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Bifurcation-based acoustic switching
and rectification
N. Boechler†, G. Theocharis† and C. Daraio*
Switches and rectification devices are fundamental components
used for controlling the flow of energy in numerous applica-
tions. Thermal1–4 and acoustic5–8 rectifiers have been proposed
for use in biomedical ultrasound applications6,7, thermal
computers2,9, energy- saving and -harvesting materials5,6,
and direction-dependent insulating materials1–3. In all these
systems the transition between transmission states is smooth
with increasing signal amplitudes. This limits their effec-
tiveness as switching and logic devices, and reduces their
sensitivity to external conditions as sensors. Here we overcome
these limitations by demonstrating a new mechanism for
tunable rectification that uses bifurcations and chaos. This
mechanism has a sharp transition between states, which
can lead to phononic switching and sensing. We present
an experimental demonstration of this mechanism, applied
in a mechanical energy rectifier operating at variable sonic
frequencies. The rectifier is a granular crystal, composed of
a statically compressed one-dimensional array of particles
in contact, containing a light mass defect near a boundary.
As a result of the defect, vibrations at selected frequencies
cause bifurcations and a subsequent jump to quasiperiodic and
chaotic states with broadband frequency content. We use this
combination of frequency filtering and asymmetrically excited
bifurcations to obtain rectification ratios greater than 104. We
envisage this mechanism to enable the design of advanced
photonic, thermal and acoustic materials and devices.

Periodicity inmaterials has proven useful for the control of wave
propagation in electronic and photonic10, mechanical11, acoustic12
and optomechanical13 systems. The presence of nonlinearity in
periodic dynamical systems makes available an array of useful
phenomena (including localization, breathers, bifurcation and
chaos)14–19. Here we study how the interplay of periodicity,
nonlinearity, and asymmetry in granular crystals results in novel
types of switching and rectification devices.

Granular crystals are densely packed arrays of elastic particles
that interact nonlinearly through Hertzian contacts20,21. These
systems are tunable from near-linear to strongly nonlinear
dynamical regimes by changing the ratio of static to dynamic
interparticle displacements21,22. Granular crystals have allowed
the exploration of fundamental phenomena5,21–28, and have been
applied in engineering devices29,30. Here we study a granular crystal
that is a statically compressed one-dimensional array of N = 19
stainless steel spherical particles (Fig. 1a,b). The particles are of
measured radius R= 9.53mm and mass M = 28.84 g, except for a
single defect particle of radius r = 5.56mm and mass m= 5.73 g
placed at the second site from the left boundary. Longitudinal
dynamic displacements are applied using a piezoelectric actuator
and the crystal is compressed mechanically (see Methods). Two
configurations are studied: one with the actuator on the right
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Figure 1 | Schematics and conceptual diagrams. a,b, Schematics of the
granular crystal used in the experiments, composed of 19 stainless steel
spherical particles, a light mass defect and applied static load F0. Vertical
lines in the spheres indicate the sensor particles. c,d, Conceptual diagrams
of the rectification mechanism. fd is the defect frequency, fc is the acoustic
(pass) band cutoff frequency and fdr is the driving frequency. a,c, Reverse
configuration: driving far from the defect, the bandgap filters out vibrations
at frequencies in the gap. b,d, Forward configuration: driving near the
defect, nonlinear modes are generated that transmit through the system.

(‘reverse configuration’, Fig. 1a), and the other with the actuator
on the left (‘forward configuration’, Fig. 1b). The dynamic force–
time history of the propagating waves is measured with in situ
piezoelectric sensors5. In both configurations, one sensor is placed
four sites away from the actuator and the other is placed at the
other end. See Supplementary Information for more details on the
experimental configuration.

A statically compressed homogeneous granular crystal acts as a
low-pass frequency filter24–26. When the particles are identical, the
crystal supports one band of propagating frequencies, called the
acoustic band, extending from frequency f = 0 to the upper cutoff
frequency fc. Vibrations with frequencies f > fc lie in a bandgap
and cannot propagate through the crystal11. The presence of a
light mass defect breaks the periodicity of the crystal and induces
an exponentially localized mode with frequency fd > fc (refs 27,
28). Frequencies fc and fd depend on the geometric and material
properties of the system and are proportionally tunable by the static
load (see Methods and Supplementary Information; refs 24–28).
The experimental characterization of the linear spectra can be seen
in Supplementary Fig. S1.

A schematic of our rectifier concept is shown in Fig. 1c,d. We
drive one end of the crystal harmonically. We fix the frequency
of the driver fdr at a frequency in the gap, below fd, and
increase the driving amplitude δ. As a result of the bandgap, in
the reverse direction, the energy provided by the actuator does
not propagate through the crystal. In the forward configuration,
for low driving amplitudes, the actuator excites a periodic (at

NATURE MATERIALS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials 1
© 2011 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nmat3072
mailto:daraio@caltech.edu
http://www.nature.com/naturematerials


LETTERS NATURE MATERIALS DOI: 10.1038/NMAT3072

0 0.2 0.4 0.6 0.8

0.1 0.2

0.56

0.58

2

1

3 4

m
ax

(F
d)

 (
N

)

m
ax

(F
d) 

(N
)

0

0.5

1

1.5

Actuator displacement (µm)

Actuator displacement (µm)

Figure 2 | Bifurcation and stability. Maximum dynamic force at the fourth
particle from the actuator in the forward configuration as a function of
driving amplitude δ (the actuator displacement). Red square markers are
experimental data corresponding to the (fdr= 10.5 kHz, F0=8 N)
configuration shown in Figs 1b and 3. Error bars are based on the range of
actuator calibration values. The solid blue (dashed black) line corresponds
to the numerically calculated stable (unstable) periodic branches. The
dotted black line corresponds to the numerically calculated quasiperiodic
branch. Green arrows denote the path (and jump) followed with increasing
driving amplitude. The circled numbers correspond to bifurcation points.
The inset shows the region around points 2 and 3 in greater detail.

frequency fdr) vibrational mode localized around the defect. In this
case, the energy does not propagate through the crystal. As the
amplitude of the driver is increased, the system jumps from this
low-amplitude stable periodic solution to a high-amplitude stable
two-frequency quasiperiodic mode: one frequency being fdr and
the other being fN . In our nonlinear system, this results in the

distribution of energy to frequencies that are linear combinations
of these two frequencies, including energy at low frequencies within
the propagating band. A further increase of the driving amplitude
induces chaotic vibrations, where the energy is redistributed along
broad frequency bands surrounding the peaks of the quasiperiodic
state. In both quasiperiodic and chaotic states the energy at low
frequencies is transmitted.

To understand the transition between states occurring in the
forward configuration of our system, we conduct parametric
continuation using the Newton–Raphson (NR) method in phase
space26 and numerical integration of equation (1) (seeMethods and
Supplementary Information). To account for the dissipation in our
system, we use linear damping (a damping coefficient τ = 1.75ms
is selected to match experimental results). The actuator boundary
is modelled as a moving wall, and the opposite boundary as a
free boundary with an applied force. Applying the NR method,
we follow the periodic family of solutions as a function of driving
amplitude δ and study its linear stability. Figure 2 shows the
maximum dynamic force amplitude (four particles away from the
actuator) for each solution as a function of the driving amplitude
for the granular crystal of Fig. 1 (with F0 = 8N, fdr = 10.5 kHz,
1f = fd− fdr≈ 500Hz, fc= 6.9 kHz). The stable (unstable) periodic
solutions are denoted by solid blue (dashed black) lines. At
turning points 1 and 2, stable and unstable periodic solutions
collide and mutually annihilate (saddle-centre bifurcation14). At
points 3 and 4, the periodic solution changes stability and a new
two-frequency stable quasiperiodic state emerges. As a result of
the demonstrated bifurcation picture, we predict, with increasing
amplitude, a progression of the system response following the low-
amplitude stable periodic solution up to point 1, where the system
jumps past the unstable periodic solution to the high-amplitude
stable quasiperiodic state.
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Figure 3 | Experimental force–time response and power spectra. a–f, Forward configuration. g,h, Reverse configuration. a,c,e,g, Experimentally measured
force–time history for the sensor four particles away from the actuator (fdr= 10.5 kHz, varying amplitude δ in the forward configuration). The blue is the
time region used to calculate the PSDs. b,d,f,h, PSD of the measured force–time history for the sensors four (blue) and 19 particles away from the actuator
(red). The vertical black solid line is the upper acoustic band cutoff frequency fc, the black dashed line the defect mode frequency fd, and the green line the
driving frequency fdr.
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Figure 4 | Power transmission and energy distribution. a,b, Experimental
(a) and numerical (b) average transmitted power as a function of driving
amplitude δ (actuator displacement). The black curve corresponds to
F0=8 N (fdr= 10.5 kHz) and the red (light grey) curve to F0= 13.9 N
(fdr= 11.4 kHz). Positive/negative displacements denote forward/reverse
configurations, respectively. The horizontal black dashed line in b is the
experimental noise floor. c,d, Numerical time-averaged energy density as a
function of position for the reverse (c) and forward (d) configurations. Each
curve corresponds to the configuration/amplitude of the same marker type
as in b.

To demonstrate this jump, we harmonically drive the granular
crystal of Fig. 1 at frequency fdr = 10.5 kHz (with 1f = fd −
fdr ≈ 500Hz, fc = 6.9 kHz, F0 = 8N). The driving amplitude is
set to δ for 90ms, except for the first and last 20ms where the
driving amplitude is linearly increased and decreased, respectively.
The linear ramp allows us to follow the low-amplitude stable
periodic state (see Fig. 2). The maximum dynamic force measured
by the sensors is plotted as the red square markers in Fig. 2.
Figure 3 demonstrates each of the states. The dynamic force
Fd experimentally measured by the sensor four particles away
from the actuator is shown in the left panels. The subscript of
the driving amplitude δ denotes the direction, where (+) and
(−) are the forward and reverse configurations, respectively. The
power spectral densities (PSDs) of the highlighted time region are
calculated for both sensors (right panels of Fig. 3). Each curve
corresponds to the sensor of the same colour and configuration as
in Fig. 1a,b. In the forward configuration, at low driving amplitude
(δ(+) = 0.43 µm, Fig. 3a,b), a periodic response is observed, with
no energy propagating above the noise floor. At higher driving
amplitudes (δ(+) = 0.60 µm, Fig. 3c,d), a quasiperiodic response is
observed, with the generation of a second frequency fN =10.13 kHz
and linear combinations of fN and fd. The combinations within
the passband are transmitted. Increasing the amplitude further
(δ(+) = 0.85 µm, Fig. 3e,f), a chaotic response is seen, where the
area between the frequencies in Fig. 3d is filled in. By reversing
the crystal, even at high amplitudes (δ(−) = 0.85 µm, Fig. 3g,h) no
transmission is observed, which illustrates the rectification effect. In
numerical simulationswe observe a similar behaviourwithin a band
of driving frequencies below fd. For the configuration of Figs 1 and
2 the band of frequencies is approximately 800Hzwide.

To demonstrate the rectifier tunability with static load, we
measure the average transmitted signal power Pexp (area under the
PSD curves from0 to 20 kHz) as a function of actuator displacement
(Fig. 4a) for two different static loads (and driving frequencies).
The black curve corresponds to the configurations in Figs 2 and 3,
and the red curve is for a static load of F0= 13.9N (fdr= 11.4 kHz,
1f ≈ 550Hz). For these two configurations the power transmitted
is at maximum ∼1.7% of the input power. Changing the static

load causes fd to change (see Methods), which allows the rectifier
to operate within a wide range of driving frequencies. In both cases
an asymmetric (with respect to directional configuration) energy
transmission is observed, with a sharp transition between periodic
and quasiperiodic/chaotic states.

Numerical integration of equation (1) shows the same qualita-
tive response as in the experiments (see Fig. 4b and Supplementary
Figs S2 and S3). In Fig. 4bwe plot the numerically calculated average
transmitted powerPnum for the same configurations (corresponding
to the same colours) as in Fig. 4a. Below the experimental noise
floor, in the reverse configuration, the increasing transmission cor-
responds to fs = fdr/2 subharmonic generation. This phenomenon
is generally present at high amplitudes in nonlinear systems and
will result in transmission at sufficiently high driving amplitudes
in the reverse configuration (although it could be avoided by using
a sufficiently small defect with subharmonic frequency in the gap).
To calculate the energy rectification ratio, we plot the time-averaged
energy density (per particle site) as a function of particle number,
for the reverse (Eavg,(−), Fig. 4c) and forward (Eavg,(+), Fig. 4d) con-
figurations. Each curve in Fig. 4c,d corresponds to the numerical
run in Fig. 4b of the same marker type. As shown by the square
markers in Fig. 4c and d, for high amplitudes, the system decays
exponentially down to the level of the propagating mode. In both
directions (Fig. 4c,d), at low driving amplitude, the system decays
exponentially down to the numerical noise floor. In this case, the
maximum rectification ratio σ = Eavg(+)/Eavg(−) for the particle fur-
thest from the actuator is σ ≈ 104, whereas, because of dissipation
and conversion efficiency, the transmitted time-averaged energy
density of the last particle is ∼0.35% of the first particle. We also
show in Supplementary Fig. S4 how such rectifiers can be config-
ured as AND andOR logic gates, and how the design could be scaled
to operate at ultrasonic frequencies for biomedical applications.

By operating close to the bifurcation point, small perturbations
can cause the system’s response to switch from the low-amplitude
non-transmitting state to the high-amplitude transmitting state,
making it useful for sensing applications. The demonstrated
frequency downshifting could also be useful in energy harvesting
technologies with frequency-dependent absorptivity and emissivity.
The flexibility of the system is enhanced because the operational
frequencies are tunable by variation of the static load and by
the geometric and material properties. This proposed method of
tunable bifurcation-based mechanical rectification offers new ways
to control the flow of energy.

Methods
Experimental setup. The stainless steel particles (316 type, with elastic modulus
E = 193GPa and Poisson’s ratio ν = 0.3; ref. 26) are positioned on two aligned
polycarbonate rods. The defect particle is aligned with the axis of the crystal using
a polycarbonate ring. We mount the piezoelectric actuator on a steel cube and
place a soft spring (KS = 1.24 kNm−2) at the other end. The spring and crystal are
compressed by positioning a second steel cube with respect to the first. The static
load is measured by a load cell placed between the spring and the steel cube. The
displacement of the actuator and embedded strain gauge are calibrated optically.
We use sensors consisting of piezoelectric disks embedded between two halves of a
spherical particle, constructed so as to preserve the bulk material properties of the
sphere5. The output of our sensors is conditioned by voltage amplifiers and analog
30 kHz, eighth-order Butterworth low-pass filters. The conditioned sensor output
is digitally filtered by means of 300Hz, fifth-order Butterworth high-pass filters to
remove 60Hz electrical noise.

Model. Wemodel our system as a chain of nonlinear oscillators21:

mnün=An[1n+un−1−un]
3/2
+ −An+1[1n+1+un−un+1]

3/2
+ −

mn

τ
u̇n (1)

where [Y ]+ denotes the positive part of Y ,un is the displacement of the
nth sphere around the static equilibrium, mn is the mass of the nth
particle, and 1n = (F0/An)2/3 is the static overlap. The contact coefficients
An= (2E/3(1−ν2))(Rn−1Rn/(Rn−1+Rn))1/2 are defined by the Hertz law potential
between adjacent spheres, whereRn is the radius of the nth particle20,21.
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We linearize the conservative (τ =∞) equation (1) about the
crystal’s equilibrium state24. The homogenous crystal contains one band of
propagating frequencies extending from f = 0 to fc = 1/2π

√
4KRR/M , where

KRR = (3/2)ARR
2/3F01/3 and ARR is the contact coefficient between two large

particles. We calculate the frequency of the defect mode28 by considering a reduced
three-particle eigensystem, where

fd=
1
2π

√
2KRrM+KRRm+KRrm+

√
−8KRrKRRmM+ (2KRrM+[KRR+KRr ]m)2

2mM

and KRr = (3/2)ARr
2/3F01/3, where ARr is the contact coefficient between a large

particle and the defect particle.
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