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Abstract

The multi-scale nature of architectured materials raises the need for advanced experimental methods suitable for the identification of
their effective properties, especially when their size is finite and they undergo extreme deformations. The present work demonstrates
that state-of-the art image processing methods combined with numerical and analytical models provide a comprehensive quantitative
description of these solids and their global behaviour, including the influence of the boundary conditions, of the manufacturing
process, and of geometric and constitutive non-linearities. To this end, an adapted multi-scale digital image correlation analysis is
used to track both elongations and rotations of particular features of the unit cell at the local and global (homogenized) scale of the
material. This permits to observe with unprecedented clarity the strains for various unit cells in the structure and to detect global
deformation patterns and heterogeneities of the homogenized strain distribution. This method is here demonstrated on elastic sheets
undergoing extreme longitudinal and shear deformations. These experimental results are compared to non-linear finite element
simulations, which are also used to evaluate the effects of manufacturing imperfections on the response. A skeletal representation
of the architectured solid is then extracted from the experiments and used to create a purely-kinematic truss-hinge model that can
accurately capture its behaviour. The analysis proposed in this work can be extended to guide the design of two-dimensional
architectured solids featuring other regular, quasi-regular or graded patterns, and subjected to other types of loads.
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1. Introduction

Architectured sheets are a particular class of two-
dimensional solids whose patterned designs are tailored to
achieve a variety of exceptional mechanical behaviours, includ-
ing extreme extensibility, auxeticity and morphing capabilities
[1–9]. They are increasingly seen as applicable to fields rang-
ing from stretchable electronics, medical and biomedical engi-
neering [10–14], to the sport equipment and textile industries
[15–19], and they have witnessed significant advances in their
design and fabrication. When it comes to designing techniques,
modern numerical methods such as shape and topology opti-
mization [20, 21] have become prevalent in this realm, leading
to more sophisticated and often unimaginable geometries [22–
25]. Present day techniques even permit to incorporate geomet-
ric non-linearity and manufacturability constraints in the design
optimization [26–28]. At the same time, digitally controlled
manufacturing techniques such as photo-lithography [29], 3-d
printing [30], water jetting [31] and laser cutting [2, 32] now
permit to fabricate architectured structures with unprecedented
complexity and at a continuously decreasing cost.

Despite these advancements, unleashing the potential of
these systems demands advanced methods suitable for the ex-
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perimental investigations on the deformation patterns and me-
chanical behaviour, which are to date in their early stages. In
practice, specimens designed for mechanical characterization
usually exhibit highly heterogeneous strain fields associated
with: (i) their intrinsic multi-scale behaviour, that can be sepa-
rated between the microscopic scale (material continuum) and
the macroscopic scale (the global scale of the specimen); (ii)
boundary layers that emerge from the boundary conditions and
the finite size of the specimens; (iii) inherent anisotropic ef-
fective properties; (iv) sensitivity to shape imperfections. This
high heterogeneity of the strain fields limits the level of identi-
fication that can be achieved from experimental measurements.
For example, qualitative experimental insights on the behaviour
of regions where macroscopic strains can be considered homo-
geneous have been reported in [32]. As a consequence, only
the central region of a specimen is typically used to validate
numerical predictions [26, 33, 34], especially when one wants
to compute the homogenised properties of the medium. It is to
be noted that the interaction of scales is a key point for quan-
titatively understanding the behaviour of architectured solids.
Experimentally, a precise separation between micro-scale and
macro-scale kinematic fields, based on a first-order expansion
of the fields, can be performed as illustrated in [35]. However,
to the best of our knowledge, this technique has never been
adopted in the context of architectured solids. The complexity
of this interaction of scales has additionally motivated the de-
velopment of reduced-order models [36–38], to provide a bet-
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ter understanding of the underlying mechanisms and guidelines
for design strategies. These reduced models often represent an
idealised version of the unit-cell, and are inaccurate if not ac-
companied by robust experimental methods for the calibration
of their parameters. On the opposite side of the spectrum of
available numerical tools, lie models based on the complete de-
scription of the specimen, which are typically used to provide
a direct term of comparison with experimental results [39–41].
The (often small) discrepancies between simulated and mea-
sured response have origins at multiple scales. They are either
found at the microscopic scale, where the manufacturing pro-
cess is a source of shape imperfections, or at the macroscopic
scale, where applied boundary conditions may distort the unit
cell pattern.

The present work aims to demonstrate that various state-of-
the art methods in image processing can be combined to provide
comprehensive data on the multi-scale response of architec-
tured sheets. Our procedure, applicable to any two-dimensional
architectured solids, is here applied to investigate the deforma-
tion mechanisms of a soft auxetic sheet under extreme longi-
tudinal and shear loading. The acquired images of the struc-
ture are first used to identify its exact geometry, which may
differ from the designed one due imperfections in the fabri-
cation process. Meshes are built directly from the identified
shape and used both for the measurement of the full kinematic
field (via Digital Image Correlation) as for the numerical com-
putations (via the Finite Element Method). It is shown that
doing so significantly improves the match between measure-
ments and numerical predictions with respect to models that
rely on the as-designed specimen geometry. This highlights
the high sensitivity of the mechanical response of the speci-
men to geometrical imperfections. Then, we provide a two-
scale analysis of the measured kinematic field: (i) at the con-
tinuum material level (microscopic scale) and (ii) at the unit
cell level (macroscopic scale). This leads to the quantifica-
tion of the macroscopic strain heterogeneities and the char-
acteristic deformation patterns, which are influenced by the
boundary conditions as well as the inherent Poisson’s ratio
of the micro-structure. The kinematic analysis is comple-
mented by a procedure aiming at extracting the “skeleton” of
the specimen from the experimentally-recorded images. This
experimentally-extracted skeleton, whose shape changes during
the deformation process, is then used to identify the parameters
for an accurate reduced-order model of the architectured solid.

The study is organized as follows: Section 2 provides de-
tails on fabrication, experimental setups, testing methods, ma-
terial models and modelling strategy. The results are reported in
Section 3, and include the material constitutive law calibration,
the multi-scale experimental analysis and the numerical simu-
lations. The skeletal representation of the architectured sheet
geometry is discussed in the same Section. A short summary in
Section 4 concludes the paper.

(a)

material: φ(x) > 0
void: φ(x) < 0
boundary: φ(x) = 0

(b) (c)

Figure 1: Geometry of the re-entrant honeycomb. (a) 3-d representation of the
level set function (signed distance function) φ, sliced by the plane z = 0. This
function is obtained from a topology optimization procedure [34]. (b) Unit cell.
(c) 4 × 4 repetitive array of unit cells.

2. Materials and methods

2.1. Fabrication of natural rubber architectured sheets
To demonstrate our approach, we choose to analyse the

periodic auxetic design recently proposed in [34]. The de-
sign results from a topology optimization procedure combin-
ing the level set method and the asymptotic homogenization
theory [25, 42] aiming to minimize the auxetic behaviour [43].
The level set function φ serves as a base to define the mate-
rial distribution in the unit cell (see Figure 1(a)), and is defined
as the signed distance function, for smoothness and regularity
purposes. Starting from the architecture provided in [34], we
merely operate a vertical shift to obtain a symmetric design.
The resulting unit cell is depicted in Figure 1(b,c). The de-
signed geometry is a re-entrant honeycomb auxetic structure,
with a couple of peculiar features. First, the structure is char-
acterised by a repetitive alternation of two types of concave
hexagons. Second, the trusses do not have constant width, i.e.
the linkages appear slightly thinner than the cores of the bars.
This feature is similar to the bi-mode extremal material pre-
sented in [44].

Mechanically, this architectured material carries an effec-
tive orthotropic behaviour (provided that the base material is
isotropic [45]). Assuming an a-priori linear elastic behaviour
implies that four coefficients need to be identified, namely the
two effective Young’s moduli, one effective Poisson’s ratio and
the effective shear modulus. A discussion on the elastic be-
haviour of the unit cell at small strain and on the identification
of effective elastic coefficients is provided in Appendix A.

We fabricated three sorts of specimens consisting of peri-
odic assemblages of the unit cell: two specimens designed for
uniaxial tension along directions e1 and e2, hereafter referred
to as specimens T1 and T2 respectively, and one specimen de-
signed for a simple shear test, hereafter referred to as specimen
S . The periodic array for each sample is set at:
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Figure 2: (a) View of a unit cell of the fabricated specimen under a Keyence
VHX-1000 optical microscope. (b-c) Setup for the tensile test (specimen T1
here) and shear test (specimen S ). In the shear test, PMMA confining plates
are held together at their edges and are attached to the (sliding) upper grip.
Conversely, the central rectangular rod is attached to the (fixed) lower grip.
Scale bar is 40 mm.

• 5 × 8 unit cells for the tensile specimen T1 (see Figure 2(b)),

• 8 × 5 unit cells for the tensile specimen T2,

• a sequence of two lattices of 8×5 unit cells for the shear spec-
imen S (see Figure 2(c), the arrangement is made to balance
the torques).

For all specimens, the size of the square unit cell was set at
10 mm × 10 mm, yielding a 50 mm × 80 mm lattice. The gen-
erated pattern is then completed by 50 mm × 10 mm rectangular
solid tabs that permits the clamping to the uniaxial testing ma-
chine. The specimens are laser cut from a 1.5 mm-thick natural
rubber sheet with a Universal ILS9 120 W laser cutter (single
cut at 35% power and 5% speed). To avoid burning the rub-
ber, the machine blows compressed air onto the part being cut.
Prior to applying the speckle pattern on the specimens, these
are thoroughly washed with standard dish-washing soap.

2.2. Experimental setup and testing

To provide a complete characterization of this geometry, the
evolving pattern transformations are investigated through uni-
axial tensile and simple shear tests, as shown in Figure 2(b,c).
The experiments are conducted under displacement control at
a quasi-static strain rate ε̇ = 0.125 min−1 up to 0.5 effective
engineering strain for the tensile test and up to 0.45 effec-
tive engineering strain for the shear case. The tests are per-
formed with an Instron 10 kN universal testing machine, with

a mounted 50 N load cell with accuracy ±0.1 N. The speci-
mens are clamped at both ends with metallic bars, to constrain
their displacement (see Figure 2(b)). The choice of hard clamp,
which yield a strain heterogeneity in the specimens, was merely
intended to facilitate the description of the boundary conditions
in the numerical simulations. Recent works in literature [46]
attempted to apply less constraining boundary conditions us-
ing rings and networks ensuring a homogeneous state of strain,
at the cost of higher uncertainties on boundary conditions and
stress state. For the shear test, a specific setup shown in Fig-
ure 2(c) a specific setup is designed to arrange the specimen
in the tensile machine. PMMA confining plates, preventing
out-of-plane displacement, are held together at their edges and
are attached to the (sliding) upper grip. Conversely, the cen-
tral rectangular rod is attached to the (fixed) lower grip. The
experiments were piloted using the Instron BlueHill software.
Each mechanical test was recorded and used for full-field mea-
surements by Digital Image Correlation (DIC). The recordings
were obtained using a high-resolution digital camera (JAI Spark
SP-20000-USB camera with a resolution of 5120× 3840 pixels
equipped with a Tokina AT-X Pro 100 mm F2.8 macro lens),
mounted on a perpendicular axis with respect to the plane of
the specimen. To improve the precision of the measurements, a
gray scale speckle pattern was placed on the sample by aerosol
spray. Using an in-built computer program, 8-bit gray scale
sub-images were stored every second during the loading, with
a resolution of 5064 × 2438 pixels for the tensile tests and res-
olution of 2292 × 2488 pixels for the shear test (the resolution
for the shear is approximately two times smaller than in the ten-
sile test because the camera was installed to record the whole
specimen, yet only half of the specimen is useful for the obser-
vations).

2.3. Local and global Digital Image Correlation

All the results shown in this work make use of the the Dig-
ital Image Correlation technique (DIC) to extract the structure
motion from acquired images during the test. DIC procedures
are based on the comparison of subsequent pictures of the struc-
ture: given a reference image Ir and a current image Ii, the
problem consists in finding the displacement field u(x) which
minimizes the differences between the two images over a sub-
domain Ω:

u(x) = arg min
ξ

∫
Ω

(
Ir[x] − Ii[x + ξ(x)]

)2 dΩ (2.1)

Given a parametrization of the the trial displacement field ξ(x),
this problem is usually solved using a Newton-Raphson proce-
dure. The choice of this parametrization and the sub-domain Ω

are the main elements that distinguish: (i) the local approach,
where Ω is restricted to a small image sub-domain over which
the displacement is assumed to be homogeneous u(x) = a (thus
sampling a uniform translation of Ω) and (ii) the global ap-
proach where the displacement is defined over a finite-elements
mesh covering the full domain of interest Ω (i.e u(x) = N(x) · a
with N(x) containing the finite element shape functions).
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While the comparison between both approaches in terms of
efficiency and accuracy is still a hot topic in the community
[47, 48], they are both used for different purposes in the present
study. Indeed, the global approach assumes the displacement
field continuity over the domain Ω, which is well suited for the
study of the structure at the microscopic scale (corresponding
to the material continuum). Conversely, the local approach is
employed to follow the motion of isolated points at the macro-
scopic scale (corresponding to the pattern periodicity), for ex-
ample to study the motion of the corner nodes of each unit cell.

All DIC results presented in this paper are obtained from an
in-house academic code written by means of MATLAB scripts.
For the global approach, simplex P1 triangular elements are
used. The meshes are generated using the DistMesh proce-
dure proposed by Persson [49] with the following steps: first,
a binary mask is obtained from the reference image (where the
specimen is unstrained). Second, a distance transform is ap-
plied on the mask to obtain the experimental level-set function
sampling the specimen boundaries. Finally, the DistMesh pro-
cedure is applied with the obtained level-set function as input.
We chose an edge length of 10 pixels, sufficient to capture the
localization of strains in the structure while keeping a good DIC
resolution (sub-pixel accuracy). Hereafter, the resulting mesh is
referred as toMDIC

i (i denotes the specimen name).

2.4. Numerical Simulations
Finite element method implementation. Finite element compu-
tations are undertaken under the assumption of large strains
plane stress using the finite element solver Cast3M 2020
(www-cast3m.cea.fr). In the simulations, the conditions of
the mechanical tests are exactly reproduced, e.g. the sample is
loaded in with a prescribed displacement at the two ends. In
both cases, the specimen is meshed with P2 triangle elements.
The geometry of the specimen used for the computations is ob-
tained following two strategies:

• from the theoretical level set function φ, using image pro-
cessing to detect and extract the 0-level contour image of the
level set function. Hereafter this mesh is referred as toMφ= 0

i
(i denotes the specimen name). For all specimens, the total
numbers of elements and nodes are 80,000 and 171,534, re-
spectively.Mφ= 0 is perfectly periodic, i.e. it does not embed
any geometrical defects;

• from the experimental meshMDIC
i (used for the global DIC

presented in section 2.3). The total numbers of elements and
nodes for the FE model are 78,380 and 166,982, respectively.
By comparison to the theoretical mesh Mφ= 0

i , MDIC
i cap-

tures several geometrical imperfections induced by the fabri-
cation process and by the positioning of the specimen in the
tensile machine.

Rubber material models. The constitutive behaviour of natural
rubber is modelled as an incompressible hyperelastic material.
Let F = ∂x

∂X denote the deformation gradient mapping a mate-
rial point from the reference position X to its current location
x. We adopt the Mooney-Rivlin model [50, 51], which is nor-
mally acceptable for intermediate elongations, i.e. between 50
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Figure 3: (a) The dogbone geometry with its dimensions in mm. (b) Measured
engineering stress-strain response under uniaxial tension. The Mooney-Rivlin
hyperelastic model is employed to fit the stress–strain response and calibrate
material parameters.

-100%. The strain energy function of Mooney-Rivlin hypere-
lastic constitutive law is expressed as a function of strain invari-
ants I1, I2, I3 = J2 of the left Cauchy-Green tensor B = FFT .
The strain energy density function takes the form:

W = C10(I1 − 3) + C01(I2 − 3) +
1
d

(J − 1)2 (2.2)

where C10, C01 and d are material parameters. For the case of
an incompressible Mooney-Rivlin material under uniaxial elon-
gation, λ1 = λ and λ2 = λ3 = 1/

√
λ. Then the true stress

(Cauchy stress) differences can be calculated as:

σ11 − σ33 = 2C10(λ2 −
1
λ

) − 2C01(
1
λ2 − λ

2)

σ22 − σ33 = 0
(2.3)

In the case of simple tension, σ22 = σ33 = 0. Then we can
write:

σ11 =

2C10 +
2C01

λ

 λ2 −
1
λ

 (2.4)

and the engineering stress (force per unit reference area) for an
incompressible Mooney–Rivlin material under simple tension
can be calculated using σeng

11 = σ11λ2λ3 = σ11/λ = σ11/(1 +

eeng
11 ). Hence:

σ
eng
11 =

(
2C10 +

2C01

λ

) (
λ − λ−2

)
σ

eng
11 =

2C10 +
2C01

1 + eeng
11

 1 + eeng
11 −

1
(1 + eeng

11 )2

 (2.5)

3. Results and discussion

3.1. Numerical simulations

Calibration of material parameters. The mechanical be-
haviour of natural rubber is identified from uniaxial tensile
tests. Dogbone specimens are fabricated using a cutting die
to make specimens for uniaxial tension (the dimensions of test
specimens are depicted on Figure 3(a)) and are subjected to the
uniaxial tensile tests with a speed of 10 mm/min. The measured
engineering stress–strain response is shown in Figure 3(b). It
is shown that the Mooney-Rivlin model is suitable to capture
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the tensile behaviour well up to 0.5 engineering strain for this
natural rubber. The material coefficients C10 = 0.199169 MPa
and C01 = 0.134212 MPa in the Mooney-Rivlin model for this
natural rubber are identified by a non-linear fit from the experi-
mental data

Shape sensitivity analysis. We first report the measured engi-
neering stress-strain curves for all tests (see Figure 4). For ten-
sile tests (specimens T1 and T2), the experiments are juxtaposed
to the numerical results (for the shear, the frictions in the setup
do not allow to obtain an experimental estimate of the load.)
Figure 4(b) and even more Figure 4(c-d) reveal a significant gap
in stiffness between the numerical predictions on the theoretical
meshMφ=0 (stiffest dashed gray curve) and on the experimen-
tal mesh MDIC . The latter model is in better agreement with
the experiments (black curves). The strong differences between
the two approaches in the numerical analyses suggest that the
material effective stiffness is highly sensitive to the shape un-
certainties induced by the laser cutting. To analyse the sensitiv-
ity of the mechanical behaviour to shape uncertainty, additional
numerical simulations are carried out using eroded theoretical
meshes, i.e. by progressively reducing the size of the trusses.
In practice, we operate an erosion of the contour by introduc-
ing a negative offset to the signed distance function φ of Fig-
ure 1(a). The behaviour for offsets varying between −0.1 and
0. with a step of 0.02 is shown in Figure 4(a). The experimen-
tal stress-strain curves of specimen T2 (Figure 4(c)) are most
similar to the eroded model with the level set shifted by −0.06.
Using the properties of the signed distance function φ, the ex-
perimental specimen is expected to be fabricated with trusses
that are roughly 120 µm thinner than expected. This gap to the
laser cutting process. In hindsight, observing the specimens un-
der an optical microscope (see Figure 2(a)) confirms that these
are thinner than expected and also reveals that the error on the
thickness is not constant along the trusses. In the following,
the simulations performed on the experimental meshMDIC are
used for the comparison with experiments and general valida-
tion.

3.2. Two-scale kinematic analysis

Scale of the sheet material continuum. For all the tests, the ac-
quired images of the structure are reported in Figure 5 for stages
corresponding to 0, 0.15, 0.3 and 0.45 engineering strain. The
principal stretch field λ1 resulting from the global-DIC proce-
dure performed on a full set of acquired pictures is superim-
posed to the images. Following the procedure described in sec-
tion 2.3, the experimental meshMDIC used to perform the DIC
is defined at the reference stage. The obtained displacements
fields permit a further comparison with predictions and give an
insight on the deformation mechanism of the samples, i.e. how
the structure moves and deforms.

In all the tests, the distribution of the elongation (Figure 5)
obtained from the displacement field in both full-field measure-
ment indicates that the strain field is mostly concentrated on the
hinges of the structure. This emphasizes the predominance of
structural deformation at small strain, where different parts of

the lattice behave as rigid struts and deformable hinges, in spite
of the soft natural rubber. For the tensile tests, a lateral expan-
sion indicating a negative Poisson’s ratio is visible in both T1
and T2 specimens. Despite these general observations, some
discrepancies can be noticed between the two tensile speci-
mens. First, the amount of transverse strain is obviously dif-
ferent between specimen T1 and T2, expressing the orthotropic
nature of the design. Second, while the most of strain is lo-
calised at the hinge regions in the specimens T2 and S , a clear
elongation of the members is identified on specimen T1.

Figure 5(b-d) shows that specimen T1 undergoes a posi-
tive strain in the trusses under tension (at 0.15 effective strain,
λ1 ≈ 1.15 in green), whereas the perpendicular members ex-
hibit negative strain (with λ1 < 1). This transverse compressive
state is responsible for an out-of-plane buckling at ∼ 0.15 effec-
tive engineering strain. Beyond this stage, a wrinkling defor-
mation is observed i.e. each transverse branch becomes corru-
gated (see the central unit cells in Figure 2(b), Figure 5(c-d) and
Movie 1). This particular instability is typical of the clamped
boundary conditions imposed on the specimen, responsible for
compressive stresses that develop in the transverse direction
[52]. The buckling and post-buckling modelling, beyond the
scope of the paper, is neither accounted nor permitted in the
two-dimensional finite element model. Since DIC measurement
is also based on a 2-d model, the out of plane deformation ap-
pears as compression state in the stretch field in Figure 5(c,d).
Looking at Figure 4(b), this illustrates why the numerical simu-
lation (curve in red) perfectly matches the experiment (curve in
black) until 0.15 effective engineering strain, while it tends to
overestimate the effective stress at larger strains. The maximal
relative error between the experiment and the simulation is of
9.5%.

Specimen T2 remains mostly unstrained at the core of the
trusses throughout the test (λ1 ≈ 1. in blue). The specimen
remained in the plane during the whole test. However, unit
cells located at its edges experienced snap-through instabilities
just before 0.3 effective engineering strain. Indeed, the buck-
led cells that were almost unstrained in Figure 5(f) become the
most strained in Figure 5(g,h). The full movie of the tensile
test provided in the supplementary material permits to better
appreciate the effect (see Movie 2). This effect is observed in
both the experiments and the numerical simulations. This fea-
ture is also detected in Figure 4(b) where a local change in the
slope of the stress-strain curve corresponding to the relaxation
of the center cells accompanying the edge cells snap-through is
identified. Note that the samples are monostable unlike the ex-
amples of [1], i.e. once unloaded, the specimens return to their
initial configurations. In Figure 4(c), the numerical simulation
(curve in red) correctly matches the experiment (curve in black)
until 0.5 effective engineering strain. The small gap that ap-
pears around 0.3 effective engineering strain is attributed to the
snapping effect which is not captured the numerical stress-strain
curve. The maximal relative error between the experiment and
the simulation is of 3%.

Regarding the shear test, the S specimen is mounted hor-
izontally (refer to Figure 2(b)). Therefore, its own weight in-
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Figure 4: (a) Unit cell contour defined by the level set function φ with varying cutting heights. (b-d) Effective stress-strain curves for the structure. Comparison
between experiments and numerical simulations with the Mooney-Rivlin hyperelastic model. The shaded gray areas encompass the stress-strain curves for φ ∈
[−0.1, 0]. The letters appearing at 0.15, 0.3 and 0.45 effective strains refer to the deformed shapes in Figure 5.

duces an initial bending visible in Figure 5(i). Nonetheless,
the role of the weight rapidly becomes negligible as the ap-
plied shear load increases (γ > 0.1). As we establish a rela-
tive good agreement between simulation and experiments un-
der uniaxial tension (besides structural instabilities that were
not accounted), the finite element method permits to estimate
the stress distribution during shear test (see Figure 4(c)). Re-
gardless of the shear set-up, we remark that the values of the
load (maximal effective stress expected of 1.75 kPa, yielding a
resultant load of 0.14 N) would have been too small to be pre-
cisely measured with our experimental tools.

By looking at the deformed of the specimen S , we remark,
more than in any other tests of the present work, a strong het-
erogeneity in the strain field. Rather than experiencing a ho-
mogeneous shear, the specimen S undergoes rotations, leaving
zones with predominant tension (top left and bottom right of
S , see Figure 5(k-`)), predominant compression (top right and
bottom left of S ), and predominant shear (at the center of S ).
These observations will be developed in the next paragraphs.

Scale of the unit cell. Next, we intend to analyse the global
kinematics of the material, i.e. the averaged kinematic values
over the unit cells. To this end, we perform a local-DIC mea-
surement for all the tests. We measure the macroscopic dis-
placement at each node of the lattice, and derive the strain field,
depicted in Figure 6. In particular, Figure 6(a,e) illustrate the
evolution of the averaged transverse strain with respect to the
averaged longitudinal strain for all unit cells of the specimens.
The ratio of the averaged strain components (i.e. the slope of
the curves) yields the effective Poisson’s ratios, ν12 and ν21 re-
spectively.

At finite strains, the mechanical behaviour shifts rapidly, in-
dicating in particular a decrease of the ”auxeticity” of the spec-
imen. Beyond 10% effective strain, both effective Poisson’s
ratios no longer satisfy the small strain prediction of [34] (re-
ported also in Appendix A). This effect is known in re-entrant
honeycombs: the evolution of the Poisson’s ratio with applied

strain has already been observed and discussed in [53]. Note
also that improvements in the design of re-entrant honeycombs
using a non-linear material behaviour in the optimization pro-
cess would permit to stabilize the Poisson’s ratio in a range up
to 0.2 engineering strain, as shown in [28].

Strain heterogeneity in the specimen. We further explore the
strain heterogeneity in the specimen. The question has an im-
portance in itself, as mathematical optimisation methods are
generally defined on unit cells with periodic boundary condi-
tions. Indeed, the interest is often on the macroscopic behaviour
of the structure, hence considered as a continuum material with
homogenized properties. The computation of this macroscopic
apparent behaviour from the microscopic unit cell configura-
tion (geometry and material properties) uses the assumption of
an homogeneous state of strain in the structure [45], equivalent
to considering a specimen of infinite size. However, the spec-
imen size is in practice limited by the experimental setup. As
a consequence, boundary conditions applied to the specimen
(free surfaces, clamping, etc.) are the source of strain hetero-
geneities.

In all the tests, the macroscopic behaviour of the cells can
be regrouped in bundles, identified by curves with different
colours in Figure 6(a, e, i) . The scatter of the bundles is a
evidence of heterogeneity in the specimen. For specimen T2
(see Figure 6(e)), there is merely a single line of cells which
is affected by the boundary conditions, generally showing a
lower transverse strain than center cells: cells associated to the
clamped boundaries (in green and yellow) are constrained kine-
matically, while cells located on free edges (orange ad purple)
are less strained transversely because of the vanishing trans-
verse stresses. Apart from this boundary layer, the cells in the
center of the specimen belong to the same bundle (coloured
in blue), thus denoting a uniform state of strain in this region.
Hence, the observed cell behaviour can be expected to be close
to the homogenised behaviour; this is verified with the macro-
scopic Poisson’s ratio identified close to the theoretical value of
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(a) ε = 0% (b) ε = 15% 1 1.1 1.21.05 1.15 1.25 (c) ε = 30% 1 1.1 1.2 1.3 1.4 1.5 (d) ε = 45% 1 1.2 1.4 1.6 1.8

(e) ε = 0% (f) ε = 15% 1 1.05 1.1 (g) ε = 30% 1 1.05 1.1 1.15 1.2 (h) ε = 45% 1 1.1 1.2 1.3

(i) γ = 0% (j) γ = 15% 0.98 1 1.02 1.04 1.06 (k) γ = 30% 0.95 1 1.05 1.1 1.15 1.2 (`) γ = 45% 1 1.1 1.2

Figure 5: Numerical and experimental deformed configurations of specimens T1 (a-d), T2 (e-h) and S (i-`) at different levels of imposed engineering effective strain:
0, 0.15, 0.30 and 0.45. The principal stretch λ1 is plotted as a colormap in each figure. The colorbar is the same for both the numerical and experimental results.

ν = −0.4 (dash-dot black line).
By opposition, the specimen T1 (see Figure 6(a)) shows an

highly heterogeneous state of strain, with cell bundles that are
more difficult to separate. This is mainly due to the higher abso-
lute value of the Poisson’s ratio (ν ≈ −1.5, dash-dot black line).
At small strain i.e. between 0 and 0.05 effective engineering
strain, the specimen is rather homogeneous (besides the pur-
ple bundles, the unit cells all follow the same trend). Between
0.05 and 0.15, each bundle sequentially start to behave inde-
pendently (yellow bundle, then green bundle, orange bundle,
etc.). To better appreciate the average strain distribution in the
specimen, A video of the test with the superimposed averaged
strain field is provided (see Movie 3). We remark that at 0.15
effective engineering strain, we need three lines of cells from
the constrained zones to neglect the influence of the boundary
conditions. Hence, only the two central lines of the specimen
are not affected by the boundary conditions (see Figure 6(c)).

Regarding the shear specimen S (see Figure 5(i- `)), we no-

tice that the unit cells shear strain γ is in general lower than
the engineering shear γS imposed on the specimen. This is
mostly due to the rotation of cells in the center region. In addi-
tion, a shear strain gradient is observed in the specimen, with a
higher value in the center cells (in blue) that decreases with ap-
proaching boundaries (orange and yellow); this is in agreement
with the free edge condition at which the shear stresses vanish.
Moreover, the corner cells can be separated in two cases. First,
bottom-left and top-right cells, in green, are first compressed
in the early stages up to a point where contact occurs between
members (γS ≈ 15%); then these cells are submitted to more
shear in the latter stages. Second, top-left and bottom-right
cells, in purple, are mostly stretched because of the specimen
curvature. Despite the observed strain heterogeneity, it can be
seen that the two center cells in blue are loaded proportionally
to the imposed shear (with γ ≈ 0.65γS ).
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Figure 6: Evolution of the macroscopic transverse strain ε22 with respect to the longitudinal strain ε11 for specimen T1 (a) and specimen T2 (e). Evolution of the
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3.3. Truss-hinge equivalent kinematic model

Since the strain distribution of specimen T2 is localized at
the hinges of the structure, we intend to examine whether a
simple kinematic model with rigid trusses and rotating hinges
(nodes) is sufficient to predict the Poisson’s ratio of the struc-
ture. To this end, we derive a generic parametrization of the
unit cell of Figure 1 based upon its morphological skeleton,
which is a “wire” version of the shape that is equidistant to
its boundaries. In shape ahnalysis, the skeleton is frequently
used as shape descriptors as it usually emphasizes geometrical
and topological properties of the shape, such as its connectiv-
ity, topology, length, direction, and width. Interested readers
may refer to [54, 55] for a matematical definition of skeletons
and algorithms to compute them. In our work, the morpholog-
ical skeleton of our architecture is computed from a rasterized
binary version of Figure 1 via the SkeletonTransform com-
mand from Wolfram Mathematica (version 11.2, 2018). The
obtained result is depicted in Figure 7 (geometry in black). We
remark that in spite of the relative complexity of the cell geome-
try, the corresponding skeleton can be decomposed in a reduced
number of straight features (beams) and nodes connecting them
(hinges). In order to model our structure as a simple re-entrant
honeycomb, two configurations may be chosen:

• configuration Kbeams (depicted in blue in Figure 8(a)) is
meant to emphasize the arrangement of the principal beams.
The identification of the beams is easily achieved through a
linear fit. The ImageLines command from Wolfram Math-
ematica finds line segments of a rasterized binary image and
returns the coordinates of their endpoints. This configuration
presumably yields the smallest angle θ.

• configuration Knodes (depicted in orange in Figure 8(b)) is
meant to emphasize the position of the nodes. The identifi-
cation of the nodes is done manually on the skeleton. This
configuration presumably yields the largest angle θ.

Naturally, the real configuration may stand betweenKbeams and
Knodes. This configuration should accurately predict the evo-
lution of the effective transverse strain ε22 with respect to the
effective longitudinal strain ε11 observed experimentally:

• configuration Kls is obtained by finding the angle θ which
best fits the experimental experimental curve ε22 = f (ε11).
We use the least square method to find the best angle θ that
fits the experimental curve.

Given the equivalent truss-hinge model, we understand the
whole unit cell kinematics are merely driven by the only vari-
able angle θ, therefore strain components can be expressed as:

Longitudinal: ε22(θ) =
2e
L

(cos(θ0) − cos(θ))

Transverse: ε11(θ) =
sin(θ)
sin(θ0)

− 1
(3.1)

where L is the characteristic length of the unit cell and θ0 de-
notes the initial value of θ (when the structure has not been
stretched yet).

(a) Kbeams (θ0 = 59◦) (b) Knodes (θ0 = 74◦)

Figure 7: Skeleton of the unit cell displayed in black with parametrization (a)
Kbeams and (b) using Knodes.

Starting from the images of specimen T2 recorded during
the tensile test, we compute the morphological skeleton of the
central unit cell and inferred a measure of the angle θ for both
Kbeams and Knodes. The evolution of θ measured during the ex-
periments is compared to the rigid trusses rotating hinges model
in Figure 8(a) for both Kbeams and Knodes skeletons. We re-
mark that geometry Knodes yield excellent agreement between
model and experiments. Conversely, the model using configu-
ration Kbeams tends to underestimate the experiments. In addi-
tion, we plot the evolution of the transverse strain with respect
to the longitudinal strain. We remark that the experimental evo-
lution is bounded between the two configurations of the theo-
retical model Kbeams and Knodes. Remarkably, we can identify
an angle θ0 = 68◦ for which the theoretical kinematic evolution
(equation (3.1)) is in good agreement with the experiments. It
is worth noting that the θ0 = 68◦ case fits particularly well the
end of the experimental blue curve of Figure 8(a). The obtained
results support the idea that a rigid trusses rotating hinges kine-
matic model is suitable to predict the deformation pattern of
specimen T2 in spite of the soft elastomer used in the fabrica-
tion of the specimens.

4. Concluding remarks

In this work, we have introduced a multi-scale experimen-
tal analysis designed to completely characterize the behaviour
of architectured sheets undergoing extreme deformation. Our
techniques have been applied to the analysis of a soft, auxetic
sheet subjected to large tensile and shear loads (up to 0.5 effec-
tive strain). Based on this analysis, we are able to:

• gain insight on the strain distribution of the specimen and
identify the zones that have uniform strain field. This identifi-
cation is particularly simple in our study, owing to our recon-
struction of the macroscopic strain (the averaged kinematic
values over each unit cell);

• determine that strain heterogeneities dominate the response
of finite-size specimens and that, to accurately capture the
tensile response of an infinite sheet, the number of unit cells
should be greater than four in both horizontal and transverse
directions;

• use the wealth of information obtained from the experiments
to create a reduced order model (featuring rigid trusses and
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Figure 8: (a) Evolution of θ with the engineering longitudinal strain. The exper-
imental skeleton is computed on the central unit cell of the specimen from the
pictures of the tensile tests at different strains. (b) Evolution of the transverse
strain ε22 with respect to the longitudinal strain ε11. The experimental curve is
obtained by computing an average of the curves belonging to the blue bundles
in Figure 6(e).

flexible hinges) that accurately describes the kinematic be-
haviour under tensile loads;

• determine that, despite the strong heterogeneity displayed by
the shear test results, it is possible to identify zones in the
center of the specimen where the shear state is proportional
to the applied engineering shear strain.

The tools presented in this study can be readily adapted to any
two-dimensional architectured solid undergoing small or large
deformations. In turn, the results that can be obtained by using
these methods can potentially be leveraged to create tunable and
stretchable mechanical devices [10, 12].
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[18] M. Konaković, K. Crane, B. Deng, S. Bouaziz, D. Piker, M. Pauly, Be-

yond developable: Computational design and fabrication with auxetic
materials, ACM Transactions on Graphics 35 (4) (2016) 1–11. doi:

10.1145/2897824.2925944.
[19] S. W. Pattinson, M. E. Huber, S. Kim, J. Lee, S. Grunsfeld, R. Roberts,

G. Dreifus, C. Meier, L. Liu, N. Hogan, J. Hart, Additive manufac-
turing of biomechanically tailored meshes for compliant wearable and
implantable devices, Advanced Functional Materials 29 (32) (2019)
1901815. doi:10.1002/adfm.201901815.

[20] G. Allaire, Shape Optimization by the Homogenization Method, Springer
New York, 2002. doi:10.1007/978-1-4684-9286-6.

[21] M. P. Bendsøe, O. Sigmund, Topology Optimization, Springer Berlin Hei-
delberg, 2004. doi:10.1007/978-3-662-05086-6.

[22] J. Wu, Z. Luo, H. Li, N. Zhang, Level-set topology optimization for
mechanical metamaterials under hybrid uncertainties, Computer Meth-
ods in Applied Mechanics and Engineering 319 (2017) 414–441. doi:

10.1016/j.cma.2017.03.002.
[23] Z.-P. Wang, L. H. Poh, J. Dirrenberger, Y. Zhu, S. Forest, Isogeomet-

ric shape optimization of smoothed petal auxetic structures via computa-
tional periodic homogenization, Computer Methods in Applied Mechan-
ics and Engineering 323 (2017) 250–271. doi:10.1016/j.cma.2017.
05.013.

[24] J. Gao, H. Li, Z. Luo, L. Gao, P. Li, Topology optimization of micro-
structured materials featured with the specific mechanical properties,
International Journal of Computational Methods (2018) 1850144doi:
10.1142/s021987621850144x.

[25] G. Nika, A. Constantinescu, Design of multi-layer materials using in-
verse homogenization and a level set method, Computer Methods in Ap-
plied Mechanics and Engineering 346 (2019) 388–409. doi:10.1016/

j.cma.2018.11.029.
[26] A. Clausen, F. Wang, J. S. Jensen, O. Sigmund, J. A. Lewis, Topology

optimized architectures with programmable Poisson’s ratio over large
deformations, Advanced Materials 27 (37) (2015) 5523–5527. doi:

10.1002/adma.201502485.
[27] F. Wang, Systematic design of 3d auxetic lattice materials with pro-

grammable poisson’s ratio for finite strains, Journal of the Mechanics and
Physics of Solids 114 (2018) 303–318. doi:10.1016/j.jmps.2018.

01.013.
[28] G. Zhang, K. Khandelwal, Computational design of finite strain auxetic

metamaterials via topology optimization and nonlinear homogenization,
Computer Methods in Applied Mechanics and Engineering 356 (2019)
490–527. doi:10.1016/j.cma.2019.07.027.

[29] S. Tan, J. Gu, S. C. Han, D.-W. Lee, K. Kang, Design and fabrication of a
non-clogging scaffold composed of semi-permeable membrane, Materials
& Design 142 (2018) 229–239. doi:10.1016/j.matdes.2018.01.

033.
[30] R. L. Truby, J. A. Lewis, Printing soft matter in three dimensions, Nature

540 (7633) (2016) 371–378. doi:10.1038/nature21003.
[31] C. Coulais, A. Sabbadini, F. Vink, M. van Hecke, Multi-step self-guided

pathways for shape-changing metamaterials, Nature 561 (7724) (2018)
512–515. doi:10.1038/s41586-018-0541-0.

[32] L. Mizzi, E. Salvati, A. Spaggiari, J.-C. Tan, A. M. Korsunsky, Highly
stretchable two-dimensional auxetic metamaterial sheets fabricated via
direct-laser cutting, International Journal of Mechanical Sciences 167
(2020) 105242. doi:10.1016/j.ijmecsci.2019.105242.

[33] S. Shan, S. H. Kang, Z. Zhao, L. Fang, K. Bertoldi, Design of planar
isotropic negative poisson’s ratio structures, Extreme Mechanics Letters
4 (2015) 96–102. doi:10.1016/j.eml.2015.05.002.

[34] F. Agnelli, A. Constantinescu, G. Nika, Design and testing of 3d-printed
micro-architectured polymer materials exhibiting a negative poisson’s ra-
tio, Continuum Mechanics and Thermodynamics 32 (2) (2020) 433–449.

doi:10.1007/s00161-019-00851-6.
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Appendix A. Small strain elasticity

Orthotropic symmetry with 2-d linear elasticity. Let us denote
by Y the unit cell depicted in Figure 1(b). From a mechanical
point of view, the equivalent homogeneous material displays an
effective orthotropic behaviour. The linear elastic constitutive
equation averaged over the unit cell relating the mean stress
and strain tensors, denoted as σH and εH respectively, has the
following expression for the two dimensional problems under
consideration:

σH = CHεH

where: σH = 〈σ〉Y , εH = 〈ε〉Y .

CH is the homogenised stiffness tensor

(A.1)

In two-dimensional elasticity, the components of CH in matrix
notation and in Cartesian coordinates read:

σH
11

σH
22

σH
12

 =


CH

1111 CH
1122 0

CH
1122 CH

2222 0
0 0 CH

1212



εH

11

εH
22

2εH
12

 (A.2)

Alternatively, one could express the effective strain as a func-
tion of the effective stress with the following effective material
tensor: 

εH
11

εH
22

2εH
12

 =


1/E1 −ν12/E2 0
−ν21/E1 1/E2 0

0 0 1/G



σH

11

σH
22

σH
12

 (A.3)

where Ei denote the homogenized Young moduli, νi j denote the
Poisson’s ratios and G denotes the homogenized shear modulus.
Let us further remark, that by symmetry of the elastic compli-
ance matrix, the following ratios have to be equal:

ν12

E2
=
ν21

E1
(A.4)

The elastic moduli, CH
i jkl, can equally be expressed in terms

of the compliance moduli, i.e. Young moduli and Poisson’s
ratios: CH

1111 = (1 − ν12ν21)−1E1, CH
2222 = (1 − ν12ν21)−1E2,

CH
1122 = ν21(1 − ν12ν21)−1E1, CH

2211 = ν12(1 − ν12ν21)−1E2 with
CH

1122 = CH
2211 as can be easily obtained from the inversion of

the corresponding matrices. A simple calculation immediately
yields:

ν12 =
CH

1122

CH
2222

and ν21 =
CH

1122

CH
1111

. (A.5)

Moreover, the homogenized Poisson’s ratio νi j are equally de-
noted effective Poisson’s ratio to highlight their reference to the
homogenized unit cell. For example ν12 characterizes the con-
traction of the structure in the direction of Oy axis when the cell
stretched in the direction of Ox axis and in general ν12 , ν21.
Note that if the micro-architecture of the unit cell were to obey
“cubic” symmetry, we would have CH

1111 = CH
2222 and we would

trivially obtain that E1 = E2 = E∗ and ν12 = ν21 = ν∗.

Experimental identification of the elastic coefficients. Here-
after we provide the complete experimental measurement of the
effective elastic stiffness tensor. Let us recall that the effective
constitutive law (A.1) or alternatively (A.2) is a linear relation
between the components of the effective stress and strain, from
which the elastic moduli could be identified by a least square
fitting. The main difficulty is that only the effective strain, εH,
can be directly measured from the experiment, see for instance
Figure 6. However, as suggested in [48], the effective stress
σH can be numerically computed from the experimental ap-
plied forces if the geometry and the constitutive behaviour of
the base material are validated. As a consequence, CH , the ef-
fective elastic tensor of the design phase is obtained as a linear
fit from εH and σH. The computation could be performed on
several unit cells of the specimen, yet here we will merely re-
port the behaviour of the central unit cell. In order to compare
the values of the elasticity tensor CH computed in the design
phase we have non-dimensionalized the resultant forces.

For the computations, the elastic moduli of the base ma-
terial were fixed according to [34] for comparison purposes.
Hence, the base material was defined with a Young’s modu-
lus Em = 0.91MPa and with a Poisson’s ratio ν = 0.3. Un-
der the plane stress assumption, the components of the elastic
tensor of the base material become Cm

1111 = C2222
m = 1.0MPa;

C1122
m = 0.3MPa ; C1212

m = 0.35MPa.
Experimentally, we remark that that T1 is around four times

stiffer than T2 for a effective ranging from 0% to 10%.

CH(ω) CH,exp(ω)

 0.12 −0.05 0
−0.05 0.04 0

0 0 0.006


 0.1207 −0.0487 0
−0.0487 0.0318 0

0 0 0.0044


Table A.1: Comparison between the effective CH(ω) (see also Table 1 of [34])
and measured elasticity tensor CH,exp(ω) displayed in the left and right col-
umn respectively. The measured elasticity tensor CH,exp(ω) was determined by
combining DIC measurements and FEM computations.
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