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Organic Temperature Sensitive Polyelectrolyte
for Core Body Temperature Measurement
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Menon, and Chiara Daraio

Abstract— Core body temperature (CBT) is a vital phenotype that
provides information on an individual’s health and metabolic activ-
ity. It correlates with a variety of physical and mental conditions and
requires monitoring when an individual is under environmental or
medical duress. Current sensing materials lack the desired temper-
ature sensitivity for fabricating ultrathin, wearable CBT sensors with
the accuracy needed for medical applications. Here, the realization
of an ultrathin CBT sensor based on dual heat flux (DHF) thermome-
try is reported, uniquely enabled by the application of a novel class
of synthetic polymers. By optimizing the chemical composition, the
material’s properties were tuned to achieve an optimal temperature
response. Furthermore, the measurement error in the device was
evaluated using Finite Element analysis. Building on this knowledge, this highly temperature-sensitive polymer was
embedded into an ultrathin DHF sensor, and its sensitivity and repeatability were characterized using an anthropomorphic
phantom model. The results presented in this work pave the way for first-in-class wearable and accurate DHF sensors,
allowing continuous CBT monitoring.

Index Terms— bioinspired material, temperature measurement, temperature sensor, wearable health monitoring, wearable
sensor.

I. INTRODUCTION

IN all mammals, core body temperature (CBT) is a highly
conserved phenotype that is an accurate indicator of sys-

temic metabolic activity and its regulation. Monitoring CBT
in clinical settings has been shown to impact surgical out-
comes [1]–[4], and is a leading indicator of immune system
response from inflammation and infection [5]–[9]. Further-
more, in everyday scenarios CBT has been linked to general
wellbeing as it can be used to quantify calories burnt over
time [10], [11], onset of ovulation cycles [12], the circadian
cycle and sleep quality [13], [14], mental health [15], and
degenerative diseases such as Alzheimer’s and Parkinson’s
[16], [17]. Continuously recording CBT can therefore be
extremely beneficial for a wide spectrum of applications,
spanning from hospital care to the monitoring of indoor and
outdoor activity. However, the CBT cannot be easily measured
to the required degree of accuracy. The gold standard for the
measurement of CBT is the pulmonary artery catheter, which
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records the temperature of the blood flowing directly from the
heart [18]. This method is highly invasive and is used only in
specific surgeries. Other methods rely on the measurement of
rectal temperature [19] or the ingestion of radio pills [20].
However, these methods are invasive and not suitable for
continuous monitoring. At the same time, there are several
methods to measure peripheral body temperature by placing
thermometers or standoff IR scanners on the skin that are
both continuous and non-invasive. However, peripheral body
temperature is poorly correlated with core body temperature.
In fact, thermoregulatory processes regulate the core body tem-
perature, while the temperature at the surface and peripheries
of the body are affected by various extraneous factors such
as placement of the thermometer, ambient temperature, and
perfusion that do not reliably correlate with the underlying
metabolic function. As such, peripheral measurements tend to
be inaccurate to predict CBT. To overcome these limitations,
some strategies that employ the measurement of heat flux
have been used. Dual-heat flux (DHF) thermometry measures
the flow of heat (flux) that flows out of the body along
two different thermal paths, to decouple the system from the
thermal resistance of the underlying tissue [21]–[25]. DHF
sensors have demonstrated effective monitoring of CBT in
patients both at rest and during exercise [26]. However, DHF
sensors are typically bulky and thick (up to 15 mm), the
thinnest proposed device the authors have found measures
5.44 mm [27]. Furthermore, the limiting factor in current DHF
sensors is the accuracy of the individual temperature sensing
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elements [28]. In this work, we employ a novel tempera-
ture responsive polymer that demonstrates record temperature
sensitivity orders of magnitude higher than vanadium oxide
and other cutting-edge temperature sensing materials. [29], to
create ultra-thin and wearable DHF thermometers for CBT.
We designed the sensors’ geometry to optimize for tissue
depth sensitivity, and evaluated its errors using Finite Element
(FE) analysis. Furthermore, we characterized and improved the
chemical composition of the temperature responsive polymer,
to obtain higher temperature sensitivity. For data acquisition,
we designed and fabricated a custom electronic board that
achieved a readout accuracy of 4 mK. Finally, we fabricated an
integrated prototype that was tested with an anthropomorphic
phantom model demonstrating the ability to read CBT with an
accuracy of ± 0.25 °C.

II. RESULTS

A. DHF Calorimetry for Measuring CBT

In general, measurements of skin temperature do not cor-
relate well with CBT since thermoregulatory processes keep
peripheral areas at lower temperature than the core. Never-
theless, under certain conditions, skin temperature can reflect
with high precision the core temperature. For example, in the
absence of heat flow, skin temperature equals the temperature
of the inner tissues (deep core temperature): Zero-heat-flux
(ZHF) thermometers are based on this principle. In ZHF
thermometers a heat source is used to counterbalance the heat
flowing out of the body to generate a zero-heat flow region
on the skin. A pair of temperature sensors separated by a
thermal insulator measures the heat flow and provide feedback
to the heat source. Once isothermy is achieved, the bottom
sensor measures the skin temperature which corresponds to
the CBT. ZHF thermometers, however, require a constant
power source for the heater and due to the inaccuracy of
the temperature sensor they need a rather thick insulating
layer. All these factors render ZHF thermometers unsuitable
for wearable applications. To avoid the need of a heater to
generate zero heat flux, dual heat flux (DHF) thermometers
were developed [21]. In this device, a heat flux sensor consists
of a pair of temperature sensors separated by an insulator. The
DHF thermometer pairs two heat flux sensors, with different
insulator thicknesses, placed next to each other. By knowing
the thermal resistance of the insulator dividing the temperature
sensors, it is possible to rule out the thermal resistance of the
tissues beneath the skin. As shown in Fig. 1(a), the CBT TB

is then calculated from the temperatures of the four sensors
T1, T2, T3, T4 as [21]:

TB = T1 +
(T1 − T2)(T1 − T3)

K(T2 − T4)− (T1 − T3)
, (1)

Where K is the ratio between the thermal resistance paths
under the two heat flux sensors and must first be calibrated.
K can be calculated using (1) and empirical measurements as
[21]:

K =
(TB − T2)(T1 − T3)

(TB − T2)(T2 − T4)
(2)

The thermal resistances of the two different paths determine
the temperature difference between the bottom and the top
surfaces. Therefore, the thickness of the insulating layers
needs to allow the development of a thermal gradient that is
measurable by the temperature sensors placed at the top and
bottom of each heat flux sensor. To decrease the thickness of
the heat flux sensors, extremely temperature sensitive materi-
als, with high accuracy, must be used. It has been recently
reported how a particular class of polyelectrolytes shows
significantly high temperature sensitivity [29]–[32]. These
synthetic polymers are characterized by carboxyl and hydroxyl
groups placed along the backbone, which interact with metal
cations (e.g., Ca2+, Co2+, Cu2+) present in the polymer matrix.
The temperature variation modifies the thermal energy of
the system resulting in cations to proportionally hop from
one coordination site to another, leading to a change in the
conductivity. In this work, we synthesized 2-hydroxyethyl
acrylate acrylic acid (HEA-AA) [29] with a combination of
metal cations to be used for the fabrication of the DHF sensor.
The polymer was deposited on two thin polyimide (PI) layers.
To generate two different thermal paths, the PI substrates had
different thicknesses of 260 and 100 µm, respectively. On the
surfaces of the PI layers, prepatterned Cu/Au plated electrodes
were used to electrically connect the HEA-AA to measure
the change in conductivity. Two 10 µm thin HEA-AA layers
were deposited on the electrodes and then insulated with 50
µm thick PET layers (Fig. 1(b)(Top)) from external agents
(e.g., room humidity). The resulting DHF sensor is less than
500 µm thick and highly flexible. This flexibility is a direct
result of the ultrathin nature of these sensors and enables the
resulting sensors to be conformally applied to the curvature of
the body(Fig. 1(b) (Bottom)).

Tcore

d1

T1 T2

T3 T4
d2

a) b)

PET
HEA-AA
Electrodes
PI

Electrodes
HEA-AA
PET

Fig. 1. Dual Heat Flux sensor and HEA-AA integration. (a) Dual
Heat Flux working principle. (b) Fabricated DHF sensor. Top: schematic
of the sensor integrating HEA-AA in the architecture. Bottom: picture of
the DHF sensor using Co2+ ions, flat (left) and bent (right).

B. Temperature Response Characterization
From a device perspective, the HEA-AA polymer can

be approximated to act as a temperature-dependent resistor
since the polymer’s conductivity varies as a function of tem-
perature. However, the relationship between the temperature
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and resistance for this class of polymers is nonlinear and
cannot be represented by a constant temperature coefficient of
resistance [29]–[32]. The polymer’s conductivity-temperature
dependence needs to be generalized to a temperature depen-
dence of the complex admittance Y (or impedance Z). In
addition, to avoid charge accumulation in the devices, the
change of the polymer response as a function of temperature
needs to be characterized by an AC current. Previous work has
characterized HEA-AA crosslinked with divalent calcium at
specific frequencies, or in a narrow frequency range [29]. As a
reference, Fig. 2(a) shows the absolute value of the admittance
as a function of frequency (1 Hz to 100 kHz) measured at
35 and 45°C and at a constant relative humidity (RH) of
10 %. In the medium frequency region, a strong frequency
dependence does not appear, while at low and high frequencies
the spectrum presents two strong dispersive regimes. This
behavior is in line with the behavior of other ionic conductors,
where polarization and dielectric relaxations arise in these
frequency regions [33], [34]. The phase of the admittance
(i.e., the phase difference between the applied voltage and
the resulting current) also shows a strong dependence on
temperature as well as on the applied frequency (Fig. 2(b)).
Therefore, we can define the material’s temperature response
R∗(ω) as the ratio between the admittance Y ∗(ω, T ) at highest
temperature Tmax divided by the admittance measured at the
lowest temperature Tmin, for a specified temperature range:

R∗(ω) =
Y ∗(ω, Tmax)

Y ∗(ω, Tmin)
(3)

As a result, the absolute value of the response |R∗(jω)|
corresponds to the ratio of the absolute value of the admit-
tance |Y0(ω, T )|, while the phase of the response R∗(jω)
corresponds to the difference between the phase of admittance
θ(ω, T ):

|R∗(ω)| = |Y0(ω, Tmax)|
|Y0(ω, Tmin)|

R∗(jω) = |θ(ω, Tmax)− θ(ω, Tmin)|

(4)

To maximize the temperature sensitivity, we prepared dif-
ferent HEA-AA samples crosslinked with Ca2+, Co2+, Cu2+,
Mg2+, Zn2+. Each of these ions has a different binding energy
with the polymer backbone that results in a different tempera-
ture response. The temperature response is directly correlated
to the activation/binding energy Ea of the metal ion with
the acid and polar groups along the polymer backbone. This
concept becomes clearer in the Arrhenius representation, when
considering the ion bulk conductivity σ0(T ), the temperature
response is proportional to the activation energy for ion
hopping:

Ea =
log(σ0(Tmax))− log(σ0(Tmin))

1/Tmax − 1/Tmin

=
log σ0(Tmax)

σ0(Tmin)

1/Tmax − 1/Tmin
=

logR0

1/Tmax − 1/Tmin

(5)

where R0 = σ0(Tmax)/σ0(Tmin) is the conductivity DC
response. Our previous work has shown how increasing the
number of carboxyl and hydroxyl groups increases the poly-
mer’s temperature response [29]. This behavior is a direct
consequence of the strength of the interaction between the
polymer backbone and the metal ion: a higher number of
functional groups, creating a coordination complex with higher
binding/activation energy Ea. A stronger interaction between
the polymer complex and the metal cation could also be
achieved by choosing an ion whose affinity to the coordination
complex is particularly high. Previous studies suggest that
the geometry of the electronic orbitals combined with the
spatial arrangement of the coordination complex will result in
larger activation energies [35]–[37]. Therefore, we compared
different polymer-metal cation combinations (i.e., Ca2+, Co2+,
Mg2+, Cu2+, and Zn2+) to determine the one that has the
highest temperature response. Fig. 2(c) and 2(d) show the
absolute value and phase response spectra for the different
cations in the temperature range 35 to 45 °C. Co2+ shows
the highest temperature response both in terms of absolute
and phase response. As previously reported [32], an optimal
water content is needed to measure a high temperature re-
sponse. Water can modify the ion’s transport activation energy
in multiple ways, for example by varying the coordination
environment of the ions, as well as the polymer’s segmental
motion. Water molecules can also provide additional charge
carriers (protons) with a lower activation energy, which can
lower the temperature response. To minimize the effect of
the water concentration within the polymer, we performed
all characterization at constant humidity (RH 10%). However,
every ion has a different water affinity (Ca2+ is highly hygro-
scopic, while Co2+ and Cu2+ have lower water affinity). To
evaluate the difference in water content between the various
ions, we measured the conductance at constant temperature
(35 °C) (Fig. 2(e)). Among the different ions, Co2+ has the
lowest current, suggesting that the water content is within
the optimal concentration to register an optimal temperature
response. Based on this analysis, HEA-AA crosslinked with
Co2+ ions was selected as the ideal material to fabricate a DHF
calorimeter.

Fig. 3(a) shows the typical calibration curve for the selected
material. The absolute value of the current increases from 300
pA to 2.2 nA, while the current phase difference decreases
from 55 to 20 degrees over a 10 °C temperature change. The
current’s phase difference varies linearly with temperature,
and the current’s absolute value relationship to temperature
is exponential. For optimal performance, we can mix and
match the calibration methods of the four sensors, empirically
determining the better one (phase vs. current) during character-
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Fig. 2. HEA-AA characterization. (a) Typical absolute value of the con-
ductance spectra for a sample crosslinked with Ca2+ and measured at
RH 10%. Blue line absolute value measured at 35 °C, red line absolute
value measured at 45 °C. (b) Typical phase of the conductance spectra
for a sample crosslinked with Ca2+ and measured at RH 10%. Blue
line phase measured at 35 °C, red line phase measured at 45 °C. (c)
Absolute value of the response as a function of frequency for samples
crosslinked with different ions measured at RH 10%: orange dots Co2+,
green squares Ca2+, yellow down triangles Cu2+, blue diamonds Mg2+,
purple triangles Zn2+. The markers represent a subset of the actual data
set. (d) Phase of the response as a function of frequency for samples
crosslinked with different ions measured at RH 10%: orange dots Co2+,
green squares Ca2+, yellow down triangles Cu2+, blue diamonds Mg2+,
purple triangles Zn2+. The markers represent a subset of the actual data
set. (e) DC conductance of the samples crosslinked with different ions
at 35 °C measured at RH 10%.

ization. A custom readout system was designed to accurately
sample the current and phase response (Fig. 3(b) and 3(c)).
A sine wave oscillator generates the harmonic voltage to
be applied to the sensor through an analog multiplexer. The
resulting current flowing through each individual sensor is then
converted to a voltage and then amplified by means of an
instrumentation amplifier. The applied voltage and the mea-
sured current were then converted to square waves. Because
of the reactance of the polymer, the voltage and current have
a phase difference. This phase difference is measured by a
phase detector, which generates a pulse that corresponds to
the time delay between the two signals. The pulse width is
then quantified through a 2 MHz 16-bit counter. Given the
frequency of the applied voltage fexcitation, the frequency of
the counter clock fcounter, the phase difference ∆Θ correlates
to the counter counts ncount through the relation:

∆Θ =
ncount

fcounter
· 360◦ · fexcitation (6)

By measuring the phase response, not only the sensor’s
output is linearized with respect to temperature, but also
considerably higher accuracy can be achieved without the need
for a specific analog to digital converter (ADC) architecture.
With the implemented circuit, a minimum phase shift of
0.006° can be measured, which corresponds to a resolution
of approximately 4 mK.

C. Error Analysis
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Fig. 3. Sensors calibration and readout. (a) Sensor temperature
calibration. Red circles current absolute value, green squares current
phase. (b) Schematic of the readout system. (c) Picture of the readout
system and the DHF sensor.

The optimization of HEA-AA composition ensures that the
temperature response of the polymer has the proper sensi-
tivity to measure the small temperature differences across
the DHF sensor. However, the precision of the temperature
sensors is not the only factor that contributes to the DHF
sensor’s accuracy. More specifically, in the derivation of(1)
some assumptions were made to reach a simple analytical
solution. In particular, the heat flux was assumed to be totally
transversal with no longitudinal component. We will show that
this assumption is the major contribution to the theoretical
error of the DHF architecture. Fig. 4(a) Top) shows the
transversal and longitudinal thermal gradient that is established
in the chosen geometry calculated from the FE simulation. The
transversal thermal gradient develops from the bottom of the
tissue layer and it is funneled towards the heat flux sensors. At
this interface, two different thermal gradients appear because
the heat flux sensors have different thicknesses. Because we
chose to use very thin insulating layers for our sensors (260
and 100 µm, respectively), the temperature difference between
the top and the bottom of the sensors is in the order of 50
mK. However, as it can be seen in Fig. 4(a) (Bottom) there
is a non-zero longitudinal temperature gradient that develops
over the xy plane. The generation of a transversal thermal
gradient has to be attributed to the non-uniform heat exchange
along the surface boundaries on the xy plane. Previous works
studied the system using radiation or convection boundary
conditions without taking into account how they affected the
measurement error. [23], [38] In order to analyze how the
different heat exchange phenomena affect the measurement,
we characterized the error e for the two different conditions
and we correlated it with the temperature gradient ∇T between
the temperature at the center of the top surface of one of the
two heat flux, TA, and the one at the corner on the same
surface, TB . By doing so, we can correlate the amount of
transversal thermal gradient to the measurement error. First,
we analyzed the heat exchange at the boundaries through
radiation only (Fig. 4(b)). The rate of heat exchange through
radiation −n · q0 at a surface temperature T depends on
the surface emissivity ϵ and the ambient temperature Tamb,
according to the Stefan-Boltzmann law:

−n · q0 = ϵσ(T 4
amb − T 4) (7)
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where σ is the Stefan-Boltzmann constant. As Tamb increases,
there will be a lower surface to ambient radiation which will
create a smaller gradient on the xy plane. Fig. 4(b) indicates
that the decrease in the thermal gradient proportionally leads
to a smaller error. Similarly to radiation, convective heat
exchange q0 is determined by ambient temperature Tamb and
the heat transfer coefficient h:

q0 = h(Tamb − T ) (8)

For convective heat exchange with the ambient, the heat
transfer coefficient depends on several factors, among which
relative humidity or air flow speed. However, the heat transfer
coefficient in normal conditions ranges between 0.1 – 10
W/m2K. For this simulation, we only modified the heat transfer
coefficient keeping the ambient temperature constant. Fig.
4(c) shows the error as a function of h: for values below 1
W/m2K the error remains low, however it drastically increases
above this threshold. This behavior correlates closely with the
development of a larger thermal gradient as the heat transfer
coefficient increases: for h < 1W/m2K the transversal gradi-
ent remains low, while above this value it starts to increase.
It is therefore clear how the measurement error is caused by
the thermal gradient on the xy plane, whose magnitude is
set by the heat exchange characteristics at the boundaries.
When combining both heat exchange physics, the complete
measurement error can be further analyzed (Fig. 4(d)). When
radiation is combined with convection, the effect of convection
does not drastically impact the error as long as the heat transfer
coefficient is kept low. For higher h (e.g., above 1 W/m2K),
the convective heat exchange dominates, leading to a larger
error. The analysis of the theoretical error indicates that in
order to reduce the measurement error in the experimental
setting, both the radiation and convection need to be reduced to
achieve accurate results. Radiation heat exchange is inevitable
and can only be limited by lowering the emissivity of the
substrates, which is constrained by the choice of the available
materials used to fabricate flexible substrates. Convection can
be drastically lowered by the use of materials to thermally
insulate the sensor. This approach would lead to bulkier and
less flexible sensors. However, as previously shown, it is
sufficient to ensure that the heat transfer coefficient is below 1
W/m2K in order to minimize the effect of convection. This is
the case for most everyday conditions under normal clothing.
[39] The extensive use of thermal insulation on the device is
not required and a clothing layer will be used to reduce to the
minimum convective heat. Moreover, it has been shown that
the error given by the transversal gradient can be minimized
by modifying (1) to: [23]

TB = T1 +
(T1 − T2)(T1 − T3)

K(T2 − T4)− (T1 − T2)
(9)

Using (9) and considering both radiative and convective heat
exchange (fixed to 1 W/m2K), it is possible to calculate the
penetration depth as a function of the ambient temperature

(Fig. 4(e)). The maximum penetration depth that this method
can achieve is the maximum tissue thickness which allows
the calculation of the CBT with an error below 0.25 °C. This
error threshold was chosen to be well within the clinically
acceptable limits of bias, as defined by previous studies [40]–
[44]. The penetration depth varies from 6.4 mm at 20 °C to
almost 10 mm at 30 °C. This analysis allows us to clarify
the theoretical limitations of the DHF 1D model given the
parameters of our device.

Fig. 4. FEM Analysis on the DHF architecture. (a) Thermal gradient
developed across the xz (Top) and xy (Bottom) planes. (b) Error (orange
circles) and temperature gradient (blue dashed line) calculated as a
function of external temperature for radiative heat transfer. (c) Error (or-
ange squares) and temperature gradient (blue dashed line) calculated
as a function of heat transfer coefficient for convective heat transfer. (d)
Error calculated as a function of external temperature for both radiative
and convective heat exchange at different heat transfer coefficients: teal
squares h = 10 W/m2K, gray triangles h = 1 W/m2K, black circles h = 0.1
W/m2K. (e) Penetration depth (blue squares) and corresponding error
(orange circles) as a function of external temperature at constant heat
transfer coefficient h = 1 W/m2K.

D. CBT Measurement

Combining the results of the ion comparison in HEA-AA
with the readout system and the information gathered by the
theoretical error analysis, HEA-AA temperature sensors were
successfully integrated in the designed DHF architecture. The
individual temperature sensors were characterized between 35
°C and 45 °C to obtain the temperature calibration curve. The
phase-temperature calibration data was then fit to a first-degree
polynomial and the two fit parameters were used to convert the
acquired phase to temperature values (Fig. 5(a)). The linear
fit diverges for higher temperature, but it gives an optimal
representation for T < 43°C, with coefficient of determination
R greater than 0.9989. To simulate the CBT measurement, we
built a custom-made setup, where both the accuracy and the
time response of the sensor can be estimated (Fig. 5(b)). A
water bath was used to achieve a constant temperature Tset

of 37 °C, while a thin copper layer immersed in the bath
was used to obtain a homogeneous temperature across the
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surface. To simulate the skin, we used a rubber mat with a
thermal resistance similar to that of human tissue. To evaluate
the sensor’s performance for different skin thicknesses, rubber
mats of 2, 4, 6, and 8 mm thick were used. The DHF
sensor was connected to the readout board, which in turn was
connected to a computer. At the same time, an IR camera
measured the temperatures of the water bath and the copper
layer to ensure that the correct temperature was established in
the bath. A piece of regular clothing (few millimeters thick
cotton shirt) was used to reduce the heat transfer coefficient
with the ambient air. We first determined the ratio between the
thermal resistance paths K using (2) with data obtained from
the 2 mm thick rubber mat. Then, the Tset was computed
from the individual temperatures using (9). Fig. 5(c) shows
the estimated CBT using the DHF sensors for the different
mat thicknesses. The green area in the plots indicates the ±
0.25 °C maximum allowed error. When the DHF sensor is
not thermally insulated with clothing, the estimated Tset has
an error greater than 0.25 °C for mats thicker than 2 mm,
with a maximum error of 0.76 °C for the 8 mm thick mat.
When the DHF thermometer is covered with clothing, the
sensor’s performance greatly improves. Error within the 0.25
°C bounds was measured for a mat thickness of 6 mm, while
for an 8 mm thick mat the maximum error was 0.33 °C. These
results are in line with the theoretical calculation presented in
the previous section. The transversal heat flux is the main
source responsible for the error in the DHF architecture.
Reducing the heat transfer between the boundaries and the
ambient air results in lower thermal gradient across the sensor,
which corresponds to a higher sensor accuracy. When covered
with a piece of clothing, the heat transfer coefficient of the
convective transfer between the sensor and the ambient is
reduced, resulting in a smaller error. Lastly, we analyzed the
transient behavior of the DHF thermometer. We increased
the temperature of the thermal bath from 37 to 39 °C and
estimated Tset using the 6 mm mat while the sensor was
covered with a piece of clothing. Fig. 5(d) shows the time
evolution of the reconstructed temperature when this step
change was made. We calculated the response time as the time
the system needed to recover to an error below 0.25 °C. For
the selected mat thickness, the reconstructed temperature fell
within the accepted error approximately after 15 minutes.

Once we established the response time of our DHF setup,
we investigated its CBT resolution on a human phantom model
(Fig. 6). A thermocycler (Bio-Rad C1000) was used for precise
temperature control and its temperature setting was considered
ground truth CBT (Fig. 6(a)). We used a 5 mm thick 7%
Agar gel to simulate human subcutaneous tissues as previously
described, [45]. The gel was sealed with Saran wrap to
prevent water evaporation, with entire assembly covered with
a Petri dish to prevent fluctuations due to ambient convection
(Fig. 6(b)). The DHF sensor was connected to the impedance
analyzer (Zurich Instruments, MFIA 5 MHz) through our
custom interface PCB, and both the phase and the absolute
value of current calibrations were considered in selection of
the optimal response to temperature for each of the polymer
sensors. By using phase response calibrations for sensors T1
and T2, and current amplitude calibration curves for T3 and
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Fig. 5. CBT measurement. (a) Phase calibration curves for the
different temperature ulsensors in the range 35 and 45 °C. (b) Setup
to measure the CBT. The core temperature is simulated by a water bath
set to the desired value Tset. A thin copper layer is used to achieve
homogeneous temperature over the analyzed surface. A rubber mat
simulates the tissue layer between the core and the sensor. The DHF
sensor is placed on top of the rubber mat and then covered by a
piece of clothing. (c) Calculated CBT for a set temperature of Tset =
37◦C, for different thicknesses of the rubber mat (2, 4, 6, and 8 mm,
respectively). Measured CBT when the sensor is exposed to convective
heat exchange (left) and when a piece of clothing is applied to insulate
the sensor from the environment (right). (d) Step response for the DHF
sensor calculated with the 6 mm rubber mat when Tset is increased
from 37 to 39 °C. Blue line represents thermal bath temperature, orange
line represents the DHF sensor output temperature, the yellow line
represents the absolute error in the measurement.

T4, we obtained the best fit between our CBT estimation
and the ground truth in the region spanning hypothermic and
hyperthermic temperatures (25-45 °C) (Fig. 6(c)).

Fig. 6. DHF sensor’s CBT resolution. (a) Photo of human phan-
tom experimental setup. The pixels are plugged into the breadboard
PCB, which is interfaced with the impedance analyzer (not shown).
(b) Schematic of the experimental setup for human phantom model.
(c) Calculated CBT for various Tset = 25◦C, 30◦C, 35◦C, 40◦C, 45◦C,
representing hypo and hyperthermia for the human body (identified in
blue and red respectively).

III. CONCLUSIONS

In this work, we showed the fabrication of a CBT sensor,
integrating a thermally responsive polymer into the DHF
thermometer architecture. We optimized the polymer’s com-
position by choosing the best metal cation that showed the
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highest response. Co2+ was found to be the best cross-linking
ion because it was linked to an optimal water content. We
employed the complex temperature sensitivity to design a
readout system, in which the temperature could be related
to both the current response and the phase of the sensor’s
admittance, achieving a sensitivity of 3.5 °/°C and a resolution
of ± 4 mC. By simulating the DHF architecture, we found a
correlation between the theoretical error and the longitudinal
thermal gradients that develop over the sensors. Furthermore,
we analyzed the influence of different boundary conditions
on the device performance and calculated the corresponding
errors and penetration depth. We fabricated a DHF thermome-
ter employing the optimal polymer’s composition and used a
custom-built readout system to measure CBT on a phantom
setup. We showed that, as described by the FE simulations,
the measurement error can be reduced by lowering the heat
exchange at the boundaries. The fabricated sensor has an error
below ± 0.25 °C for a thickness up to 6 mm and a time
response of 15 minutes.

IV. EXPERIMENTAL SECTION

A. Polymer Synthesis
Polymer synthesis was carried out similarly to prior work

[29]. Polymer synthesis details can be found in the supple-
mentary information.

B. FEM Analysis
The geometry was simulated using COMSOL Multiphysics.

For simplicity, the skin was simulated as homogeneous
medium and the bioheat generation or blood perfusion were
not taken into account. The substrate was implemented using
the thin layer module to decrease computation time and
achieve a better result. A general layer type was considered to
take into account both the normal and tangential heat fluxes.
Three different situations were considered for the boundary
conditions: radiation heat exchange, convection heat exchange,
and mixed radiation and convection heat exchange. We first
calculated the heat transfer in the system tissue/sensor. Then,
we used the output of this simulation to compute the heat
exchange at the boundaries through radiation and convec-
tion. The error was calculated as the difference between the
temperature set at the bottom boundary of the tissue and
the temperature calculated with (1). The temperature gradient
was estimated as the difference between the temperature at
the center on the top surface of the thicker heat flux sensor
and the temperature 20 mm away along the diagonal on the
same surface (Fig. 4(a)). The maximum penetration depth was
calculated as the thickness at which the error was below 0.25
°C. The thickness of the tissue was incremented by 100 µm.

C. Electrical Readout Circuitry
Details on the design and characterization of the readout

circuit can be found in the supplementary information.

D. Thermal Response and Calibration
Details on the thermal response testing and instrument

calibration can be found in the supplementary information.

E. CBT Measurement at Various Depths
Polyimide substrates with double sided prepatterned cop-

per/immersion gold electrodes (35 µm and 3 µm, respectively)
were purchased from PCBWay. On these substrates 5 µL
of HEA-AA crosslinked with various ions was deposited
and dried overnight under vacuum. The sensors were then
insulated with a 50 µm PET layer to shield the polymer from
humidity. Pt100 thermometers were placed on each of the four
polymer sensors to obtain the calibration curves (Fig. 5(a)).
Next, the assembled DHF thermometer was ready for CBT
measurement. Rubber mats of different thicknesses were used
to simulate human skin and subcutaneous tissue (Fig. 5(b)). To
further reduce the effect of convective heat exchange with the
environment, the DHF sensor was further covered with a piece
of cloth. The experiment was performed at room temperature.
The rubber mat along with the DHF sensor was placed on a
thermal bath (Thermo Scientific Precision GP 05) to create a
stable temperature, which simulated the core temperature, and
kept at 37 °C (Fig. 5(c)). Data from individual sensors were
acquired through the previously described readout system at a
sampling rate of 21.5 Hz. To measure the response time, we
increased the bath temperature from 37 to 39 °C and analyzed
the time evolution of the sensor’s output when placed on the 6
mm mat (Fig. 5(d)). To replicate the human skin, 7% Agar gel
was used, since it matches the thermal properties of human
tissue well [46]. An Agar gel layer of 5 mm thickness was
used. A PCR thermocycler is used for accurate temperature
control, and the temperature at the interface between Agar
layer and thermocycler is verified using a thermistor. The agar
gel was sealed using Saran wrap to prevent water evaporation.
The pixels were pressed down to the Agar phantom layer using
polyimide tape, which also ensured good thermal contact with
the thermocycler. The entire assembly was covered with a Petri
dish cover to prevent ambient perturbations. The CBT shown
in Fig. 6(c) was calculated on the phantom data by using the
K value from the calibration data. Error shown is taken from
using the 95% confidence interval of the K value. Linear fit
and R2 are based on manually set slope of 1 (which assumes
constant offset over entire T range). Error bars based on K
error propagation (95% confidence intervals), not multiple
repeats (n=1 experiment).

Supplementary Information
Information on the polymer synthesis, design and characteri-

zation of the readout circuit, and the polymer thermal response
and instrument calibration is available in the Supplementary
Information.
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