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 a b s t r a c t

Acoustic waves play a crucial role in various applications, including medical imaging, non-
destructive testing, and sonar systems. One of the significant challenges in these applications 
is impedance matching, which is essential for minimizing reflections and maximizing the transfer 
of acoustic energy between different media. Acoustic metamaterials offer a promising solution 
to this challenge. In addition to impedance control, gradient stiffness can enhance structural ef-
ficiency and enable spatial control of wave propagation, making it a valuable feature in acoustic 
metamaterial design. In this paper, we present our developed computational method to design 3D 
stiffness gradient acoustic metamaterials for impedance matching. The key steps in our approach 
include generating initial designs using a periodic covariance function to provide unit cells that 
are both periodic on the boundaries and randomly formed inside the unit cell. Furthermore, we 
integrated manufacturing constraints into the design process, ensuring that the structures are in-
terconnected for fabrication. We propose two computational optimization algorithms: GenUnit, 
based on a non-dominated sorting genetic algorithm (NSGA-II), and MLMatch, which leverages 
differentiable machine learning. The two approaches are not separate contributions but com-
plementary components of a unified framework. GenUnit requires no training data and directly 
interfaces with physics-based simulations, making it highly accurate but slower for large-scale 
exploration. In contrast, MLMatch is data-hungry during training but, once trained, enables near-
instantaneous inference and broad design-space coverage. Together, they form a hybrid strategy: 
MLMatch rapidly explores the global design space, and GenUnit provides local refinement with 
high-fidelity accuracy. This balance between training cost, inference time, and precision is the 
motivation for including both methods in the same study. We applied this dual-algorithm frame-
work to generate two metallic-based metamaterial designs that match the acoustic impedance of 
water while exhibiting a controlled gradient in stiffness (from stiff to soft). The stiffness gradient 
is particularly advantageous in applications where one side of the structure must interface with 
soft or sensitive surfaces, such as human tissue or delicate components. This work paves the way 
for improved materials in various acoustic applications, particularly in ultrasound devices, by 
providing better impedance matching and thereby improving the efficiency of acoustic energy 
transfer.
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\begin {equation}k_{\text {per-1D}}\left (x, x',\ell \right ) \propto \sigma _f^{2} \exp \left (-\frac {2}{\ell ^{2}} \sin ^{2}\left (\pi \frac {\left |x-x'\right |}{p}\right )\right ), \label {Xeqn1-1}\end {equation}


\begin {equation}k_{\text {per-3D}}\left (\textbf {x},\textbf {x}',\textbf {L}\right ) \propto k_{\text {per-1D}}\left (x, x',\ell _x\right ) k_{\text {per-1D}}\left (y, y',\ell _y\right ) k_{\text {per-1D}}\left (z, z',\ell _z\right ). \label {Xeqn2-2}\end {equation}
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\begin {equation}\label {eq:gaussian_process_periodic_3D} f(\textbf {x}) \sim \mathcal {GP}_{\text {per-3D}}\left (m(\textbf {x}),\; k_{\text {per-3D}}(\textbf {x}, \textbf {x}'; \textbf {L})\right ),\end {equation}
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\begin {equation}k_{\text {per-3D}}(\textbf {x}, \textbf {x}'; \textbf {L}) = \sigma _f^{2} \prod _{i \in \{1, 2, 3\}} \exp \left ( -\frac {2 \sin ^2\left ( \pi (\mathbf {x}_i - \mathbf {x}_i') / p \right )}{\ell _i^2} \right ). \label {Xeqn4-4}\end {equation}
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\begin {align}Z = \rho c_z, \label {eq:impedance}\end {align}
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\begin {align}c_z = \frac {d\omega }{dk_z}, \label {Xeqn6-6}\end {align}
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\begin {align}U = \frac {1}{2} \int \limits _{V} \sigma : \varepsilon \, dV, \label {eqU}\end {align}
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\begin {equation}U = \frac {V}{2} C_{33} \varepsilon _{33}^2, \label {Xeqn10-10}\end {equation}
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1.  Introduction

Acoustic waves have a wide range of applications in communication, medicine, agriculture, and industry [1]. Acoustic impedance 
is a physical property that describes the resistance of a medium to the propagation of acoustic waves [2,3]. At interfaces between 
two domains with different impedances, there is a power loss and wave reflection [4,5]. Since the early 20th century, when Bell 
Laboratories discovered the crucial role of impedance matching in enabling transcontinental telephone communication [6], the 
concept of impedance matching has remained a hot topic in maximizing energy transmission between two media [7].

The practical significance of impedance matching is evident in many acoustic applications. For instance, in medical and non-
destructive testing applications, transducers are used to generate and receive acoustic waves [8]. However, there is an impedance 
mismatch between the transducer and the target domain, such as human body tissue, resulting in power loss and a prolonged 
operational time [9]. Another example is underwater sensing devices that require an impedance that is matched to water for optimal 
performance [10]. Similarly, in acoustic lens design [11], impedance matching of the lens with the environment impacts the focus 
[12]. Therefore, a critical point in improving the performance of acoustic devices is impedance matching [13] to help maximize 
power transfer. Acoustic metamaterials [14,15] can serve as a material platform to achieve impedance matching.

Metamaterials are artificially engineered structures that support either exceptional properties or emergent behavior that are not 
readily achievable in nature [16,17]. A distinct aspect of metamaterial design is that their special functionalities stem from their 
engineered structure and material composition [7,18–20]. Design of acoustic metamaterials has been essential in identifying the 
architectured material systems that support superior, often exotic, sound propagation behaviors [21]. A non-exhaustive list includes 
impedance matching [22], bandgap design [23], negative refraction [24], nonreciprocal propagation [25], and acoustic cloaking 
[26].

Despite the promise of acoustic metamaterials, reverse-engineering of them presents a grand challenge. Conventional design 
approaches to metamaterials include metaheuristic optimization [27,28], Bayesian optimization [29–33], topology optimization
[16,34–39], among others; see Campbell et al. [40], Elsawy et al. [41], or Schneider et al. [42] for a review. Recent years have 
seen the emergence and widespread adoption of machine learning for design of metamaterials, evidenced by review articles reported 
from different communities [43–48]. Key approaches therein include, but are not limited to, (i) generative modeling that is powerful 
in both distilling compact-yet-expressive design representations out of high dimensional data and identifying one-to-many solutions
[49–55]; (ii) differentiable machine learning that enables gradient-based solution procedures through Automatic Differentiation and 
backpropagation [51,56,57], (iii) reinforcement learning that trains decision-making agents interacting with environments through 
cumulative reward maximization [58,59].

Metamaterials design for acoustic impedance matching has mainly relied on geometric motifs conceived through either human 
intuition or biomimetic inspiration. Examples include coiled-up structures [60], labyrinthine geometries [61], tapered labyrinthine 
designs [62], helical hole designs [63], gradient spiral-shaped metamaterials [64], coned-structure metamaterials [8], and MUT-
type structures [13]. While these designs have proven effective for specific applications, there is a notable gap in the literature 
for a systematic approach to design metamaterials that can achieve impedance matching across diverse target domains. This gap 
highlights the need for a more inclusive computational framework that can be applied generally rather than being limited to specific 
target cases.

Beyond acoustic impedance, there are additional material properties that remain underexplored in the design of acoustic metama-
terials, yet have been shown to significantly enhance performance in broader structural applications. For instance, gradient stiffness, 
widely adopted in aerospace and mechanical structures, has been demonstrated to improve load bearing efficiency, enhance buckling 
resistance, and enable spatial control of wave propagation [65]. Despite its clear mechanical advantages, gradient stiffness has not 
been systematically incorporated into acoustic metamaterial design. This gap highlights the necessity for multiobjective computa-
tional frameworks that jointly consider acoustic impedance and mechanical performance metrics, enabling the design of functional 
materials that meet both wave manipulation and structural reliability criteria.

Here, we propose a computational framework to generate voxelated metamaterial designs with gradient stiffness that simultane-
ously achieves impedance matching with target materials. This framework algorithmically ensures periodicity and inter-connectivity 
in designs. Benefiting from multiobjective optimization, the framework generates designs with desired properties, specifically stiffness 
and acoustic impedance. Our approach addresses a broad design space, unconstrained by geometric intuition, enabling exploration of 
novel, data-driven architectures. The inverse design framework integrates two complementary computational algorithms: GenUnit, 
which is based on a non-dominated sorting genetic algorithm II (NSGA-II), and MLMatch, which leverages differentiable machine 
learning models. These algorithms can be used independently or in tandem, depending on the application requirements. GenUnit 
does not require a training phase and operates directly through physics-based simulations, offering high accuracy at the cost of longer 
inference times. In contrast, MLMatch involves a significant initial training cost but enables rapid design evaluations post-training. 
Using these algorithms, we propose optimized designs to achieve impedance matching with the target domain and desired stiffness. 
To showcase the ability of our framework, we use it to generate designs out of a metallic alloy with gradient stiffness and acoustic 
impedance matching that of water. To the best of our knowledge, although there are polymers that can mimic the acoustic impedance 
of water, no studies have successfully achieved water-like impedance using metals. Additionally, we incorporate a stiffness gradient 
in the metamaterial structure which is particularly beneficial for applications requiring soft contact at one interface and structural 
rigidity at the other. For example, in medical ultrasound devices, a graded stiffness allows seamless acoustic coupling with soft 

Computer Methods in Applied Mechanics and Engineering 449 (2026) 118571 

2 



R. Karimi Mahabadi et al.

biological tissues while maintaining mechanical stability on the transducer side. This dual functionality enhances performance, user 
safety, and device durability, making the designs especially suited for biomedical and precision sensing applications.

2.  Methodology

In this section, we detail our framework for generating metamaterials that achieve impedance matching with a target material and 
exhibit a gradient in stiffness. We present two complementary algorithms in our framework for metamaterial design: (i) a population-
based optimization method we name GenUnit, which leverages NSGA-II to evolve voxelated unit cell structures toward optimal 
acoustic impedance and stiffness tradeoffs, and (ii) a machine learning-based inverse design method, named MLMatch, which rapidly 
generates design candidates for new target properties. While GenUnit systematically explores the design space to identify Pareto-
optimal solutions, MLMatch generalizes beyond observed data to propose solutions in real-time. These two approaches balance cost 
and scalability: GenUnit is computationally efficient and well-suited for practical optimization, whereas MLMatch demands higher 
computational effort but enables broader, on-demand design generation across varying targets. Together, these methods enable 
both deep exploration and rapid prediction, significantly enhancing design flexibility and performance scalability. We describe 
the generation of our unit cells (Section 2.1) and the methods used to ensure connectivity within the unit cell design (Section 2.2). 
Subsequently, we outline the procedures for calculating the impedance and stiffness of our structure (Section 2.3). Finally, we present 
the optimization methods employed, GenUnit (Section 2.4) and MLMatch (Section 2.5).

2.1.  Initialization of periodic unit cells

To generate random, but sensible unit cells, we sample a Gaussian process with a periodic covariance function. This is done by 
combining one-dimensional periodic covariance functions in each direction through multiplication.

Let 𝐱 = (𝑥, 𝑦, 𝑧) and 𝐱′ = (𝑥′, 𝑦′, 𝑧′) denote the spatial coordinates within the unit cell. The vector 𝐋 = (𝓁𝑥,𝓁𝑦,𝓁𝑧) represents the 
characteristic length scales in each spatial direction, where each 𝓁𝑖 defines the feature size of the material along the 𝑖-th axis. The 
parameter 𝑝 defines the period, i.e., the side length of the unit cell in each spatial dimension. Finally, 𝜎2𝑓  controls the global variance 
of the Gaussian process. The one-dimensional periodic covariance function is defined as [66]

𝑘per-1D
(

𝑥, 𝑥′,𝓁
)

∝ 𝜎2𝑓 exp
(

− 2
𝓁2

sin2
(

𝜋
|

|

𝑥 − 𝑥′|
|

𝑝

))

, (1)

and thus the full three-dimensional periodic covariance function is
𝑘per-3D

(

x, x′, L
)

∝ 𝑘per-1D
(

𝑥, 𝑥′,𝓁𝑥
)

𝑘per-1D
(

𝑦, 𝑦′,𝓁𝑦
)

𝑘per-1D
(

𝑧, 𝑧′,𝓁𝑧
)

. (2)

Because the covariance is defined as a product of one-dimensional periodic kernels, the correlation between two points is high only 
if they are close in all coordinate directions relative to the corresponding length scales. In this sense, the kernel behaves like a logical 
“and” across 𝑥, 𝑦, and 𝑧. This does not restrict the choice of length scales: for example, selecting a small 𝓁𝑥 and a large 𝓁𝑦 yields 
features that are short in 𝑥 but elongated in 𝑦, consistent with the intended anisotropy of the covariance.

We define a stationary, periodic Gaussian process over a 3D spatial domain:
𝑓 (x) ∼ per-3D

(

𝑚(x), 𝑘per-3D(x, x′; L)
)

, (3)

where 𝑚(x) = 0.5 is the constant mean function, x and x′ are spatial positions within the unit cell such that x, x′ ∈ [0, 𝑝]3, and L =
(𝓁𝑥,𝓁𝑦,𝓁𝑧) defines the correlation length scales in the 𝑥, 𝑦, and 𝑧 directions, respectively. The kernel 𝑘per-3D is constructed as a product 
of one-dimensional periodic kernels:

𝑘per-3D(x, x′; L) = 𝜎2𝑓
∏

𝑖∈{1,2,3}
exp

(

−
2 sin2

(

𝜋(𝐱𝑖 − 𝐱′𝑖 )∕𝑝
)

𝓁2
𝑖

)

. (4)

This formulation allows spatial correlation and periodicity in all three directions, and corresponds to a factorized Gaussian process 
where the covariance function decomposes along the coordinate axes.

To generate a unit cell design, we draw a sample 𝑓 (𝐱) from the Gaussian process per-3D. We do this on a regular 3D voxel 
grid spanning the unit cell. Letting 𝐱𝑗 denote the spatial coordinates of each voxel in this grid, the sample drawn from the GP is 
given as a 3D array 𝑓 (𝐱𝑗 ). Importantly, 𝑓 (𝐱) statistically obeys both the length scales and the continuous periodicity encoded in the 
covariance function of the GP. Ultimately, we want a unit cell design 𝑑(𝐱𝑗 ) that only comprises voxels of material or void, so we apply 
a threshold (e.g., for each 𝐱𝑗 in the grid, if 𝑓 (𝐱𝑗 ) > 𝑡ℎ𝑟𝑒𝑠ℎ, assign 𝑑(𝐱𝑗 ) ← 1, else 𝑑(𝐱𝑗 ) ← 0) to obtain a binary material distribution. 
In other words, each voxel of the unit cell either contains material (𝑑(𝐱𝑗 ) = 1) or is void (𝑑(𝐱𝑗 ) = 0).

2.2.  Connectivity check

Because of the void voxels in the geometries, we found it essential to establish an efficient connectivity-check algorithm to ensure 
manufacturability. This algorithm enables us to quickly and inexpensively check whether a design has any ‘floating’ (disconnected) 
portions that would disrupt the structural integrity of the design and prevent fabrication. Designs generated by the method described 
in Section 2.1 are often connected, because of the periodicity constraints and spatial correlation between voxel values. However, 
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Fig. 1. Examples of unit cell designs generated using the periodic Gaussian process method. The length scale vectors for designs (a), (b), and 
(c) are (1.0, 1.0, 1.0), (0.5, 0.2, 1.0), and (1.0, 0.5, 0.2), respectively. Dark blue voxels indicate the largest connected component identified by the
find_all_connected_groups algorithm (Algorithm 1), while lighter green-blue voxels represent regions not connected to the main structure through 
face-to-face contact. In (b), the long vertical features result from a larger length scale in the vertical direction. In (c), elongated in-plane features 
are visible due to increased in-plane length scales. Note that some lighter voxels may appear clustered (as in (c)) or isolated (as in (b)), but they 
are excluded from the main structure as they do not meet the face-connectivity criterion required for structural stability. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Step-by-step procedure of the connectivity-check algorithm using voxel growth. (a) Iteration step 1: The input voxel design with a randomly 
selected starting point. (b) Iteration step 2: Neighboring voxels are recursively added (newly found neighbors in each iteration are shown in red). 
Note that the isolated red cube in (b) is on the back face and connected to the dark blue cube on the front face via periodicity. (c) Iteration step 22: 
Additional voxels have been added to the connected group. (d) Iteration step 49: Final result showing the fully connected voxel group in dark blue 
and disconnected regions in light green-blue. The number of iteration steps depends on the voxel count and connectivity pattern of the design. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

connectivity is not a guarantee, and must be checked. Additionally, in later Sections 2.4 and 2.5, objective-based design methods are 
introduced. The connectivity check described in this section is also helpful for screening designs proposed by optimization steps.

The connectivity check algorithm we implement works by starting in a random voxel and iteratively expanding outwards (in a 
connected neighbor fashion). In this context, we define a connection strictly as a face-to-face contact between voxels; edge or corner 
contacts are disregarded, as they do not provide sufficient structural stability during 3D printing. This process continues until no new 
neighbors can be found. The resulting connected group is then compared against the full set of design voxels to determine whether any 
voxel remains unaccounted for. If so, the process repeats, starting from these voxels, to identify additional connected groups. After 
all groups are identified, the algorithm retains only the largest connected component and removes all smaller, isolated clusters. The 
overall connectivity-check procedure is described in Algorithm 1, which iteratively identifies all connected components in a design by 
repeatedly growing connected regions from randomly selected starting voxels. Each connected group is identified using Algorithm 2, 
which progressively expands the region by adding connected neighboring voxels layer by layer from a seed voxel. This expansion 
relies on Algorithm 6 (given in the Appendix), which returns connected neighboring voxels while accounting for periodicity in the 
unit cell. Because the initial seed voxel is selected at random, the first group found is not necessarily the largest, which necessitates 
a complete search over all connected clusters. Fig. 1 showcases examples of the generated designs and Fig. 2 shows each step in 
the connectivity check algorithm. It is worth mentioning that this procedure follows the same principle as standard graph-search 
algorithms such as breadth-first search (BFS) or depth-first search (DFS) on the voxel adjacency graph. In our implementation, 
however, the search is specialized to enforce periodic boundary conditions and face-to-face connectivity (excluding edge or corner 
contacts) to ensure manufacturability. This tailored formulation allows efficient integration with our property-computation pipeline 
and large-scale optimization framework.
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Algorithm 1: Find all connected groups Algorithm to find all connected groups of material voxels in a unit cell design.
Input: 𝐷 - a 3-dimensional boolean array representing the unit cell design, containing 1 where there is material, and 0 

where there is void
Output: 𝐺 - a set of sets, where each set 𝐺𝑐 ∈ 𝐺 contains the voxel indices of connected group 𝑐

1 𝑀𝑟 ← {indices where 𝐷 == 1} % Initialize the set of remaining material voxels
2 𝑐 ← 0 % Initialize group index
3 while 𝑀𝑟 not empty do
4 increment 𝑐
5 𝑖 ← random voxel index from 𝑀𝑟
6 𝐺𝑐 ← find_connected_group(𝑀𝑟, 𝑖, 𝐷) % See Alg. 2.
7 𝑀𝑟 ← 𝑀𝑟 ⧵ 𝐺𝑐 % Remove the most recently found connected group from the remaining voxel set

Algorithm 2: Find connected group Function to find all voxels connected to a starting voxel.
Input: 𝑀𝑟 - set of remaining material voxel indices 𝑖 - starting voxel index, 𝐷 - 3-dimensional boolean design array
Output: 𝐺𝑐 - set of voxel indices that are connected to 𝑖, and contain material

1 Initialize 𝐺𝑐 ← {𝑖}
2 Initialize 𝐺𝑐−𝑛𝑒𝑤 ← {𝑖}
3 while 𝐺𝑐−𝑛𝑒𝑤 is not empty do
4 % Note that get_neighbors accounts for periodicity.
5 𝐺𝑐−𝑛𝑒𝑤 ← get_neighbors(𝐺𝑐 , 𝐷) % See Alg. 6 in Appendix.
6 𝐺𝑐 ← 𝐺𝑐 ∪ 𝐺𝑐−𝑛𝑒𝑤

2.3.  Impedance matching and stiffness calculation

The acoustic impedance (𝑍) of a medium is defined with respect to a propagating elastic wave as the ratio between stress and 
particle velocity in the direction of propagation. In anisotropic solids, this generally depends on the wave vector 𝐤 and the polarization 
of the mode. In this work, we restrict attention to normal-incidence longitudinal waves propagating along the 𝑧-axis, for which the 
displacement is parallel to 𝐤 = 𝑘𝑧𝐳̂. Under this condition, the effective impedance reduces to 

𝑍 = 𝜌𝑐𝑧, (5)

where 𝜌 is the effective density of the unit cell and 𝑐𝑧 is the longitudinal wave speed along 𝑧. This simplification is consistent with 
prior homogenized formulations of impedance for axis-aligned elastic media.

The longitudinal wave speed 𝑐𝑧 is obtained from the slope of the longitudinal mode branch of the dispersion relation [67], 

𝑐𝑧 =
𝑑𝜔
𝑑𝑘𝑧

, (6)

evaluated near the Γ point (small 𝑘𝑧𝑎) where the branch is linear and group and phase velocities coincide. At the operating frequency 
of interest, the criterion 𝑘𝑧𝑎 ≪ 1 is satisfied, so this definition remains valid. The effective impedance of the metamaterial is then 
matched to that of water (𝑍w) by enforcing [5] 

𝑍eff = 𝑍w, (7)

where 𝑍eff represents the homogenized impedance of the periodic structure.
For our second objective of gradient stiffness, we aim to calculate the homogenized stiffness of each unit cell. This is achieved 

by equalizing the strain energy of the unit cell (𝑈) with that of an equivalent uniform medium under identical boundary conditions 
[68–70]: 

𝑈 = 1
2 ∫

𝑉

𝜎 ∶ 𝜀 𝑑𝑉 , (8)

where 𝜎 and 𝜀 are the stress and strain tensors.
In the most general case, the effective constitutive relation of a heterogeneous unit cell can be expressed through the full anisotropic 

stiffness matrix:
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Each component 𝐶𝑖𝑗 can be extracted by imposing specific boundary conditions on the unit cell and applying Eq. (8), as detailed in 
homogenization studies such as [69]. For instance, diagonal terms like 𝐶11, 𝐶22, 𝐶33 are obtained by applying uniaxial strains in 𝑥, 
𝑦, and 𝑧 directions, respectively. Off-diagonal terms (e.g., 𝐶12, 𝐶13, 𝐶23) require coupled loading conditions, while shear terms (e.g., 
𝐶44, 𝐶55, 𝐶66) are obtained from pure shear loading.

In our case, since the wave propagation problem of interest is strictly along the 𝑧-direction, only the effective stiffness component 
𝐶33 is directly relevant. The other coefficients could in principle be computed, but are not required for the present application. 
Accordingly, we compute 𝐶33 by constraining all other deformations and applying 𝜀33 ≠ 0:

𝑈 = 𝑉
2
𝐶33𝜀

2
33, (10)

from which 𝐶33 is obtained given the strain energy 𝑈 from FE simulations and the applied strain 𝜀33. Periodic boundary conditions 
were applied to maintain continuity across opposite unit-cell faces [71].

It should be noted that the density is not fixed during optimization. As voxels are added or removed to achieve the target 
impedance and stiffness gradient, the density of each candidate design is recalculated, and the effective stiffness 𝐶33 is recomputed for 
that updated geometry using Eq. (8). This ensures that both density and stiffness consistently reflect the actual unit cell configuration 
at each optimization step.

It is also noted that in a general anisotropic solid, elastic wave propagation along a given direction can result in one quasi-
longitudinal and two quasi-shear eigenmodes, all of which may be coupled through the acoustic tensor and associated stiffness 
matrix elements (e.g., 𝐶33, 𝐶44, 𝐶55, 𝐶34, and 𝐶35). Even for waves normally incident along a principal axis, nonzero off-diagonal 
terms can produce mode conversion, so a longitudinal excitation may also generate shear displacement. For a rigorous treatment of 
wave propagation and mode coupling in anisotropic media, see [72]. In this work, we deliberately restrict our analysis to axis-aligned, 
normal-incidence longitudinal waves 𝐤 = 𝑘𝑧𝐳̂ and disregard coupling to quasi-shear modes, as a proof-of-concept simplification con-
sistent with established impedance homogenization frameworks. This assumption allows us to focus on the effective longitudinal 
mode, for which the impedance reduces to Eq. (5), with the effective stiffness determined by 𝐶33.

Finite Element simulations are conducted using COMSOL Multiphysics to compute both the effective acoustic impedance and the 
homogenized stiffness of the unit cell. Also, Periodic boundary conditions are imposed to ensure consistent deformation behavior 
across opposite faces. The full simulation setup (unit-cell dimensions, voxel discretization, material parameters, meshing strategy, 
solver settings, and boundary conditions) is described in Section 3.1. We also performed a mesh sensitivity study (reported in 
Appendix A) to confirm the accuracy and reliability of the simulation results.

2.4.  Genunit optimization algorithm

We implement a customized multi-objective optimization algorithm, named GenUnit, based on multiobjective NSGA-II, specifically 
tailored for generating periodic, connected voxel-based unit cell designs. In addition to the standard NSGA-II components, GenUnit 
integrates voxel-based add/remove modification functions and an explicit connectivity constraint, which ensures manufacturability 
and structural feasibility of each candidate design. We adopt an NSGA-II framework due to its proven effectiveness in multi-criteria 
optimization and its ability to achieve meaningful exploration of the design space with relatively modest population sizes, making it 
a strong fit for our cost-aware computational framework.

A multi-objective optimization problem comprises a set of decision variables, multiple objective functions, and a series of con-
straints. The problem can be mathematically expressed as follows [73,74]:

Min/Max 𝑦 =  (𝑥) = (1(𝑥),… ,𝑘(𝑥)), 𝑘 ≥ 2

subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2,… , 𝑚

ℎ𝑗 (𝑥) = 0, 𝑗 = 1, 2,… , 𝑝.

(11)

where 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ 𝔻 represents an 𝑛-dimensional vector in decision space 𝔻 = 𝔻1 × 𝔻2 ×… × 𝔻𝑛, with 𝔻𝑛 being the domain 
of 𝑥𝑛. The vector 𝑦 is a 𝑘-dimensional objective vector within ℝ𝑘,  is the mapping function, 𝑔𝑖 denotes the 𝑖th inequality constraint, 
and ℎ𝑗 indicates the 𝑗th equality constraint. Here, 𝑘, 𝑚, and 𝑝 signify the number of objective functions, inequality constraints, and 
equality constraints, respectively.

The Non-dominated Sorting Genetic Algorithm 2 (NSGA-II) is a widely-used multi-objective optimization algorithm [75] based on 
four key components that support the optimization process: Non-dominated Sorting, Elite Preserving Operator, Crowding Distance, 
and the Selection Operator. Non-dominated Sorting categorizes solutions based on Pareto dominance, creating distinct ‘fronts’ from 
the highest to the lowest dominance. The Elite Preserving Operator ensures that the best (non-dominated) solutions are retained 
across generations. Crowding Distance promotes diversity by estimating the density of solutions in the vicinity, favoring those from 
less-crowded regions for selection. The Selection Operator employs a crowded tournament method, selecting solutions based on their 
rank and crowding distance to form a diverse next generation [74]. These components work in concert to guide the optimization 
process toward a diverse and well-distributed approximation of the Pareto front.

In our customized GenUnit algorithm, 𝑥 represents the design variables, which are voxel configurations. The objective function 
 (𝑥) consists of two components: the effective acoustic impedance 𝑍eff and the stiffness in the z direction, 𝐶33. For each optimization 
run, we target a fixed value for impedance, specifically the impedance of water (𝑍target = 1.48 MRayl), and vary the target value of 
𝐶33 within an applicable range. Rather than using a fixed scalarized objective function, GenUnit simultaneously evaluates multiple 
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objectives: effective acoustic impedance and stiffness. The algorithm constructs a Pareto front that captures the trade-offs between 
these two objectives, effectively exploring multiple implicit weightings across the design space.

The algorithm seeks to minimize the deviation from each target independently, and the Pareto front is constructed to reflect 
the trade-off between these objectives. The constraints 𝑔 includes physical conditions related to the target property ranges, while ℎ
encodes structural feasibility constraints, such as connectivity and periodicity of the designs. We initiate the optimization with an 
initial population of voxelated unit cell designs. Here, the term population refers to a set of candidate solutions (designs) that are 
considered in each generation of the optimization process.

To generate new designs for subsequent generations, we utilize the Add and Remove functions instead of traditional crossover 
and mutation operations. These functions are tailored to preserve periodicity and connectivity that ensure each design remains 
manufacturable. For efficient design generation, the algorithm randomly selects an integer between 1 and the grid size, adding or 
removing multiple voxels to the design. In the Add function, the placement ensures the new voxels are connected to the existing voxels 
while supporting the periodicity of the design. Specifically, additions to a corner replicate voxels to all corners, those placed on edges 
are added to locations on four parallel edges, boundary face additions are placed twice on the opposite faces, and interior voxels 
are added once. Similarly, the Remove function randomly selects voxels for deletion, applying equivalent periodicity constraints. 
For example, removal of a corner voxel requires removing all eight voxels located in the vertices. For the connectivity check, after 
removing the voxels, the new design is sent to the connectivity check function to ensure it remains connected. If removing the selected 
voxels violates connectivity, we reconsider which voxels should be removed by reselecting the voxels. More details of the Add and 
Remove functions are provided in Algorithm 3 and Algorithm 4, respectively. 

Algorithm 3: Arithmetic Add Function to make new designs from the previous ones by adding cubes.
Input: 𝑝1 - initial structure, 𝐺𝑟𝑖𝑑𝑁𝑢𝑚𝑏𝑒𝑟
Output: 𝑝𝑜𝑝𝑐1 - updated structure

1 Initialize 𝑎1 ← random integer between 1 and 𝐺𝑟𝑖𝑑𝑁𝑢𝑚𝑏𝑒𝑟;
2 Initialize 𝐴𝐹𝑙𝑎𝑔 ← true;
3 Initialize 𝑝𝑜𝑝𝑐1 ← 𝑝1;
4 while 𝑎1 > 0 and 𝐴𝐹𝑙𝑎𝑔 do
5 if 𝑔𝑟𝑜𝑢𝑝_𝑑𝑎𝑡𝑎.𝑎𝑙𝑙_𝑒𝑚𝑝𝑡𝑦_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 is empty then
6 𝐴𝐹𝑙𝑎𝑔 ← false % The design is full; there is no empty spot to add voxels;
7 return;

8 𝐴_𝑖𝑛𝑑𝑒𝑥 ← random index from 𝑔𝑟𝑜𝑢𝑝_𝑑𝑎𝑡𝑎.𝑎𝑙𝑙_𝑒𝑚𝑝𝑡𝑦_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠;
9 if 𝐴_𝑖𝑛𝑑𝑒𝑥 refers to a voxel inside then
10 Add that voxel only to the new design;
11 else if 𝐴_𝑖𝑛𝑑𝑒𝑥 is on the corners then
12 Add that voxel to all 8 corners;
13 else if 𝐴_𝑖𝑛𝑑𝑒𝑥 is at the boundary edges then
14 Add that voxel to the 4 opposite edges;
15 else
16 Add that voxel to both opposite faces;
17 Update 𝑑𝑒𝑠𝑖𝑔𝑛 and 𝑔𝑟𝑜𝑢𝑝_𝑑𝑎𝑡𝑎 on neighbor list;
18 Update 𝑝𝑜𝑝𝑐1 properties with new values;
19 𝑎1 ← 𝑎1 − 1;

After generating offspring designs, using the Add and Remove modification functions, the parent and offspring populations are 
merged and sorted into Pareto fronts using non-dominated sorting. The next generation is composed of solutions from these fronts, 
prioritizing the highest-ranked individuals, with additional selection pressure applied to maintain diversity using crowding distance. 
If a front exceeds the population size limit, designs from less crowded regions are preferentially retained to maintain diversity. This 
process is guided by the four core components of NSGA-II non-dominated sorting, elite preservation, crowding distance, and tourna-
ment selection—which collectively balance exploration and exploitation in the design space. These components ensure that a diverse 
set of high-performing candidates is preserved across generations and enable the algorithm to explore trade-offs between impedance 
and stiffness, thereby progressively shaping a well-distributed Pareto front. Each design is evaluated based on its impedance and 
stiffness, which serve as the optimization objectives. The algorithm iterates for several generations, progressively refining the Pareto-
optimal set to achieve the target impedance and stiffness values. The optimization is repeated over a range of target stiffness values 
combined with a target impedance to produce a series of Pareto-optimal sets. A flowchart of the algorithm is shown in Fig. 3.

Note that GenUnit relies on the exact solution for the stiffness and impedance obtained for each chosen design configuration by 
direct numerical simulation in COMSOL. In the next section, we introduce an approach that uses a surrogate model to replace the 
full Finite Element simulation.
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Algorithm 4: Arithmetic Remove Function to make new designs from the previous ones by removing cubes.
Input: 𝑝2 - initial structure, 𝐺𝑟𝑖𝑑𝑁𝑢𝑚𝑏𝑒𝑟
Output: 𝑝𝑜𝑝𝑐2 - updated structure

1 Initialize 𝑎2 ← random integer between 1 and 𝐺𝑟𝑖𝑑𝑁𝑢𝑚𝑏𝑒𝑟;
2 Initialize 𝑅𝐹𝑙𝑎𝑔 ← true;
3 Initialize 𝑝𝑜𝑝𝑐2 ← 𝑝2;
4 while 𝑎2 > 0 and 𝑅𝐹𝑙𝑎𝑔 do
5 Initialize 𝐶𝐹 𝑙𝑎𝑔 ← true  % Checks connectivity;
6 Initialize 𝑡𝑟𝑖𝑎𝑙 ← 0, 𝑡𝑟𝑖𝑎𝑙max ← 100;
7 while 𝑡𝑟𝑖𝑎𝑙 < 𝑡𝑟𝑖𝑎𝑙max do
8 𝑅_𝑖𝑛𝑑𝑒𝑥 ← random index from 𝑛𝑜𝑛_𝑒𝑚𝑝𝑡𝑦_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠;
9 if 𝑅_𝑖𝑛𝑑𝑒𝑥 refers to a voxel inside then
10 Remove that voxel only;
11 else if 𝑅_𝑖𝑛𝑑𝑒𝑥 is at the corners then
12 Remove the voxel from all 8 corners;
13 else if 𝑅_𝑖𝑛𝑑𝑒𝑥 is at the boundary edges then
14 Remove the voxel from the 4 parallel edges (periodic counterparts);
15 else
16 Remove the voxel from both opposite faces;
17 Update 𝑑𝑒𝑠𝑖𝑔𝑛 and 𝑔𝑟𝑜𝑢𝑝_𝑑𝑎𝑡𝑎;
18 if design is connected then
19 𝐶𝐹 𝑙𝑎𝑔 ← true;
20 return;
21 else
22 𝐶𝐹 𝑙𝑎𝑔 ← false;
23 𝑡𝑟𝑖𝑎𝑙 ← 𝑡𝑟𝑖𝑎𝑙 + 1;

24 if 𝐶𝐹 𝑙𝑎𝑔 then
25 Update 𝑝𝑜𝑝𝑐2 properties with new values;
26 𝑎2 ← 𝑎2 − 1;
27 else
28 Break from the loop; no feasible removal found. Continue with Add function.;
29 𝑎2 ← 𝑎2 − 1;

2.5.  MLMatch Inverse design algorithm

While GenUnit (Section 2.4) provides a reliable and cost-effective approach to multi-objective optimization, it requires iterative 
population-based search and multiple full-order evaluations, which may limit scalability when rapid generation of designs across a 
wide range of targets is needed. To overcome these limitations, we propose a differentiable machine learning-based inverse design 
framework, called MLMatch, which enables fast, on-demand generation of voxel configurations given target impedance and stiffness.

The goal of this framework is to complement GenUnit by accelerating the inverse design process, particularly in applications 
requiring functional grading over continuous property ranges. Specifically, the ML-based approach allows the creation of large design 
datasets without running full optimization for each target condition, enabling the downstream application discussed in Section 3.4. 
We construct two key tools: (1) an ML regressor that offers on-the-fly forward evaluation from a voxel configuration to the two 
effective properties (Section 2.5.1) and (2) a connectivity classifier that predicts whether the configuration is internally connected or 
disconnected (Section 2.5.2). Given the ML predictors, Automatic Differentiation [76] is harnessed to solve the constrained inverse 
problem through gradient-based optimization (Section 2.5.3). Fig. 4 gives a conceptual illustration of the proposed framework.

2.5.1.  Regressor for impedance and stiffness
As the first step of this section, we construct an ML regressor that predicts the impedance and stiffness given a voxel configuration. 

The model is parameterized as a 3D convolutional neural network (CNN) that learns the underlying mapping between a voxel 
configuration and the corresponding effective property. Formally, a voxel configuration 𝐱 is represented as a collection of spatially 
distributed voxels, where the grid size 𝑁 ∈ ℕ is set 𝑁 = 10 throughout this work. The learnable map of interest entails ℎ ∶ {0, 1}𝑁3

→
ℝ2, where ℎ denotes the impedance regressor that predicts two scalar values based on the input voxel configuration.

The model consists of 𝑑conv 3D convolutional layers for feature extraction, with ReLU activations for each layer except the final 
one, followed by a multi-layer perceptron (MLP) of depth 𝑑fc for regression. The forward pass can be described by the recursive maps:

𝑣𝑙+1 = 𝜎
(

𝑊𝑙 ∗ 𝑣𝑙
)

, 𝑙 = 1,… , 𝑑conv,
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Fig. 3. Schematic illustration of the GenUnit multiobjective optimization framework. Here, 𝑃𝑖 represents the population at the beginning of 
generation 𝑖. New designs 𝑄𝑖 are created by adding or removing voxels from 𝑃𝑖. The combined set is evaluated and sorted into fronts 𝐹𝑖 using 
non-dominated sorting based on two objectives: impedance and stiffness. To maintain a fixed population size, some entire fronts (e.g., 𝐹4 and 𝐹5) 
or individual solutions within a front (e.g., 𝐹3) are removed. The resulting set forms 𝑃𝑖+1, the population at the beginning of the next generation.

Fig. 4. A visual illustration of the proposed framework. ℎ and 𝑔 denote the property regressor and the connectivity classifier, respectively.

𝑓𝑑conv+1 = Flatten(𝑣𝑑conv ),

𝑓𝑙+1 = 𝜎
(

𝑊𝑙𝑓𝑙 + 𝑏𝑙
)

, 𝑙 = 𝑑conv + 1,… , 𝑑conv + 𝑑fc − 1,

ℎ(𝐱) = 𝑊𝑑conv+𝑑fc𝑓𝑑conv+𝑑fc−1 + 𝑏𝑑conv+𝑑fc , (12)

where 𝑣1 = 𝐱 ∈ {0, 1}𝑁×𝑁×𝑁 , 𝜎 denotes the ReLU activation function, ∗ represents the 3D convolution operation, and 𝑊𝑙 and 𝑏𝑙 are 
the trainable weights and biases. The final output ℎ(𝐱) ∈ ℝ2 represents the predicted impedance and stiffness values. Each hidden 
layer in the MLP has width 𝑤𝑓𝑐 , which is set to 64. The shape dataset  containing 18,917 unit cells is generated by the periodic 
unit cell generation method delineated in Section 2.1. Given a unit cell, the corresponding effective impedance 𝑍 and stiffness 𝐶33
are computed following the finite element simulation described in Section 2.3. Additional training details are provided under Details 
of Model Training Protocols in the Appendix.

2.5.2.  Connectivity classifier
The connectivity check in this work, in principle, can be formulated as standard graph-search algorithms (e.g., breadth-first 

search [77], depth-first search [78]) on the voxel adjacency graph under the periodic boundary condition. However, in our setting that 
involves both property computation and connectivity check, every design evaluation requires a 2–3 minute ground-truth simulation 
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to obtain impedance and stiffness. Running a graph-search for every candidate design would, critically, be non-differentiable and 
thus incompatible with gradient-based updates used for property optimization. In addition, while GPU implementations reported in 
the literature [79,80] would reduce per-instance runtime, they provide no natural mechanism for batch-level early rejection, so the 
cumulative overhead still becomes substantial when screening millions of candidates.

For gradient-based inverse design, we conceive a connectivity classifier that predicts whether a given voxel configuration is con-
nected or not. Although the connectivity algorithm presented in Section 2.2 serves an on-the-fly checker for voxel connectivity, 
it does not inform what specific voxels of given a disconnected configuration should be updated to become connected. To enable 
gradient-based design update with a target impedance given the connectivity requirement, we develop an ML surrogate of the con-
nectivity check algorithm, viewing Algorithm 1 as the ground-truth procedure to be approximated. The connectivity classifier is 
modeled as a 3D CNN. It performs binary classification over a voxel configuration as connected or disconnected, assigned to 0 and 1, 
respectively. The model consists of 𝑑𝑐𝑜𝑛𝑣 3D convolutional layers with ReLU activations for feature extraction, followed by an MLP 
of depth 𝑑𝑓𝑐 . Similar with the formal description on the regressors above, the classifier can involve a map 𝑔 ∶ {0, 1}𝑁×𝑁×𝑁 → [0, 1], 
where 𝑔 represents the feasibility classifier that predicts (dis)connectivity. The forward pass given an arbitrary configuration 𝐱 ∈ 
is recursively defined as follows:

𝑣𝑙+1(𝐱) = 𝜎
(

𝑊𝑙 ∗ 𝑣𝑙(𝐱)
)

, 𝑙 = 1,… , 𝑑𝑐𝑜𝑛𝑣,

𝑣𝑑𝑐𝑜𝑛𝑣+1 = Flatten(𝑣𝑑𝑐𝑜𝑛𝑣 (𝐱)),

𝑓𝑙+1(𝑣) = 𝜎
(

𝑊𝑙𝑓𝑙(𝑣) + 𝑏𝑙
)

, 𝑙 = 𝑑𝑐𝑜𝑛𝑣 + 1,… , 𝑑𝑐𝑜𝑛𝑣 + 𝑑𝑓𝑐 − 1,

𝑔(𝐱) = sigmoid
(

𝑓𝑑𝑐𝑜𝑛𝑣+𝑑𝑓𝑐 (𝑣)
)

, (13)

where 𝑣𝑙(𝐱) represents the output of the 𝑙-th layer, each hidden layer in the MLP has width 𝑤𝑓𝑐=8, and ∗ denotes the 3D convolution 
The hyperparameters are set as (𝑑𝑐𝑜𝑛𝑣, 𝑑𝑓𝑐 ) = (2, 2), which amounts to 88, 833 trainable parameters. Details of the training protocol 
and results are stated under Details of Model Training Protocols in Appendix.

In preparing the training data for the connectivity classifier, we need to prepare both a set containing connected instances, and 
another containing disconnected ones. In doing so, given a shapeset  containing only connected voxel configurations, we conceive 
a synthetic data generation heuristic that generates a set of perturbed instances ̃ = {𝐱̃}, each of which is close to connected solution 
x while remaining disconnected. A pseudo-algorithm for numerical implementations of this procedure is presented in Algorithm 7 in 
Appendix. Details of the training data, protocol, and results are stated under Details of Model Training Protocols in Appendix.

2.5.3.  Inverse design with automatic differentiation
With access to the trained ML regressor and classifier stated above, we present a formal description on the gradient-based inverse 

design that identifies voxel configurations with a targeted impedance. Given a target impedance 𝑍∗ and the regressor ℎ(𝐱) and the 
classifier 𝑔(𝐱) trained following the procedure in Section 2.5, the inverse optimization is written:

min
𝐱

(𝑍∗, 𝑍)

s.t. 𝑔(𝐱) = 0,
(14)

where 𝑍 is the impedance predicted by ℎ(𝐱) and (⋅, ⋅) is the regression loss involving  ∶ ℝ ×ℝ → ℝ≥0. In specifying the inverse 
problem further, it is required to relax the equality-constrained problem for its numerical implementation. Given a configuration 𝐱, 
we build on the predicted probability of it being connected, i.e., ℙ[𝑔(𝐱) = 0] based on Section 2.5.2, and introduce a soft probability 
constraint with the threshold of violation 𝑝𝑐𝑢𝑡 ∈ [0, 1] with the penalty coefficient 𝜆 ∈ ℝ+. The optimization problem reads:

min
𝐱

‖𝑍∗ −𝑍‖1 + 𝜆max(0, 𝑝cut − ℙ[𝑔(𝐱) = 0]), (15)

where ‖𝑍∗ −𝑍‖1 = |𝑍∗ −𝑍| is the L1 loss of impedance and 𝑝𝑐𝑢𝑡 is set as 0.9 throughout this work unless stated otherwise. Automatic 
Differentiation [76] gives access to the numerical gradients that solving Eq. (15) involves, namely ∇𝐱𝑍 and ∇𝐱ℙ[𝑔(𝐱 = 0)]. With 
both, the design update is conducted iteratively until termination criteria are met. This procedure is summarized as pseudocode in 
Algorithm 5.

3.  Results and discussion

In this section, we first present the results obtained using GenUnit to find the multiobjective designs with target impedance and 
stiffness. Then, we proceed to the results achieved by MLMatch, an ML-driven framework whose learned feature space enables 
quick stiffness grading via Pairwise Controlled Manifold Approximation [81] (PaCMAP) embedding without post-optimization, and 
also supports on-demand identification of new voxel configurations in sparsely represented target regions through gradient-based 
inverse design. Finally, we present demonstrative examples that are achievable using this framework. A key distinction between the 
two methods lies in their computational requirements. The GenUnit approach involves running a limited number of high-fidelity 
simulations (COMSOL), making it less computationally expensive up front. In contrast, MLMatch method requires generating and 
simulating a substantially larger dataset to train the surrogate model, incurring a much higher initial computational cost. However, 
once the ML model is trained, it offers greater flexibility and scalability in exploring the design space efficiently without further 
expensive simulations.

Computer Methods in Applied Mechanics and Engineering 449 (2026) 118571 

10 



R. Karimi Mahabadi et al.

Algorithm 5: Optimize impedance Algorithm for inverse optimization given a target impedance subject to the connectivity 
constraint.
Input: 𝑍∗ - target impedance 𝐱 - initial design 𝑝𝑐𝑢𝑡 - probability threshold of connectivity 𝜆 - penalty parameter
Output: 𝐱∗ - optimized design

1 for 𝑖 = 1 to 𝑖max do
2 𝑍 ← ℎ(𝐱);
3 𝑝 ← ℙ[𝑔(𝐱) = 0];
4 ∇𝑧 ← ∇𝐱|𝑍∗ −𝑍|;
5 ∇𝑝 ← −𝜆∇𝐱

(

max(0, 𝑝𝑐𝑢𝑡 − 𝑝)
) ;

6 ∇total ← ∇𝑧 + ∇𝑝;
7 𝐱 ← 𝐱 − ∇total;

8 return 𝐱∗;

3.1.  Finite element simulation framework

Each unit cell is modeled as a 1mm × 1mm × 1mm cube, discretized into a 10 × 10 × 10 voxel grid. Occupied voxels (0.1 mm edge) 
are converted to solid subdomains meshed with structural elements (∼ 163 elements per voxel, element size ≈ 0.00625 mm). The base 
material is a metallic alloy (𝐸 = 100 GPa, 𝜈 = 0.39, 𝜌 = 7850 kg/m3), chosen to illustrate the methodology rather than a specific alloy. 
Effective density is recalculated for each design as the total mass over unit-cell volume.

Periodic boundary conditions are enforced on opposite faces to impose Floquet–Bloch periodicity. For dispersion calculations, 
eigenfrequency studies are run along 𝐤 = 𝑘𝑧𝑧̂ with 𝑘𝑧𝑎 ∈ [0, 𝜋]. The longitudinal velocity 𝑐𝑧 was extracted from the dispersion relation 
along 𝑘𝑧 at the operating frequency of 30 kHz, by fitting the slope 𝜕𝜔∕𝜕𝑘𝑧 of the branch. Because 𝑘𝑧𝑎 ≪ 1 for 𝑎 = 1mm at this fre-
quency, the branch remains nearly linear, and the extracted velocity agrees with the long-wavelength homogenized limit. Thereafter, 
we obtain impedance 𝑍 = 𝜌eff𝑐𝑧. For homogenization, linear static analysis is done under 𝜀33 = 0.1, with other average strains set to 
zero, allowing 𝐶33 to be extracted via strain-energy equivalence. Mesh sensitivity analysis is reported in Appendix A.

3.2.  Genunit optimization results

Using the GenUnit algorithm, we aim to generate designs with widely varying target stiffness values and a target impedance close 
to that of water (1.48 MRayl). Towards this objective, we consider an initial population of size 120 and 10 generations to progressively 
refine the designs to achieve the target impedance and stiffness values. Fig. 5 illustrates the optimization outcomes, with the first 
objective always being to achieve a target impedance of 1.48 MRayl. The second objectives shown here include maximizing stiffness, 
minimizing stiffness, and achieving a stiffness value near specific target values such as 1GPa and 3GPa. The gray symbols represent 
the initial population and the red symbols represent the first Pareto front of the tenth generation. The progression shows significant 
improvement, with designs converging closer to the desired objectives.

In Fig. 5(a), the objective is to maximize stiffness while maintaining the target impedance. Some designs match the impedance 
target closely (1.12 MRayl) but have lower stiffness (1.38GPa), which is ideal for the impedance objective but not for stiffness. Other 
designs exhibit high stiffness values (up to 104.25GPa) but also show elevated impedance values (24.56 MRayl). Fig. 5(b) presents the 
results of minimizing stiffness. The first Pareto front of the tenth generation includes designs with very low stiffness values (1.18GPa) 
and an impedance closely matching water (1.49 MRayl), demonstrating the algorithm’s effectiveness in achieving this objective. In 
Fig. 5(c) (and Fig. 5(d)), the objective is to achieve a target stiffness of around 1GPa (and 3GPa) while maintaining the impedance 
near 1.48 MRayl. The first Pareto front of the tenth generation (red) shows designs that successfully meet these criteria, with one 
design achieving an impedance of 1.49 MRayl and a stiffness of 1.26GPa and another design achieving an impedance of 1.46 MRayl 
and a stiffness of 2.73GPa. These results indicate that the GenUnit algorithm effectively improves design optimization, converging 
towards the specified objectives and producing diverse solutions that balance stiffness and impedance. In Section 3.3, we will use 
this method on a demonstration example for a gradient stiffness material with constant impedance.

3.3.  Machine learning-based design

We demonstrate the efficacy of MLMatch through two results: (1) rapid stiffness grading via PaCMAP embedding without post-
optimization; (2) discovery of new voxel configurations in target regions that are sparsely covered by the training data gradient-based 
inverse design.

3.3.1.  PaCMAP-based stiffness grading
To demonstrate the efficacy of MLMatch for stiffness grading purposes, we first use PaCMAP [81], a nonlinear dimensionality 

reduction method that balances local and global structure preservation. In our implementation, PacMAP offers a 2D embedding of 
the supervised feature space, which serves as a navigable “map” for identifying stiffness grading without post-optimization. We apply 
PaCMAP to the intermediate 64-D feature representations 𝑓𝑑conv+2 ∈ ℝ𝑤𝑓𝑐  extracted from the first hidden layer of the MLP in the 
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Fig. 5. Property space achieved by the GenUnit optimization for multiple objectives: (a) maximizing stiffness while maintaining the impedance 
near 1.48 MRayl, (b) minimizing stiffness while maintaining the impedance near 1.48 MRayl, (c) achieving stiffness near 1GPa while maintaining 
the impedance near 1.48 MRayl, and (d) achieving stiffness near 3GPa while maintaining the impedance near 1.48 MRayl. Gray symbols represent 
the initial population and red symbols represent the first Pareto front of the last generation. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

trained property regressor (Section 2.5.1). The supervised features of the regressor are encoded colored by the relevant 2D material 
properties—impedance 𝑍 and stiffness 𝐶33. Default hyperparameters were used for PaCMAP [81].

As shown in Fig. 6(a), PaCMAP produces a 2D embedding distilled from the 64-D regression features of the 18,917 training points. 
Overall, the two property distributions show strong distributional similarity with respect to the embeddings of unit cells, indicating 
a strong positive correlation between impedance and stiffness, as is physically expected [82]. Unit cells with high stiffness tend to 
have high impedance (red regions in the top and bottom of Fig. 6(a)), and vice versa. Interestingly, the horizontal component of 
the PaCMAP embedding tends to exhibit a negative correlation with both properties. Selecting a segment in the 2D PaCMAP plot 
enables fast exploration of stiffness grading across the dataset. In Fig. 6(b), we show two examples of stiffness variations chosen from 
the red and the blue regions of the PaCMAP visualization, where the target impedance 𝑍 is set to 5.23 MRayl (left column) and 12 
MRayl (right column), respectively. Additional investigation could be done using PaCMAP to explore the meaning of the clusters 
observed in the high impedance, high stiffness regime. Here we have shown that marrying MLMatch with PaCMAP embedding 
enables optimization-free identification of a collection of unit cells stiffness grading for some selected target impedance values.

3.3.2.  Gradient-based inverse design
We show the inverse design results of the proposed design framework from Section 2.5 in Fig. 7. For these results, the target 

impedance and threshold of violation are set to 𝑍∗ = 𝑍𝑤 (1.48 MRayl) and 𝑝𝑐𝑢𝑡 = 0.9, respectively. The data density distribution with 
random initialization in Fig. 7(a) shows that a very small portion of the samples are close enough to the target (vertical black dotted 
line). Fig. 7(b) and (c) illustrate a distributional shift towards the target impedance after the inverse design conducted with the two 
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Fig. 6. Latent vectors from stiffness neural network embeddings displayed by PaCMAP. Axes are abstract, arising from PaCMAP. (a) The 2D PaCMAP 
feature distributions applied to the 64D feature of the trained property regressor: (top) colored by impedance and (bottom) colored by stiffness. (b) 
Illustration of the stiffness grading achievable from the two clusters, each marked as a circle in (a). For each stiffness grading, the target impedance 
𝑍 is set to 5.23 MRayl (left) and 12 MRayl (right), respectively. Randomly selected unit cells within each circle are displayed with the corresponding 
ground-truth property 𝑍 and 𝐶33, with units of [MRayl] and [GPa], respectively.

Fig. 7. MLMatch inverse design results. (a)-(c) Illustration of a shift of property distribution before and after the inverse design. The optimization 
is tested for 300 different starting designs randomly sampled from the training dataset. Black dotted lines denote the target impedance 𝑍∗. (a) 
The density distribution of the random initial set, (b) optimized set, and (c) its zoom-in view, all of which are estimated through kernel density 
estimation. (d) Optimization history of two runs. From left to right, each column displays optimized voxel configurations, impedance, stiffness, 
probability of connectivity, and volume fraction. The red dotted line denotes the target impedance, while the black one denotes the probability 
threshold 𝑝𝑐𝑢𝑡 = 0.9. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. The resulting 𝑍 − 𝐶33 data distribution after inverse design. The subregion formed between the black dotted lines in (a) and (b) is the target 
region Ω∗ = 𝑍water[0.95, 1.05] × [0,∞). (a) The data distribution after the inverse design (red), taking the training data as a background (gray with 
0.05 transparency). (b) A zoomed-in view centered on the target region with the maximum relative error of impedance set as 5% in the raw scale. 
Note the 3 original samples that meet the impedance error threshold in gray are very close together with nearly identical stiffness (gray in Ω∗). 
(c) Three selected examples of optimized design (blue dots in (b)). The resulting property (𝑍, 𝐶33) from left to right based the wave analysis in 
COMSOL reads (1.474 MRayl, 0.175GPa), (1.529 MRayl, 1.921GPa), (1.522 MRayl, 4.762GPa), respectively. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

ML surrogates in Section 2.5.1, i.e., the property regressor ℎ(𝐱) and the connectivity classifier 𝑔(𝐱) and the gradient-based solution 
procedure in Algorithm 5 that runs 250 iterations for each optimization run. Fig. 7(d) shows two optimization runs. At early stages 
of each run, the connectivity constraint tends to be active, while it becomes less so as the optimization proceeds. As the inverse 
design is driven by the gradients offered by Automatic Differentiation, all the results are subject to local optimality, divergence, and 
infeasibility. The intrinsic limitations of gradient-based optimization are acceptable in the proposed inverse design; it builds on the 
ML surrogates that provide on-the-fly predictions, thus gracefully scales with the number of initial starting points and the maximum 
number of iterations per optimization run.

The distribution of each property after optimization is reported in Fig. 8. The target subdomain in the 𝑍 − 𝐶33 property space 
is specified as Ω∗ = 𝑍water[0.95, 1.05] × [0,∞), whose boundary with respect to 𝑍 is shown as the black lines in Fig. 8(a) and (b). 
Within the original 18,917-size dataset including both training/test splits, only three samples (0.016%) meet the 5% relative error 
threshold of impedance and these three samples (gray within the target region Fig. 8(b)) are nearly identical in stiffness with a value 
of around 1GPa. Our design framework identifies 196 new designs within Ω∗ while addressing the connectivity requirement. The 
resulting stiffness 𝐶33 coverage spans a large range of [0.175, 4.762] GPa, which facilitates the goal of building an acoustic metamaterial 
array with functional grading for tailored stiffness distributions 𝐶33, while maintaining impedance within 5% of 𝑍𝑤 and geometric 
connectivity. The newly discovered designs show a rich spread across the target region, including examples of high stiffness (𝐶33 > 3
GPa). The distribution of the results tends to be denser in the low elasticity region, reflecting the strong positive correlation between 
elasticity and impedance in our unit cell representation [82]. This expanded coverage facilitates the construction of stiffness grading 
with impedance matching; see Section 3.4 for a demonstrative case study.

3.4.  Demonstrative example

To demonstrate the efficacy of our framework, we present two examples of optimized designs both featuring a gradient stiffness 
profile and constant impedance matching that of water. The chosen design is a column with stiffness varying linearly along its length, 
with the highest stiffness at the top and the lowest stiffness at the bottom. To achieve this design, we choose an array of unit cells from 
each of the two optimization methods to meet the objectives. We then simulate the response of each design in COMSOL and to account 
for periodicity in all three directions, we repeat each unit cell four times in the vertical direction and for the other two directions we 
set the periodic boundary condition. We systematically select unit cells for the first example design from the Pareto-optimal solutions 
generated by GenUnit, while for the second example design, we use the MLMatch algorithm. We choose the stiffness gradient profile 
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Fig. 9. Illustration of design properties generated by GenUnit and MLMatch. (a) and (b) show the stiffness gradients for GenUnit and MLMatch 
designs, respectively. (c) and (d) show the impedance distributions for the same designs. Notably, both designs exhibit impedance values that 
closely resemble that of water, despite being composed of metallic alloy. The GenUnit structure is more compact but requires longer inference time 
per design due to its iterative nature, whereas MLMatch demands substantial upfront training but enables rapid retrieval of design values thereafter.

based on the maximum and minimum values achieved in our optimal solutions in the previous section, ensuring the closest match 
for impedance.

Using GenUnit, we set various target values for stiffness and select the optimal designs from the Pareto front. In contrast, MLMatch 
provides a large library of designs from which we select those that closest meet our target impedance and stiffness criteria. The larger 
computational overhead of the MLMatch approach results in greater flexibility to replicate the gradient stiffness. Consequently, the 
range of stiffness values achieved using MLMatch is almost double that obtained with GenUnit and the gradient increments are finer. 
Fig. 9 illustrates two representative designs generated using GenUnit and MLMatch. Details of the properties are listed in Table 1. 
Both methods achieve close impedance matching with water and a significant stiffness gradient.

In Fig. 10, we illustrate the displacement color map at 30 kHz and the transmission ratio (the ratio of the applied displacement at the 
top boundary to the displacement received at the bottom surface) for designs generated using GenUnit and MLMatch. The transmission 
plots demonstrate effective displacement transmission from the top to the bottom of the designs, with values approximating 1 for both 
GenUnit and MLMatch designs, approaching near perfect wave transmission, in spite of the large stiffness variation. This effective 
transmission further confirms the structural connectivity between adjacent unit cells, allowing seamless propagation of displacement 
through the entire design. The observed peaks in the transmission plots are attributed to structural resonances that naturally occur 
due to the finite size of the design. To the best of our knowledge, this is the first demonstration of a metallic metamaterial with both 
a large stiffness gradient and near-perfect acoustic wave transmission—an achievement that opens new avenues for medical device 
design and other precision acoustic applications.

MLMatch clearly enables broader exploration and finer resolution of the stiffness gradient while both methods achieve tight 
impedance control. The resulting stiffness gradient is 50% larger for the MLMatch approach. At the same time, the MLMatch 
approach requires a large up-front computational investment for model training. Specifically, training the MLMatch surrogate model 
required nearly 20,000 unit cell designs simulated in COMSOL. In contrast, the GenUnit method started with ∼100 initial designs with 
offspring totaling approximately 5000 simulations. The four-fold decrease of computation costs highlights an advantage of GenUnit 
in scenarios with limited computational resources, as it avoids the up-front cost of large-scale dataset generation while still producing 
viable designs.
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Fig. 10. Displacement transmission ratio (|𝑤bottom face|∕𝑤top face) versus frequency for the demonstrator designed using (a) GenUnit and (c) ML-
Match, along with the color map of displacement along the z-axis for the structure designed using (b) GenUnit and (d) MLMatch at 30 kHz. With 
matched impedance between the unit cell designs, the ideal displacement transmission ratio is 1, with values exceeding 1 at resonance frequencies. 
The gray circle highlights the specific operating condition used as the optimization target.
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Table 1 
Detail results of the demonstrative examples designed by GenUnit and ML-
Match with a target impedance of 1.48 throughout and as large of a gradient 
in stiffness as possible.
 GenUnit  Machine Learning
 Impedance (MRayl)  Stiffness (GPa)  Impedance (MRayl)  Stiffness (GPa)
 1.54  0.97  1.51  0.17
 1.48  1.20  1.41  0.68
 1.55  1.46  1.53  1.19
 1.44  1.80  1.41  1.69
 1.49  1.92  1.49  2.22
 1.42  2.33  1.54  2.74
 1.46  2.74  1.50  3.12

 1.43  3.52
 1.55  4.02
 1.52  4.76

These results highlight a fundamental trade-off between training time, inference efficiency, and design flexibility. MLMatch 
requires a significant upfront computational investment for training but enables rapid evaluations and precise control over property 
gradients during inference. In contrast, GenUnit eliminates the need for surrogate model training and directly interfaces with finite 
element simulations, offering higher fidelity results and lower implementation overhead—albeit at the cost of slower, design-by-
design inference. Importantly, the strengths of both approaches are complementary and can be leveraged in tandem. MLMatch is 
well-suited for global exploration of the design space, efficiently identifying promising regions across a wide domain. Once such 
candidates are located, GenUnit can be employed to perform high-accuracy local refinement, benefiting from its direct use of physics-
based simulations. This hybrid strategy enables scalable, yet precise design synthesis by combining the broad search capability of 
MLMatch with the accuracy and simulation grounding of GenUnit.

4.  Conclusion

We presented a design framework of metamaterials with tailored acoustic impedance and stiffness gradients. The framework builds 
on the generation of unit cells through a periodic covariance function. The approach demonstrates optimization of the designs for 
target properties using two different multiobjective optimization methodologies. Specifically, we propose two algorithms: GenUnit, 
based on a non-dominated sorting genetic algorithm II (NSGA-II), and MLMatch, which employs differentiable machine learning 
techniques. These algorithms are designed to work independently or in tandem. The overall framework benefits from the embedded 
algorithm that ensures inter-connectivity of the voxels in each design, thereby guaranteeing manufacturability. The efficacy of the 
approach was demonstrated for a demonstration case study in which we generated an on-demand dataset of manufacturable metallic 
metamaterial designs exhibiting the impedance of water while following a gradient stiffness pattern.

The proposed framework is a novel contribution to the literature on acoustic impedance matching. Unlike previous approaches, 
which relied heavily on human intuition and were subject to trial-and-error and limited design freedom, this framework does not 
require human intuition or intervention in the design process. Additionally, it is capable of achieving impedance matching with 
various impedance values. In our case study, we showcased a unique and interesting example: impedance matching with water 
using graded stiffness metallic metamaterials. MLMatch involves an upfront training cost but enables rapid inference across a wide 
design domain, making it ideal for global exploration of candidate designs. In contrast, GenUnit requires no training and performs 
direct physics-based simulations, offering higher accuracy at the expense of longer inference time per design. When used in tandem, 
MLMatch can efficiently identify promising regions of the design space, which can then be locally refined by GenUnit to generate 
high-fidelity designs that simultaneously match target impedance and stiffness. Given the authenticity of our framework’s design 
generation process, it can be applied to the exploration of other wave-based metamaterials for various mechanical and acoustic 
properties.
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Appendix A.  Mesh sensitivity of the FEM model

To verify the adequacy of the discretization, we conducted a mesh sensitivity study for both the static analysis (used to compute 
stiffness) and the eigenfrequency analysis (used to compute impedance). The initial mesh corresponded to one element per voxel, 
and successive refinements were obtained by halving the element edge size at each step. In the static analysis, the total strain energy 
𝑈 under a prescribed strain 𝜀̄33 = 0.1 was computed and used to evaluate 𝐶33. As shown in Fig. A.11, 𝑈 converges rapidly as the mesh 
is refined, with changes below a few percent between the finest levels. In the dispersion analysis, we tracked the eigenfrequency of 
the longitudinal branch at a small Bloch wavenumber (𝑘𝑧𝑎 = 𝜋∕100). Fig. A.11 shows the eigenfrequency versus element size, again 
demonstrating convergence with differences below a few percent at the finest levels. These results confirm that the adopted mesh 
(element size ≈ 0.00625 mm) is sufficient for both analyses.

Fig. A.11. Mesh sensitivity analysis showing convergence of the static (strain energy 𝑈) and eigenfrequency analyses with mesh refinement. Results 
demonstrate stable predictions for element sizes smaller than 0.00625mm.

Appendix B.  Connectivity Check: Neighbor-Finding Algorithm

This section provides the auxiliary algorithm used within the connectivity check. The routine identifies all new face-to-face 
neighboring voxels of a given connected group, accounting for periodic boundary conditions at the unit cell boundaries. It is called 
iteratively to grow connected components.
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Algorithm 6: Get neighbors Function to get all new neighboring material voxels of a given voxel group.
Input: 𝐺𝑐 - set of voxel indices, 𝐷 - 3-dimensional boolean design array
Output: 𝐺𝑐−𝑛𝑒𝑤 - voxel indices that contain material, are neighbors of 𝐺𝑐 , but are not in 𝐺𝑐

1 𝑁 = 𝑒𝑚𝑝𝑡𝑦 % Initialize set of neighbors
2 foreach 𝑖 ∈ 𝐺𝑐 do
3 𝑁 = 𝑁 ∪ {all 6 neighboring indices of i} % Periodicity is considered for boundary indices, i.e., along each dimension 

the 𝑁 𝑡ℎ voxel and 1st voxel are neighbors
4 𝑁 = 𝑁 ⧵ {𝑁 where 𝐷(𝑁) == 0} % Filter out neighbors that do not contain material
5 𝑁 = 𝑁 ⧵ 𝐺𝑐 % Filter out neighbors that were part of the input group
6 𝐺𝑐−𝑛𝑒𝑤 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

Appendix C.  Synthetic Shapeset Generation for the Classifier

We start by creating a 3D Gaussian random field ̄ with a radial frequency grid 𝜅 and computing the corresponding power spectrum 
𝑃 (𝜅) specified in Fourier space. We then apply random phases Φ to introduce variability, and subsequently perform an inverse FFT to 
transform the data into real space. Normalization follows to ensure that the resulting field ̄ achieves the desired standard deviation 
𝜎. This field is used to perturb the initial state 𝐱, yielding a new field that approximates connected solutions while maintaining a 
degree of infeasibility.

Algorithm 7: Perturb voxels GRF Pseudo-algorithm to produce a disconnected set of perturbed voxel configurations from 
a connected set.
Input:  - connected set of voxel configurations 𝛼 = 0.2 - scale parameter 𝜎 = 0.25 - standard deviation 𝑁 - predefined 

number of instances per configuration
Output: ̃ - disconnected set of perturbed periodic states

1 ̃ ← ∅;
2 foreach 𝐱 ∈  do
3 while |̃| < 𝑁 do
4 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 ∈ ℝ𝑛×𝑛×𝑛;

5 𝜅 ←
√

𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 with 𝜅(0, 0, 0) = 1;

6 𝑃 (𝜅) ← exp
(

− 𝛼⋅𝜅2

2

)

;

7 Φ ← exp(2𝜋𝑖 ⋅ 𝕌), where 𝕌 ∼ 𝑈 [0, 1];
8 𝔽 ← 𝑃 (𝜅) ⋅Φ;
9  ← −1(𝔽 );
10 ̄ ← −𝔼[]

𝜎() ⋅ 𝜎;

11 𝐱̃ ←

{

1 if 𝐱 + ̄ ≥ 0.5
0 otherwise

;

12 Enforce face-to-face periodicity at the boundary faces along 𝑥, 𝑦, and 𝑧;
13 if 𝐱̃ is disconnected (Algs. 1 and 2) then
14 ̃ ← ̃ ∪ {𝐱̃};

Appendix D.  Details of Model Training Protocols

Impedance Regressors. The regressor learns a map ℎ ∶ {0, 1}𝑁3
→ ℝ2 through a 3D CNN. For the regressor training the L1 loss is 

employed as follows:

(𝜃) = 1
||

∑

𝑖∈

‖

‖

ℎ(𝐱𝑖; 𝜃) − 𝐲𝑖‖‖𝐿1, (D.1)

where 𝐱𝑖 ∈ {0, 1}𝑁×𝑁×𝑁  is the input voxel configuration, 𝐲𝑖 ∈ ℝ2 is the normalized property being either impedance or stiffness, and 
 is the mini-batch of size 128. The model is trained through Adam [83] with a learning rate of 𝜂0 = 10−3 over 250 epochs. Based on a 
grid search on model complexity, we set (𝑑𝑐𝑜𝑛𝑣, 𝑑𝑓𝑐 ) = (2, 8), while each hidden layer in the MLP has width 𝑤𝑓𝑐=64. This amounts to 
number of trainable parameters is 4,177,410. Fig. D.12(a) and (b) illustrates the training history. As the regression data we generated 
18,917-size labeled data following Section 2.1, with the train-test split ratio being 0.8:0.2. With the stated configuration and the data, 
the training results in 𝑡𝑟𝑎𝑖𝑛(𝜃∗) = 0.0144 and 𝑡𝑒𝑠𝑡(𝜃∗) = 0.0290.
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Fig. D.12. Training history of ML models in Section 2.5. (a) The impedance regressor ℎ. (b) The connectivity classifier 𝑔.

Connectivity Classifier. The connectivity classifier 𝑔 ∶ {0, 1}𝑁3
→ [0, 1] is trained on a dataset consisting of the connected voxel 

configurations  where 𝑦 = 0 and the disconnected set ̃ where 𝑦 = 1, synthesized following Section 2.1 and Algorithm 7, respectively. 
Both sets include 86,410 designs, forming  ∪ ̃ of data size 172,820. Although this is a fairly large amount of data, note that the 
forward call of the connectivity checker algorithm (Algorithm 1) is near-instantaneous, so the resources incurred for the data synthesis 
are orders of magnitude lower than those for the regression data. Given the two synthetic datasets, the binary cross-entropy training 
loss reads:

(𝜃) = − 1
||

∑

𝑖∈

[

𝑦𝑖 log 𝜎(𝑔(𝐱𝑖)) + (1 − 𝑦𝑖) log(1 − 𝜎(𝑔(𝐱𝑖)))
]

, (D.2)

where 𝐱𝑖 ∈ {0, 1}𝑁×𝑁×𝑁  is the voxelized input state,  is a mini-batch of size || = 128, 𝑦𝑖 ∈ {0, 1} is the classification label 
(connected→0; disconnected→1), and 𝜎(⋅) is the sigmoid activation. The trainable model parameters are updated using the Adam 
optimizer [83]. Initial learning rate is set as 𝜂0 = 10−4, which is scheduled at epoch 𝑡 as 𝜂𝑡 = 𝜂0𝛾⌊𝑡∕𝑇 ⌋ with decay rate 𝛾 = 0.9 and 
step size 𝑇 = 100. The training is conducted for 250 epochs. Each hidden layer in the MLP has width 𝑤𝑓𝑐=8. A grid search over 
model complexity was conducted for (𝑑𝑐𝑜𝑛𝑣, 𝑑𝑓𝑐 ), empirically identifying (𝑑𝑐𝑜𝑛𝑣, 𝑑𝑓𝑐 ) = (2, 2) with the number of trainable parameters 
being 131, 713 as the best given the synthetized dataset  ∪ ̃ with train-test split of ratio 0.8:0.2. Fig. D.12(c) illustrates the training 
history. The training results in 𝑡𝑟𝑎𝑖𝑛(𝜃∗) = 0.0077 and 𝑡𝑒𝑠𝑡(𝜃∗) = 0.0210.
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