1993. Transitions and instabilities in liquid
crystal elastomers. Phys. Rev. E 47 (6), R3838. https://doi.org/10.1103/
PhysRevE.47.R3838.

Bladon, P., Terentjev, E.M., Warner, M., 1994. Deformation–induced orientational
transitions in liquid crystals elastomer. J. Phys. II 4 (1), 75–91. https://doi.org/
10.1051/jp2:1994100.

Brighenti, R., Artoni, F., Cosma, M.P., 2019. Mechanics of materials with embedded
unstable molecules. Int. J. Solids Struct. 162, 21–35. https://doi.org/10.1016/j.
ijsolstr.2018.11.022.

Cao, Z.Q., Wang, G.J., 2016. Multi-stimuli-responsive polymer materials: particles,
films, and bulk gels. Chem. Rec. 16 (3), 1398–1435. https://doi.org/10.1002/
tcr.201500281.

Choy, C.L., 1977. Thermal conductivity of polymers. Polymer 18 (10), 984–1004.
https://doi.org/10.1016/0032-3861(77)90002-7.

Cirak, F., Long, Q., Bhattacharya, K., Warner, M., 2014. Computational analysis of
liquid crystalline elastomer membranes: Changing Gaussian curvature without
stretch energy. Int. J. Solids Struct. 51 (1), 144–153. https://doi.org/10.1016/j.
ijsolstr.2013.09.019.

Clarke, S.M., Hotta, A., Tajbakhsh, A.R., Terentjev, E.M., 2001. Effect of crosslinker
geometry on equilibrium thermal and mechanical properties of nematic
elastomers. Phys. Rev. E 64, (6). https://doi.org/10.1103/PhysRevE.64.061702
061702.

Davidson, E.C., Kotikian, A., Li, S., Aizenberg, J., Lewis, J.A., 2020. 3D printable and
reconfigurable liquid crystal elastomers with light-induced shape memory via
dynamic bond exchange. Adv. Mater. 32, 1905682. https://doi.org/10.1002/
adma.201905682.

De Gennes, P.G., Prost, J., 1993. The Physics of Liquid Crystals. Oxford University
Press.

DeSimone, A., 2010. Nematic elastomers: modelling, analysis, and numerical
simulations. In: Poly-, Quasi-and Rank-One Convexity in Applied Mechanics.
Springer, Vienna, pp. 241–264.

Doi, M., 1996. Introduction to Polymer Physics. Oxford University Press.
Ennis, R., Malacarne, L.C., Palffy-Muhoray, P., Shelley, M., 2006. Nonlocal model for

nematic liquid-crystal elastomers. Phys. Rev. E 74, (6). https://doi.org/10.1103/
PhysRevE.74.061802 061802.

Ericksen, J.L., 1961. Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34.
https://doi.org/10.1122/1.548883.

Finkelmann, H., Greve, A., Warner, M., 2001. The elastic anisotropy of nematic
elastomers. Eur. Phys. J. E 5 (3), 281–293. https://doi.org/10.1007/
s101890170060.

Frank, E.C., 1958. On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28.
https://doi.org/10.1039/DF9582500019.

Fu, X., Hosta-Rigau, L., Chandrawati, R., Cui, J., 2018. Multi-stimuli-responsive
polymer particles, films, and hydrogels for drug delivery. Chem. 4, 2084–2107.
https://doi.org/10.1016/j.chempr.2018.07.002.

Fu, C., Xu, F., Huo, Y., 2018. Photo-controlled patterned wrinkling of liquid
crystalline polymer films on compliant substrates. Int. J. Solids Struct. 132,
264–277. https://doi.org/10.1016/j.ijsolstr.2017.10.018.

https://doi.org/10.1177/1081286517699991
https://doi.org/10.1007/s11012-017-0630-4
https://doi.org/10.1007/s11012-017-0630-4
http://refhub.elsevier.com/S0020-7683(21)00077-9/h0015
http://refhub.elsevier.com/S0020-7683(21)00077-9/h0015
https://doi.org/10.1103/PhysRevLett.113.257801
https://doi.org/10.1103/PhysRevLett.113.257801
https://doi.org/10.1073/pnas.1804702115
https://doi.org/10.1021/acsami.7b11851
https://doi.org/10.1021/cr60244a004
https://doi.org/10.1103/PhysRevLett.103.037802
https://doi.org/10.1103/PhysRevLett.103.037802
https://doi.org/10.1016/j.jmps.2012.01.008
https://doi.org/10.1016/j.jmps.2012.01.008
https://doi.org/10.1103/PhysRevE.47.R3838
https://doi.org/10.1103/PhysRevE.47.R3838
https://doi.org/10.1051/jp2:1994100
https://doi.org/10.1051/jp2:1994100
https://doi.org/10.1016/j.ijsolstr.2018.11.022
https://doi.org/10.1016/j.ijsolstr.2018.11.022
https://doi.org/10.1002/tcr.201500281
https://doi.org/10.1002/tcr.201500281
https://doi.org/10.1016/0032-3861(77)90002-7
https://doi.org/10.1016/j.ijsolstr.2013.09.019
https://doi.org/10.1016/j.ijsolstr.2013.09.019
https://doi.org/10.1103/PhysRevE.64.061702
https://doi.org/10.1002/adma.201905682
https://doi.org/10.1002/adma.201905682
http://refhub.elsevier.com/S0020-7683(21)00077-9/h0090
http://refhub.elsevier.com/S0020-7683(21)00077-9/h0090
http://refhub.elsevier.com/S0020-7683(21)00077-9/h0095
http://refhub.elsevier.com/S0020-7683(21)00077-9/h0095
http://refhub.elsevier.com/S0020-7683(21)00077-9/h0095
http://refhub.elsevier.com/S0020-7683(21)00077-9/h0100
https://doi.org/10.1103/PhysRevE.74.061802
https://doi.org/10.1103/PhysRevE.74.061802
https://doi.org/10.1122/1.548883
https://doi.org/10.1007/s101890170060
https://doi.org/10.1007/s101890170060
https://doi.org/10.1039/DF9582500019
https://doi.org/10.1016/j.chempr.2018.07.002
https://doi.org/10.1016/j.ijsolstr.2017.10.018


R. Brighenti, C.G. McMahan, M.P. Cosma et al. International Journal of Solids and Structures 219–220 (2021) 92–105
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