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Abstract We study the wave propagation in a curved chain of spherical particles constrained by elastic guides
under the axial impact of a falling mass. We characterize the force transmission properties of the chain by
varying the striker’s mass and the chain’s curvature. Experimental tests demonstrate amplitude-dependent
attenuation of compressive waves propagating through the curved chain. In particular, we observe that the
curved systems present an improved transmission of small dynamic disturbances relative to that of strong
excitations, resulting from the close interplay between the granular particles and the softer elastic medium. We
also find that the transmission of the compressive waves through the chains is dependent on the initial curvature
imposed to the system. Numerical simulations, based on an approach that combines discrete element and finite
element methods, corroborate the experimental results. The findings suggest that hybrid structures composed
of granular particles and linear elastic media can be employed as new passive acoustic filtering materials that
selectively transmit or mitigate excitations in a desired range of pressure amplitudes.

1 Introduction

Chains of granular particles in elastic contact with each other (also defined as one-dimensional granular crys-
tals) have been broadly studied to control compressive excitations [1–9]. Given external loads, such as impulse
and harmonic excitations, these systems can be tuned to respond in different acoustic regimes, ranging from
linear, weakly nonlinear, to highly nonlinear states [1]. It has been shown that the alteration of the dynamic
regime can be easily made by manipulating precompression initially applied to the granular crystals [1,3].
Under strong precompression, these closely packed granular crystals exhibit acoustic band gaps with distinc-
tive pass and forbidden frequency bands, resulting from linear dispersion [4,10]. In the case of zero or very
weak precompression, one of the most studied characteristics of granular crystals is the ability to support the
formation and propagation of highly nonlinear acoustic waves in the form of solitary waves [1,5]. These solitary
waves are essentially energy pulses, mostly confined within the wave length of about five particle diameters in
case of monodispersed chains, that derive from a balance between dispersive and nonlinear effects [1]. They
are characterized by unique physical properties, such as robustness, amplitude-dependent wave propagation
speed, and high energy intensity [1,11,12].
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Solitary waves propagating in granular crystals have been proposed for several engineering applications,
such as nonlinear lenses for acoustic imaging [12], sound scramblers [6], and actuators and sensors for non-
destructive evaluations [13,14]. In particular, previous studies have suggested that nonlinear granular crystals
can act as effective media for shock/impact mitigation, owing to their ability to trap [7,15], localize [16,17],
redirect [18,19], and redistribute energy [20]. These capabilities are based on the complex dynamic behavior of
granular chains composed of particles of different materials and geometry. The presence of dissipation, evident
in experimental studies of granular crystals, provides the additional means for mitigating external impacts.
Several reports have recently provided different theoretical models to capture the force decay observed in
experiments [21–23].

In this manuscript, we study the dynamic response of a curved chain of spherical particles constrained
by structurally deformable elastic guides. We excite compressive waves in this system with axial impacts of
different falling masses. We vary the chain’s initial curvature imposed by the elastic guides to study the atten-
uation effects related to the structural arrangements of granules and their interaction with the elastic guides.
This combined system of granular particles and linear support media allows studying the effects of structural
bending of the elastic supports on the propagation of nonlinear waves in the granular chains. We find that the
transmission of the compressive waves through the chains is dependent on the initial curvature imposed to
the system. More notably, we show that the curved systems flex dynamically in response to an impact and
present an improved transmission of small dynamic disturbances relative to that of strong excitations. This
effectively results in an amplitude-dependent filtering of acoustic excitations. Such an amplitude-dependent
response is an interesting characteristic of this hybrid system, resulting from the close interplay between the
granular crystal and the linear elastic guides.

To study the wave propagation in this coupled system of nonlinear and linear media, we perform experi-
ments using a high-speed camera and a force sensor and verify the measurements with a numerical model that
combines discrete element (DE) and finite element (FE) methods. In previous studies, the DE model with the
Hertzian contact among particles has been widely used to simulate the formation and propagation of solitary
waves in one-dimensional granular crystals [1–3,5,7,10,11]. For two- or three-dimensional granular crystals
with oblique interaction between particles, we need a full-fledged DE method to accommodate both axial and
tangential interactions between particles. In this study, we introduce a DE model based on the Hertzian–Mindlin
contact law to describe the dynamics of granular particles in a curved chain under external impact [24,25].
We formulate the normal and tangential contact forces with dissipative terms using the Lagrangian approach
described in the Cundall [26] and Tsuji models [27]. We also apply this DE model with some modifications
to account for the contact force between the particles and the elastic guides. Using the combined DE and FE
model, we verify the amplitude-dependent behavior of the coupled “nonlinear” granular and the “linear” elastic
media. We find that the numerical results based on the combined model corroborate the experimental results.
The findings of this work suggest the use of hybrid linear-nonlinear systems in engineering applications, such
as tunable protective materials that selectively allow or forbid the transmission of external impacts, and novel
acoustic devices for filtering and redirecting waves and mitigating vibrations.

2 Experimental setup

We assemble a vertical one-dimensional (1D) granular crystal composed of 21 spherical particles in a holder
consisting of four polytetrafluoroethylene (PTFE) tubes. The particles are made from stainless steel (type
440C, McMaster-Carr), with a radius R = 9.53 mm, mass m = 28.2 g, elastic modulus E = 200 GPa, and
Poisson’s ratio v = 0.28. The supporting tubes have a radius RG = 6.35 mm, density ρG = 4,302 kg/m3,
elastic modulus EG = 0.46 GPa, and Poisson’s ratio vG = 0.46. The tubes are held in place by two steel plates
located at the top and bottom of the chain (Fig. 1). The choice of a soft material (PTFE) for the supporting
tubes allows bending the chain to a desired initial curvature and to flex dynamically upon impact. In addition,
PTFE ensures a low-friction coefficient between the particles and the tubes. An initial curvature is imposed
on the PTFE guides by controlling the position of the top and bottom steel plates. A custom-made linkage
structure provides the top support with translational and rotational degrees of freedom, allowing the system to
dynamically bend under impact. The curvature of the bent chain is represented by an offset � measured from
the centerline of the assembled structure (see Fig. 1a). We test three differently curved chains (� = 11.4, 24.1,
and 40.5 mm) and a straight chain as a reference configuration. In the case of a straight chain, the guiding rails
are made of stainless steel to firmly restrict the lateral motions of the granular particles (Fig. 1b).

We apply various impacts to the granular chain using 13 different strikers made of stainless steel cylinders.
The length L of the cylinders varies from 6.35 to 304.8 mm, while their diameters are kept constant at 19.1 mm.
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Fig. 1 Experimental setup. a Curved configuration of a granular chain composed of 21 stainless steel beads (R = 9.53 mm)
constrained by 4 PTFE tubes. The initial curvature of the bent chain is represented by an offset � from the centerline (dashed
line). b Straight configuration of identical beads confined by 4 stainless steel rods. The height of the straight chain is 0.40 m

These sizes correspond to a range of striker masses M from 14.1 to 678 g, which are 0.5–24 times the mass of
an individual bead. The striker impact is designed to directly contact only the top bead of the granular chain,
without touching the guiding rails. For an accurate control of the impact velocity, the striker is released from a
1-cm drop height using a DC-powered solenoid [28]. We limit the drop height to 1 cm to exclude the possible
onset of plasticity at or around the contact region [25]. The force transmission through the granular chain is
measured by a commercial force sensor (PCB Piezotronics 208C04) located at the bottom of the chain, which
is mounted on a massive block that simulates a rigid wall. The impact cap of the sensor is made of hardened
17-4 PH (H900) stainless steel, which we assume to have identical density, elastic modulus, and Poisson’s
ratio to those of the chain composing beads. The sensor is connected to a data acquisition board (National
Instrument PCI-6115) to collect force-time history of transmitted waves. To capture the dynamic bending of
the guiding rods, a high-speed camera (Vision Research Phantom V12) is used at a sampling frequency of
20 kHz and with 0.066 mm/pixel resolution. We perform digital image processing on the acquired snapshot
images to enlarge the effective resolution of the area of interest [29].

3 Numerical approach

In previous studies, one-dimensional (1D) granular crystals have been successfully modeled as chains of
point-masses connected by nonlinear springs based on Hertzian contact interaction [1–3,5,7,10,11]. In such
discrete element models (DE), the particles are considered as rigid bodies and dissipative losses are neglected.
It was shown that the dynamics of short granular chains could be well represented without the need of fitting
parameters [3,5–7]. In this study, we extend this 1D model to a full-fledged DE model, which accounts for
both normal and tangential contact forces with dissipative terms, to capture the oblique interactions between
particles in curved granular chains. The dynamic behavior of the linear elastic guides is simulated using the
finite element (FE) model, by discretizing the elastic guides into Bernoulli–Euler beam elements [30,31].

3.1 Particle dynamics in the curved granular crystal

We first describe the equations of particles’ motion in the DE model using Newtonian mechanics, following
the motion of individual particles [1,27]. The schematic diagram of the granular particles confined by elastic
guides is illustrated in Fig. 2. In this closely packed granular chain, the increment of normal approach between
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Fig. 2 Schematic diagram of granular particles confined by linear elastic guides. Inset shows a free body diagram of the i th
particle under the normal and tangential forces exerted by neighboring beads and contacting guides. Here dotted arrows represent
location vectors of contact points, while solid arrows denote force vectors

the neighboring i th and j th particles can be written as

δn,i j = [|si − s j | − (Ri + R j )
]
+ . (1)

Here, si is the location vector of the i th particle’s center with respect to the origin, which is the contact point
between the cylindrical striker and the rigid wall (see Fig. 2). We represent the striker with index i = 0,
and the total number of beads composing the granular crystal N is 21 in this study. The bracket [x]+ takes
only positive values and returns 0 if x < 0. This means that we consider only compressive interactions of
neighboring particles, since there exists no tensile strength between granules.

The approaching velocity between particles at the contact point can be expressed by superposing transla-
tional and rotational velocity components:

δ̇i j = ṡi − ṡ j − (Riωi + R jω j ) × n̂i j , n̂i j = si − s j

|si − s j | , (2)

where (·) denotes a time derivative, ωi is angular velocity of the i th particle, and n̂i j is the unit normal vector
from the center of the i th particle to that of the j th particle (see the inset of Fig. 2). In Eqs. (1) and (2), Ri = 0
and |ωi | = 0, when i th particle is replaced by the cylindrical striker or the wall (i.e., flat-headed sensor in this
study). Accordingly, the normal and tangential speeds at the contact point are given by:

δ̇n,i j = δ̇i j · n̂i j = (ṡi − ṡ j ) · n̂i j , δ̇t,i j = δ̇i j · t̂i j , (3)

where t̂i j is the unit tangential vector in the clock-wise direction at the contact point
(
t̂i j⊥n̂i j

)
, and the sub-

scripts n and t denote the normal and tangential components. Based on the tangential velocity at the contact
point, the tangential displacement δt,i j can be calculated by

δt,i j =
∫

δ̇i j · t̂i j dt. (4)
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Given these displacement and velocity components at the contact point, we can derive the normal and
tangential contact forces between neighboring particles using the Hertz–Mindlin contact law [24,25]. We
begin with calculating the normal contact forces. Based on the damped Hertzian contact relationship [27], the
nonlinear interaction between adjacent particles can be expressed:

Fn,i j = −
(

Ai jδ
3/2
n,i j + γn,i j δ̇n,i j

)
n̂i j , (5)

where Fn,i j denotes a compressive force between the i th and j th elements, which is composed of the nonlinear
Hertzian force with the coefficient Ai j and the normal dissipative force with damping coefficient γn,i j . The
Hertzian coefficient Ai j is dictated by the Young’s modulus (E), Poisson’s ratio (v), and the radius (R) of the
two neighboring materials as given by

Ai j = 4
3 R1/2

i j Ei j ,

Ri j = Ri R j
Ri +R j

, Ei j =
(

1−v2
i

Ei
+ 1−v2

j
E j

)−1

.
(6)

As for the normal damping, Tsuji et al. derived the damping coefficient γn,i j based on the restitutional
properties of particles:

γn,i j = αn(mi j Ai j )
1/2δ

1/4
n,i j . (7)

Here, mi j is the effective mass between the contacting particles (i.e, mi j = mi m j/(mi + m j )), and αn is the
empirical constant determined by the coefficient of restitution (e), which is defined as the ratio of rebounding
particle velocity to the incident one under the collision of particles. The coefficient of restitution for stain-
less steel spheres is reported in the range of 0.97 ∼ 0.99 [32,33]. Thus, we select αn = 0.01 in this study,
which corresponds to the restitution coefficient e ≥ 0.95 according to the relation between αn and e in [27].
In Eq. (7), it is notable that the damping force is proportional to δ

1/4
n,i j , implying that the more energy is dis-

sipated under the larger axial displacement between particles. This also guarantees zero energy dissipation
among the particles when they lose contact.

To accommodate the tangential traction when the particles are interacting obliquely, we use a linear damped
spring model with a friction element [24,25]. In this model, the tangential force is represented by an incremental
spring that stores energy from the relative tangential motion, resulted from the elastic tangential deformation
of the particle surface. We also add the fictional force component proportional to the tangential velocity in
order to include dissipative effects. Mathematically, the tangential force can be expressed as

Ft,i j = − (
Ki jδt,i j + γt,i j δ̇t,i j

)
t̂i j , (8)

where Ki j and γt,i j are the tangential stiffness and damping coefficients. If no-slip occurs at the contact
interface, Ki j can be analytically derived based on the Mindlin contact law [24,27]:

Ki j = 8R1/2
i j Gi jδ

1/2
n,i j ,

Gi j =
(

2 − vi

Gi
+ 2 − v j

G j

)−1

,
(9)

where Gi is the shear modulus of the i th particle, which can be obtained by Gi = Ei/2(1 + vi ) for isotropic
materials. In Eq. (9), we find that the tangential stiffness is proportional to the square root of the axial displace-
ment δn,i j . This implies that the tangential force is dependent on the normal contact force, while the normal
contact force is independent of the tangential force (see Eq. (5)). The Eq. (9) is derived under the assumption of
“no-slip” condition at the contact interface. In reality, the contact surface starts to slip after a certain threshold
of the tangential force. Thus, we limit the maximum tangential force of the linear spring component by the
Coulomb frictional limit:

max(Ki jδt,i j ) = μ|Fn,i j |, (10)

where μ is the static friction coefficient. This means that above the Coulomb frictional limit, the particles start
to slide irrespective of the tangential displacement δt,i j . In this study, we use μ = 0.099 for the static friction
at the stainless steel /stainless steel interface [34].
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For the tangential damping, we introduce a mathematical formula similar to the normal damping coefficient
in Eq. (7) [27]. The tangential damping coefficient can be expressed as follows:

γt,i j = αt (mi j Ai j )
1/2δ

1/4
n,i j = αt

αn
γn,i j , (11)

where αt is the empirical constant for tangential damping, determined by the degree of frictional loss during
the tangential interaction between particles. Due to the difficulty in relating αt to any measurable physical
quantities, Tsuji et al. assumed αt = αn . In this study, we select αt = 10αn to match the experimental results,
specifically the shape of the solitary waves propagating in the curved chain (� = 40.5 mm) under the largest
mass impact (m = 679 g).

3.2 Interaction between the granules and the elastic guides

The lateral supporting forces exerted on a sphere by the right- and left-hand linear guides are regulated by the
modified Hertzian law for “sphere–cylinder” contact [35]. For the sake of brevity, the three-dimensional inter-
play of the guiding rails and the granular chain is simplified to two-dimensional representation. The relative
normal displacements between the i th particle and the right-hand and left-hand guides are

δ
right
n,i = [|si − ri | − Ri ]+,

δleft
n,i = [|si − li | − Ri ]+,

(12)

where ri and li are the location vectors to the sphere’s contact points with the right-hand and left-hand guides
(Fig. 2).

We can calculate the normal and tangential forces between the particles and the elastic guides by employing
the same approach used to derive the contact forces between the spherical particles in the chain. However, we
need to modify the stiffness and damping coefficients corresponding to the “sphere–cylinder” contact instead
of “sphere–sphere” configuration. Thus, we replace the Hertzian contact coefficient Ai j in “sphere–sphere”
contact (see Eq. (6)) with a new coefficient Bi , which represents the contact between the i th sphere and the
adjoined cylindrical guide. According to the expanded Hertzian contact law under “sphere–cylinder” contact
[35], the modified Hertzian coefficient Bi can be given by:

Bi = 4

3
(λRi )

1/2 E ′,

E ′ =
(

1 − v2
i

Ei
+ 1 − v2

G

EG

)−1

,

(13)

where subscript G denotes the material properties of the guiding tubes. Comparing Eqs. (6) and (13), the
modified Hertzian coefficient Bi is similar to the regular Hertzian coefficient Ai j , except that λ is included in
the equation. The coefficient λ represents an elliptical contact area formed by the “sphere–cylinder” contact,
which is a function of the radii of the spherical and the cylindrical members. Based on the elliptical integral
table in [35], we obtain λ = 0.656 given the dimensions of the spheres and the elastic guides (Ri = 9.53 mm
and RG = 6.35 mm) as described in Sect. 2.

According to the Hertz–Mindlin contact law, the tangential contact force is affected by the normal contact
force, as briefly mentioned in the previous section. Thus, to account for the “sphere–cylinder” contact between
the granules and the elastic guides, we need to revise the stiffness and damping coefficients in the tangential
force expression in Eq. (8) using the modified Hertzian coefficient. In addition, we replace the static friction
coefficient in Eq. (10) with μ = 0.04, which is a conventional static frictional coefficient between stainless
steel and PTFE materials.

Taking all the axial and tangential force components into account, the acceleration of the i th particle can
be determined by the relation

s̈i =
∑ (

Fn,i j + Ft,i j + Pn,i + Pt,i + Qn,i + Qt,i

)

mi
+ g, (14)

where Pi and Qi denote the forces exerted on the i th particle by the left-hand and right-hand beam elements
(see Fig. 2). We include gravity g, considering the weight of granular particles.
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The rotational motion of the beads can be described based on the conservation of angular momentum. The
equilibrium equation of rotational motion is as follows:

ω̇i =
∑

Ri

(
n̂i j × Ft,i j + r̂i j × Pt,i + l̂i j × Qt,i

)

Ii
, (15)

where Ii is the rotational moment of inertia of the i th granule, and r̂i j and l̂i j are the unit vector from the
center of the i th particle to its contact point with the left-hand and right-hand elastic guides (see Fig. 2).

3.3 Finite element model of the elastic guides

We use FE analysis to model the curved guides via a single array of beam elements. Each element has two
nodes with three degrees of freedom in axial, shear, and rotational directions. The governing equations of
motion for the right-hand and left-hand guiding structures can be expressed in a linear algebraic form as

[Mr]r̈ = [Kr]r + (Pn + Pt ),
(16)[Ml]l̈ = [K l]l + (Qn + Qt ),

where the matrices [Mr] and [Kr] are the global mass and stiffness matrices of the right-hand elastic guide,
while [Ml] and [K l] are for the left-hand elastic guide. Note that the force vectors Pn, Pt , Qn , and Qt are the
contact forces applied by the particles in the granular crystal. These force components are governed by both
granular particle movements (denoted by displacement vector si ) and the elastic guides deflections (denoted
by ri and li ). Thus, the equilibrium equations in Eqs. (14)–(16) are linked together, describing the coupling
mechanism of the nonlinear granular media and the linear elastic guides. These ordinary differential equations
are solved with the explicit Runge–Kutta integration scheme in MATLAB� [36].

4 Results and discussion

4.1 Deflection of linear elastic guides

We first study the global deflection of the linear elastic guides in response to dynamic impact excitations.
In experiments, we use a high-speed camera to measure the dynamic deflection (δ) of the right-hand guide
from its static equilibrium position (see the inset of Fig. 3). We compare the experimental measurements
with numerical results based on our combined DE–FE method. Figure 3 shows the deflection-time history
of the system, when the chain is impacted by the largest striker (M = 678 g) under the initial curvature of
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Fig. 3 Deflection curves of the guiding tube. The solid line represents experimental measurements of dynamic deflection δ of
the right-hand guide from its static position via the high-speed camera (inset showing a still shot image). Here, the striker used
is 678 g heavy, and initial offset of the bent chain is 40.5 mm. The dotted line denotes the numerical result based on the DE–FE
method
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Fig. 4 Experimental and numerical curves of maximum deflection of linear elastic guides as a function of striker mass. For
experiments, 13 different masses of cylindrical strikers are used (M = 14.1, 21.2, 28.2, 35.3, 42.3, 49.4, 56.5, 113, 226, 339,
452, 565, 678 g). The standard deviation in experiments resulting from five measurements is 0.163 mm under 678 g heavy striker
impact

� = 40.5 mm. The numerical and experimental results agree on the low-frequency mode of oscillation of the
structure and on the first 10 ms of deformation. However, the numerical model overestimates the amplitude of
oscillations of the elastic guides and presents a shortened oscillation period. These discrepancies are probably
due to the presence of dissipation in the soft tubes resulting from viscoelastic effects in PTFE.

We measure the maximum deflection of the system over a range of striker masses. Figure 4 reports the
experimental and numerical results of the maximum deflection of the linear guides as a function of the differ-
ent striker masses. We observe that the structure undergoes larger deformation as the curved granular chain
is impacted with heavier masses. The largest deflection measured experimentally (δ = 1.86 mm) is recorded
after the structure is impacted with the heaviest striker (M = 678 g). The smallest deflection (δ = 0.027 mm)
is obtained when the structure is impacted with the lightest striker (M = 14.1 g). The relationship between
the striker mass and the maximum deflection in the elastic guides exhibits approximately linear relationship,
and we find that the difference in maximum deflections between light and heavy mass strikers is almost two
orders of magnitude.

According to the classical beam theory, the strain energy stored in a beam element is proportional to the
square of the maximum deflection under the condition of point or distributed loading [31]. This is under the
assumption that there is no significant residual strain energy stored in the guides before the impact event. Thus,
if we conjecture the squares of maximum deflection values in Fig. 4, we find that the strain energy stored in
the deformed elastic guides increases steeper than the linear growth as the striker mass is increased. Given
the same impact velocity for all strikers, this implies that the higher kinetic energy by large-mass striker drop
results in the larger proportion of energy dispensed to the elastic guides. In other words, the elastic guides
present an improved efficiency of energy absorption under large dynamic disturbances relative to that of small
excitations. Such amplitude-dependent behavior can be explained by the relatively high axial stiffness of the
granular chain under small impact, while the chain becomes more susceptible to buckling under the large
impact, resulting from the close interplay between the granular crystal and the elastic guides. A similar trend
of impact amplitude dependency can be observed in the next section by analyzing the transmitted waves mea-
sured by the force sensor mounted on the rigid wall. It should be noted that the energy absorption behavior of
the deformed PTFE guides is involved with more complicated mechanisms, such as viscoelasticity, friction,
and residual stress effect. Thus, the amplitude dependence of the overall system might be resolved from a more
complex picture of the interplay between the granular particles and the guides.

4.2 Transmitted force profiles

After characterizing the dynamic deflection of the structure impacted with different strikers, we analyze its
effects on the stress wave propagation through the granular crystals. We begin investigating the propagation
of waves upon the light mass impact (M = 14.1 g) with a velocity of 0.443 m/s. The temporal force profiles
recorded by the sensors positioned at the end of the chain are reported in Fig. 5a for the straight chain (solid
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Fig. 5 Experimental (top row) and numerical (bottom row) results of the force-time profiles for the light mass (14.1 g, left column)
and the heavy mass (678 g, right column) impacts. Here, the transmitted force profiles are measured from the base of the granular
chains. The impact of the light mass generates a single solitary wave without significant difference between the straight and curved
chains, while the impacts of heavy strikers form trains of solitary waves that show drastic changes in force profiles between the
straight and curved chains

line) and curved chain (dashed line). Here, the initial offset � of the curved chain is 40.5 mm. For the lightest
striker, which has a mass smaller than that of a bead (m = 28.2 g), we find that both the straight and the
curved chains support the formation of a single solitary wave. This solitary wave is characterized by a compact
shape (approximately 5 particle-diameter in a homogeneous chain of spherical particles) and a tunable speed
of propagation, which is a function of the wave amplitude [1,2]. Comparing the responses of the straight and
curved chains, we observe that the solitary wave triggered by the light striker in the curved chain is very similar
to that in the straight chain. However, the maximum force reaching the end of the chain is reduced by 13.7%
as compared to the straight chain (from 234 N in the straight chain to 202 N in the curved one). This is due
to losses of the axial force components in the bent chain of granular particles. The area under the force-time
curve, which corresponds to the amount of momentum transferred, is comparable in the straight and curved
chain cases (straight chain: 1.55 × 10−2 N-s, curved chain: 1.50 × 10−2 N-s). The impulse observed at the
point ∼ 1 ms is caused by the rebounding of the last particle in the chain, which is clamped between the sensor
and the inner PTFE guides under the high curvature of the granular chain (see Fig. 2).

We then characterize the wave propagation upon the largest mass impact (M = 678 g). Figure 5b shows the
compressive force profiles measured at the base of granular chains, in which the responses of the straight and
curved chains are denoted by solid and dashed lines, respectively. Unlike the light mass impact, we observe
the generation of trains of solitary waves characterized by a leading pulse with large amplitude and trailing
waves with amplitudes decaying approximately exponentially [9]. However, we find that the chain of solitary
waves excited in the straight and curved chains present a different behavior, when the heaviest striker impacts
the chain. Comparing the force amplitudes of the leading pulses transferred through the chain, we observe that
the maximum amplitude is reduced by 17.8%, from 1,301 N in the straight chain to 1,069 N in the curved one.
More notably, the trailing solitary waves present amplitudes that decay faster in the curved granular chain than
in the straight one. The amount of momentum transferred is significantly reduced in the curved chain (0.156
N-s) compared to that of the straight one (0.360 Ns), implying that the curved systems can more effectively
attenuate signals with larger amplitudes.

Numerical results are reported in Fig. 5c, d for the small and large-mass impact. Comparing these results
with the experimental ones in Fig. 5a, b, we find that the signals from the numerical simulation closely match
the shape of propagating solitary waves measured in experiments. For the small mass impact in Fig. 5c,
we observe that single solitary waves are formed in both straight and curved chains. In the curved chain,
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Fig. 6 Experimental (top row) and numerical (bottom row) surface plots of transmitted waves for straight (left column) and curved
(right column) chains. Each surface plot depicts the force profiles of all 13 striker impacts after being normalized with respect
to their maximum force amplitudes. Multiple bands of highlighted areas denote the formation of solitary wave trains, which are
generated under the impacts using strikers heavier than the mass of a single bead in the chain (M > m = 28.3 g). Solitary wave
trains in the curved chains present less intensity and sparser spacing than those in the straight chains

particularly, we successfully produce a small impulse around the point 1.1-ms, which is also witnessed in
experiments in Fig. 5a. The maximum amplitudes of the simulated solitary waves tend to be larger than those
in the experimental results, but the deviation is in the reasonable range (268 N in the straight chain and 213 N
in the curved chain).

For the large striker impact, we observe that the numerical simulation formulates a train of solitary waves
with approximately exponential decay, similar to the signals measured in experiments (compare Fig. 5b, d).
These propagating waves exhibit a superposed form of high-frequency (∼ 0.1-ms period) and low-frequency
(millisecond order of characteristic decay time) signals. If we compare the force-time history between the
straight and the curved chains, we find that the low-frequency components in the curved chain are signifi-
cantly attenuated, while the high- frequency signals remain less dampened. This means that the low-frequency
components of propagating waves are more efficiently absorbed by the soft elastic guides, whereas the high-
frequency components are less affected by the presence of the curvature applied to the coupled system. Such
higher effectiveness of shock absorption mechanism in low-frequency waves is plausible, if we consider the
low-frequency bending modes of the elastic guides (see the long oscillation period of the elastic guides in
Fig. 3).

Previous studies have shown that the formation of low-frequency signals (i.e., generation of a train of
solitary waves) is closely associated with the mass of the striker relative to that of the particles in the chain [9].
In general, a large-mass striker can trigger the formation of a solitary wave train containing many single solitary
waves, resulted from the multiple impacts at the interface between a massive striker and the granular crystal.
Thus, the efficiency of the shock absorption mechanism is essentially affected by the mass of the striker. Since
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the striker mass also determines the amplitude of external impact, we refer to the response of the system as
the amplitude-dependent characteristics in this study.

We include surface plots of the experimental and numerical results in Fig. 6, to provide a more direct
comparison of the response of the straight and curved configurations. These surface plots show the transmitted
force intensity in the time domain for all geometries of strikers used to generate the impulses. In these plots,
each force profile is normalized with respect to its maximum amplitude, and the initial time of arrival is
aligned at t = 0.45 ms to ease visualization. This brightest band represents the first impulse propagated along
the granular chain, and the following bands denote the subsequent generation of solitary wave trains. When
the straight and curved chains are impacted by a striker with a mass smaller than that of a bead (i.e., using a
striker with mass M < 28.2 g), we observe the formation of a single solitary wave. However, when a striker
with a larger mass impacts the chains, the granular crystal starts to form multiple solitary waves with decaying
amplitudes. In the large-mass impact, we also find that the responses of the straight and curved configurations
differ significantly. The curved chain generates a sparser train of solitary waves that travel through the chain
over a more extended period of time compared to those generated in the straight chain (compare Fig. 6a, b for
the experimental results and Fig. 6c, d for the corresponding numerical results).

The distinctive response of the straight and curved chains under large amplitude impacts can be explained
by the energy transmission mechanism in the two geometries. In the straight chain, the compressive pulse
travels primarily between the granular particles. On the contrary, in the curved configuration a significant
portion of incident energy is dispensed to the confining guides via lateral interactions in the form of kinetic
and strain energy of the soft PTFE tubes. From the experimental and numerical results of transmitted wave
profiles, it is evident that the coupling between the nonlinear chain and the linear elastic guides becomes more
dominant when the chain is impacted with larger strikers. These results are in agreement with the finding in
Sect. 4.1 that the soft PTFE tubes exhibit higher energy absorption efficiency by the elastic guides under the
impact with larger mass strikers.

4.3 Energy transmission

We estimate the energy transmitted through the chain and arriving on the wall by calculating the Hertzian
potential energy between the last particle in the chain and the flat piezoelectric sensor located at the base of
the chain. Neglecting the dissipative effect, the Hertzian potential energy (Ψ ) can be expressed in terms of the
compressive force FN ,N+1 between the last particle (particle index n = N ) and the sensor (n = N + 1) as:

	 = 2

5

(
AN ,N+1

)−2/3 (
FN ,N+1

)5/3
. (17)

Hence, the averaged amount of transmitted energy (	) over the span of time [ti , tf ] can be simplified in the
integral form of potential energy based on the measured discrete force profile F[t] as follows:

	 ≡ 1

tf − ti

tf∫

t=ti

	dt = 2

5 fs(tf − ti )

tf∑

t=ti

(AN ,N+1)
−2/3 F[t]5/3, (18)

where fs is the sampling frequency of the transducer. We limit the integration time of the discrete force profiles
from ti = 0 ms to tf = 1.2 ms (see Fig. 5), to exclude the effect of the wave reflection from the striker.

We compare the energy transmission through the chains as a function of the striker geometry for four
different configurations (� = 0, 11.4, 24.1, and 40.5 mm) in Fig 7. Experimental results are shown in Fig. 7a
and the corresponding numerical data are reported in Fig. 7b. From these plots, it is evident that the trans-
mitted energy through the straight chain is almost linear (line with open circles), implying that in the straight
configuration the transmitted waves carry the impact energy without significant dissipation [1,2]. The energy
transmitted through the curved chains instead shows a clear dependence on the striker mass. As the striker
mass is increased, the energy transmitted is decreased compared with the straight configuration. Notably, the
amount of energy transmitted can be reduced by imposing a larger initial curvature to the chains. This allows
tuning the amount of energy loss into the guides in the form of strain and kinetic energy. The numerical results
are found in good agreement with the experimental data.

We quantify the energy transmission efficiency of the curved chains with respect to that of the straight
chain in Fig. 8. Here, the experimental and numerical ratios of transmitted energy are plotted as a function
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Fig. 7 Experimental (left) and numerical (right) results of transmitted energy through the granular chain as a function of striker
masses. The chain configurations tested include a straight chain (� = 0 mm) and three curved chains (� = 11.9, 24.1, 40.5 mm).
The error bars in the experimental results denote standard deviations from five measurements of the energy values per chain
curvature and striker mass
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Fig. 8 The ratios of the curved chain’s transmitted energy values to those of the straight chain as a function of striker masses.
The dotted lines represent numerical results, while the discrete points with error bars denote experimental results. As striker
masses increase, the transmitted energy ratios decrease accordingly, showing amplitude-dependent energy transmitting properties.
A more drastic reduction of the transmitted energy ratios is obtained for the granular chain with larger curvatures

of the different striker masses used for the impacts. From experiments, we find that a curved chain exhib-
its high transmission efficiency in the range between approximately 70 and 90% under small disturbances,
while the efficiency drops as low as 25% when the chains are impacted with larger strikers. The experimental
and numerical results are in fair agreement. This translates into the amplitude-dependent energy transmission
efficiency in the combined system of granular crystals and curved elastic guides. More notably, we find that
the energy transmission efficiency depends on the curvature imposed to the system. For the smallest curva-
ture (� = 11.4 mm), we observe experimentally that the energy transmission ratio changes between 65 and
92%, given the various striker masses (top curve in Fig. 8). If the curvature of the system is increased to
� = 40.5 mm, the variation of the energy transmission ratio becomes more drastic (28–71%), as the striker
mass varies from 14.1 to 678 g. In Fig. 8, we observe that the experimental ratios lie below the numerical ones
for larger disturbances. This is probably due to the increased effects of friction and viscoelasticity when the
system is excited with larger strikers.

The numerical and experimental results in this study show that the amplitude-dependent transmission of
compressive waves can be achieved in a regenerative manner, using the combined system of granular crystals
and linear elastic media. In addition, the energy transmission efficiency can be controlled by manipulating the
curvature of the combined system of granular crystal and the elastic guides. It is important to mention that
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no visible onset of permanent deformation in the particles or structural buckling is observed in the range of
impacts tested in this study.

5 Conclusion

In this study, we describe the wave propagation in straight and curved granular chains confined by linear
elastic guides using experiments and numerical simulations. We show that the force and energy transmission
through these systems is controlled by the initial deflection of the chains. Furthermore, we demonstrate that
impacts generated by strikers with a smaller mass can travel through the granular chains without major losses,
while impacts generated by larger strikers are partially absorbed by the flexible supporting structure in the
form of strain and kinetic energy. This interplay between the granular crystal and the confining linear media
is validated from both the deflection profiles of PTFE supports obtained from high-speed photography and the
compressive wave measurements from the force sensor at the base of the granular chains. The energy trans-
mission through the curved granular crystal is shown to exhibit a nonlinear trend with respect to the amplitudes
of the external impacts. This experimental and numerical study shows that a hybrid structure composed of a
nonlinear granular crystal and deformable supporting guides can be used to selectively allow or reduce the
transmission of compressive excitations, as a function of their amplitude. The efficiency of transmission can
be tuned by variation of the initial curvature imposed to the system. We expect that a similar behavior will per-
sist in smaller scale hybrid linear-nonlinear systems, and in specifically designed two- and three-dimensional
structures. Such materials could be used for selective acoustic filtering devices, impact protection systems, and
amplitude-dependent vibration absorption layers.
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