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SUMMARY

Inspired by strong and tough biological materials, we present composite materials with controllable inter

locking. The composites feature tessellations of stiff particles connected by a soft matrix, and we control 

the degree of interlocking through irregularity in particle size, geometry, and arrangement. We generate 

the composites through stochastic network growth using an average network coordination number. The 

generated network forms the soft matrix phase of the composites, while the areas enclosed by the network 

form the stiff reinforcing particles. At low coordination, composites feature highly polydisperse particles with 

irregular geometries arranged non-periodically. In response to loading, these particles interlock and primarily 

rotate and deform to accommodate non-uniform kinematic constraints from adjacent particles. In contrast, 

higher-coordination composites feature more monodisperse particles with uniform geometries, which 

collectively slide. We quantify how to control the degree of interlocking as a function of coordination number 

alone, demonstrating how irregularity facilitates bioinspired deformation mechanism control.

INTRODUCTION

Nature offers an abundance of materials with excellent 

mechanical properties, including high stiffness,1–6 high 

strength,2–4,7–11 high toughness,1,4,5,10,12–15 and good energy 

absorption.16–18 These materials are often composed of stiff 

and soft phases arranged to optimize mechanical performance. 

Many biological materials have even independently evolved to 

have similar structures across a wide range of length scales.19

For example, interlocking structures that provide excellent me

chanical performances can be observed in many different bio

logical materials, providing high strength, ductility, and tough

ness.19 In nacre, interlocking occurs as a result of rough, 

wavy tablets, which jam as they slide past one another,1,20,21

while in turtle carapaces and cranial bone, interlocking is seen 

in zigzag bone interfaces, which engage like puzzle pieces for 

improved bending strength and toughness.11,14,22 Interlocking 

is even seen in stomatopod dactyl clubs, which feature 

Bouligand and herringbone structures that deflect cracks with 

out-of-plane interlocked layer arrangement.23,24 However, 

mimicking all of these advantageous biological structures for 

use in bioinspired engineering materials remains a complex 

design and fabrication challenge.

Here, we propose the use of irregularity to generate bio

inspired interlocking materials, and we present a class of two- 

phase composites composed of tessellations of stiff reinforcing 

particles connected by a soft matrix. Going one step beyond the 

biological materials, we show that our materials offer control 

PROGRESS AND POTENTIAL Natural materials often feature a combination of soft and stiff phases, which are 

arranged to achieve excellent mechanical properties such as high stiffness, strength, and toughness. Many 

natural materials have even independently evolved similar structures to obtain these properties. Interlocking 

structures, for example, are common in strong and tough materials and can be observed across many length 

scales. Inspired by these materials, we present a class of two-phase composites with controllable interlock

ing. The composites feature tessellations of stiff particles connected by a soft matrix, and we control the de

gree of interlocking through irregularity in particle size, geometry, and arrangement. We generate the com

posites through stochastic network growth, which is parameterized by network coordination number alone, 

demonstrating how irregularity facilitates deformation mechanism control. The study provides new design 

principles for composites with tailorable bioinspired deformation mechanisms. 
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over the degree of interlocking, defined as the kinematic con

straints provided by neighboring particles,25 through control of 

particle size, geometry, and arrangement. We generate the ma

terials using a virtual growth algorithm (VGA), which mimics the 

growth of stochastic structures observed in nature by assem

bling simple building blocks into a network according to connec

tivity rules.26–30 To further increase the design space, we present 

a VGA on a hexagonal grid (hexa-VGA), offering up to 6-sided 

connectivity. The hexa-VGA begins with a set of nodes on the 

hexagonal grid and randomly assigns connections from each 

node until the entire grid is filled, forming a network. We define 

the average number of connections per node as the coordination 

number,31,32 which we use as an input parameter for the hexa- 

VGA. The generated hexa-VGA network then forms the matrix 

phase of our composite materials, while the reinforcing particles 

are formed by the areas enclosed by the matrix.

As a function of coordination and the resulting particle size, 

geometry, and arrangement, particles interlock to varying de

grees in response to the kinematic constraints provided 

by neighboring particles. This mechanical performance is 

reminiscent of not only interlocking biological materials but 

also interlocking engineering materials, which have been pre

viously shown to provide tunable bending stiffness,33–36

enhanced load-bearing capacity,35,37–39 and improved tough

ness.36,40–44 However, all of the previous studies on interlock

ing are limited by the periodic nature of the interlocking ele

ments in both the biological materials and the engineering 

materials. In contrast, our irregular elements (particles) offer 

a wider design space, with control over the degree of inter

locking in response to loading, as a function of the coordina

tion number.

RESULTS AND DISCUSSION

Sample design

To design and generate our samples, we use a hexa-VGA, 

which stochastically grows a network from a set of nodes on 

a hexagonal grid. The hexa-VGA is defined by a coordination 

number, which is the average number of connections per 

node (Figure 1A). We can therefore define a set of 63 geomet

rically or rotationally unique hexagonal tiles, which form 

from the network on the grid (Figures 1B and 1C). To make 

our polymer composite materials, we additively manufacture 

the generated network as the soft matrix phase, while the 

Figure 1. Sample generation and characterization of design space 

(A) Node identification with positive (green) and negative (red) nodes. 

(B) Assorted hexagonal tiles. 

(C) Hexagonal tile connectivity. 

(D) Composite material generation with reinforcing particles and matrix. 

(E) Hexa-VGA sample compositions as a function of coordination number. 

(F) Triangle-normalized particle size distributions as a function of coordination number.
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areas enclosed by the network form the stiff reinforcing phase 

(Figure 1D). Further details on the material properties may be 

found in the supplemental information (Figure S1), and details 

on the generation and fabrication methods may be found in 

the methods section.

To span the available design space, we generate samples 

with coordinations of 2X, 2.5X, 3X, 3.5X, 4X, 5X, and 6X, which 

are composed of primarily either 100% of the coordination 

tile type (for integer coordinations) or 50% of the tile type 

above and 50% of the tile type below (for non-integer coordi

nations) (Figure 1E). The particle size is inversely related to the 

coordination number, with coordination 2X below the percola

tion threshold for equilateral triangular networks,45 resulting 

in the largest particles (Figure 1F). The smallest particle 

size possible is that of a triangle formed by adjacent lines 

(Figure 1C).

Mechanical characterization: Cylindrical contact 

loading

Samples are loaded in compression with a cylindrical contact to 

understand how the structure responds to localized load at dis

placements up to 3 mm (Figures 2A–2F). We test three different 

samples for each coordination (2X, 2.5X, 3X, 3.5X, and 4X) and 

observe that at the lowest coordination, the material behaves 

similarly to a bulk material, as it falls below the percolation 

threshold for an equilateral triangular network45 and is primarily 

composed of a few large particles (Figure 2A). As the coordina

tion number increases, stiffness and strength decrease as a 

result of both volume fraction, which decreases with increasing 

coordination number, and structure, since intermediate coordi

nations display similar stiffness and strengths (Figures 2B–2F).

To decouple the effect of volume fraction, we test 6X samples 

with the same volume fraction of reinforcing particles as 2X, 

Figure 2. Cylindrical contact loading characterization 

(A–F) Force-displacement plots for coordinations 2X, 2.5X, 3X, 3.5X, 4X, and 6X, respectively. Red refers to vertical matrix orientation, blue refers to horizontal 

matrix orientation, and gray line highlights 1 mm displacement. 

(G–L) Selected samples with vertical orientation. 

(M–R) 2D DIC maps of εx strain for corresponding selected samples. 

(S–X) 2D DIC maps of εy strain for corresponding selected samples.

Please cite this article in press as: Fox et al., Controllable interlocking from irregularity in two-phase composites, Matter (2025), https://doi.org/ 

10.1016/j.matt.2025.102201

Matter 8, 102201, October 1, 2025 3 

Article
ll



2.5X, 3X, 3.5X, and 4X irregular samples. These equivalent sam

ples are composed of uniform triangular particles of varying sizes 

according to the volume fraction of each coordination, and we 

maintain the same matrix width for all samples. We observe an 

increase in both stiffness and strength with increasing particle 

phase volume fraction (Figure S2) but not as large of an increase 

in stiffness and strength as observed in the irregular composites 

(Figures 2A–2F). These periodic equivalent samples also begin to 

fail sooner at lower coordinations, resulting in a decrease in 

measured force as a result of bands of particles shearing for 

these periodic materials rather than their interlocking irregular 

counterparts.

Given the hexagonal nature of the hexa-VGA used to generate 

the samples, we examine the effect of orientation by testing sam

ples at 0◦ (horizontal, blue) and 90◦ (vertical, red), such that the 

underlying hexagonal grid is aligned along the widest hexagon 

direction and the narrowest hexagon direction (Figures 2A–2F). 

At lower coordinations, there is significant anisotropy, with the 

vertical orientation displaying greater stiffness and strength 

(Figures 2A and 2B). This trend decreases as the coordination 

number increases (Figures 2C–2E) until we reach the periodic 

6X case, where the vertical orientation re-emerges as being 

stiffer (Figures 2F and S3). This anisotropy effect is likely the 

result of both particle size, which decreases with coordination, 

offering a wider range of possible geometries and orientations 

while maintaining irregularity at intermediate coordinations, 

and the matrix alignment with respect to the direction of loading, 

where horizontal alignment allows for greater deformability in the 

lateral x direction when loaded from the normal y direction. We 

measure the angle of alignment of the particles to quantify this 

anisotropy. Using ‘‘regionprops’’ in MATLAB (MathWorks, 

USA) to obtain the angle of orientation, we show that intermedi

ate coordinations have a more uniform distribution of particle ori

entations for both alignments, while more extreme coordinations 

(i.e., 2X and 6X) show more skewed distributions (Figure S4). 

These differences in structure and resulting mechanical 

response (Figures 2A–2F) offer a way to design materials that pri

marily deform and fail in a desired direction and with a particular 

mode, depending on the desired application. For example, it is 

possible to obtain stronger materials from vertically aligned 

lower coordinations, which deform primarily through the axial 

compression of larger vertically aligned particles, or weaker ma

terials from horizontally aligned higher coordinations, which 

deform through the shearing of smaller diagonally aligned 

particles.

We then use 2D digital image correlation (DIC) to track 

the sample deformation up to 1 mm cylindrical contact 

displacement (indicated by the gray line in the force-displace

ment plots [Figures 2A-2F]). Across the various samples 

(Figures 2G–2l and S5), we observe varying amounts of strain 

surface area (structural engagement) as a function of coordi

nation number, with intermediate coordinations displaying 

the largest region of both εx (Figures 2M–2R and S5) and εy 

strain (Figures 2S–2X and S5).

Mechanical characterization: Matrix response

To understand the reason for the non-linear trend in struc

tural engagement, we first characterize the matrix response 

as a function of coordination number. The matrix response 

(i.e., regions of non-zero strain) gives us an indication of 

how the particles are interacting and how many particles 

are engaging to accommodate the loading. The strain surface 

maps can be masked to obtain the strain maps of the soft 

matrix exclusively (Figures 3A–3C). After normalizing for the 

volume fraction of the matrix in each sample, we observe 

that matrix engagement (defined as non-zero matrix strain 

across the sample surface area) follows the same trend as 

the overall structure engagement and varies with coordina

tion number. The lowest values occur at 6X, followed by 

2X, and the greatest values occur around 3X to 3.5X, once 

we reach a cylindrical contact displacement greater than 

0.33 mm, for both εx and εy strain (Figures 3D and 3E). 

This peak of matrix engagement is likely the result of particle 

geometries and arrangement, whose irregularity leads to a 

series of kinematic constraints as particles engage with 

neighboring particles, distributing strain over a large amount 

of the sample. We also compare these irregular composites 

with their periodic counterparts to understand the role of par

ticle interlocking. In response to loading, the 6X equivalent 

volume fraction samples display exclusively collective sliding 

behavior, resulting in the formation of shear bands, similar to 

that of the original 6X samples (Figure S6). We then measure 

the amount of matrix engagement as a function of volume 

fraction to quantify the extent of the interlocking mechanism 

and decouple the effect of interlocking from the intrinsic ma

terial properties. Unlike the irregular samples, the periodic 

equivalent samples do not display a peak in matrix engage

ment at intermediate coordinations (Figure S7). This discrep

ancy in trends between the periodic and irregular samples 

can therefore be attributed to the activation of the interlock

ing mechanism, which is in competition with the collective 

sliding mechanism in the irregular samples. It is also impor

tant to note that the total percentage of matrix engagement 

in the periodic samples is higher than that in the irregular 

samples, especially at lower coordinations, but the number 

of particles is also greater in the periodic samples. This 

means that although the total amount of matrix engaged is 

higher, the number of particles interacting per unit of matrix 

engagement is actually lower.

To further quantify how the matrix distributes strain 

across the structure, we also measure the average strain 

across the sample depth. At 1 mm cylindrical contact 

displacement, we first convert the strain maps to grayscale 

values in MATLAB (MathWorks) and then collapse the 

strain maps to a vertical line, where darker values indicate 

greater amounts of strain (Figures 3F–3K). We observe that 

intermediate coordinations also display the greatest depth of 

matrix engagement (Figure 3L), with maxima around 3X 

and 3.5X (Figure 3M). This again indicates that these 

intermediate coordinations engage the largest amount of the 

composite structure in response to the cylindrical contact 

loading.

Mechanical characterization: Particle response

We then examine the particle response to further under

stand the relationship between coordination number and 
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how the structure accommodates the applied loading. In this 

study, we focused on the low-strain regime, and therefore, it 

is important to note that the tough matrix-particle interface 

does not fracture during loading46 and particles remain 

adhered to their surrounding matrix phase throughout our 

analysis.

The 2X samples are primarily composed of a few large par

ticles, given that they are below the percolation threshold, and 

behave similarly to a bulk material. As the coordination in

creases and crosses the percolation threshold, particle num

ber increases and particle size decreases, although lower co

ordinations (3X) still feature highly polydisperse particles with 

irregular geometries, which are often concave (Figure 4A). Un

der cylindrical contact loading, these low-coordination sam

ples deform as individual particles uniquely translate, rotate, 

and deform to accommodate the non-uniform kinematic 

constraints provided by neighboring particles. We define the 

degree to which particles are kinematically constrained by 

neighboring particles as interlocking,25,37 and the lower coor

dinations display the greatest amount of interlocking 

(Figures 4A; Video S1). To quantify the interlocking behavior, 

individual particle path vectors can be tracked using FIJI 

TrackMate,47 and we can then use these vectors to observe 

how the particles move relative to one another (Figure 4B). 

Greater interlocking results in a particle vector that is more 

dissimilar to neighboring particle vectors, resulting in a wide 

distribution of vector angles in a local region (Figure 4C). As 

the coordination increases further to 4X, particle size con

tinues to decrease, and particles become more uniform in 

both shape and size (Figure 4D). In addition to particle-to-par

ticle interlocking, this uniformity results in the activation of 

mechanisms of collective particle sliding due to the reduced 

Figure 3. Matrix response characterization 

(A–C) Example 3.5X matrix εx strain with increasing cylindrical contact displacement. 

(D) Volume-normalized fraction of matrix engaged as a function of coordination number and cylindrical contact displacement for εx strain. 

(E) Volume-normalized fraction of matrix engaged as a function of coordination number and cylindrical contact displacement for εy strain. 

(F–K) Example 2X, 2.5X, 3X, 3.5X, 4X, and 6X matrix εx strains at 1 mm cylindrical contact displacement with corresponding horizontally averaged εx strain values 

(grayscale bars with line plot average). 

(L) Average εx strain value as a function of depth for all 2X, 3X, and 4X coordinations at 1 mm cylindrical contact displacement. 

(M) Average εx strain value as a function of coordination number for all 2X, 3X, and 4X coordinations at various sample depths.
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neighboring particle kinematic constraints in local regions 

(Video S2). This mixed-mode behavior is reminiscent of nacre, 

although the interlocking and collective sliding of nacre’s 

tablets are sequential deformation responses resulting 

from monodisperse tablets1,9,20,48 rather than a simultaneous 

tradeoff resulting from polydispersity and irregularity. The 

mixed-mode behavior results in a narrower distribution of par

ticle vector angles, as the collectively sliding particles have 

more similar angles in a local region (Figures 4E and 4F). At 

6X coordination, all particles collectively slide, as all particles 

are convex and periodically arranged, with uniform shape and 

size (Figures 4G and 4H; Video S3), and the distribution of par

Figure 4. Particle response characteriza

tion 

(A) Example 3X particle image at 0.5 (I) and 1 (II) 

mm cylindrical contact displacement. 

(B) Corresponding particle vector map at 0.5 

(I) and 1 (II) mm displacement. 

(C) Histogram of vector map line angle frequencies 

at 0.5 (I) and 1 (II) mm displacement. 

(D) Example 4X particle image at 0.5 (I) and 1 (II) 

mm displacement. 

(E) Corresponding particle vector map at 0.5 

(I) and 1 (II) mm displacement. 

(F) Histogram of vector map line angle frequencies 

at 0.5 (I) and 1 (II) mm displacement. 

(G) Example 6X particle image at 0.5 (I) and 1 (II) 

mm displacement. 

(H) Corresponding particle vector map at 0.5 

(I) and 1 (II) mm displacement. 

(I) Histogram of vector map line angle frequencies 

at 0.5 (I) and 1 (II) mm displacement.

ticle vector angles becomes much nar

rower in a local region (Figure 4I).

Mechanical characterization: 

Statistical analysis

To quantify the transition from interlock

ing to collective sliding behavior in our 

materials, we examine the statistics 

behind the particle and matrix arrange

ment. To reduce interlocking and achieve 

collective sliding behavior, the matrix 

must be arranged in continuous straight 

lines to form planes along which 

particles can slide. Given an initial matrix 

orientation on a hexagonal tile, we can 

therefore determine which subsequent 

tiles allow the straight line of matrix to 

continue (Figure 5A) and which divert 

it (Figure 5B). With rotational symmetry, 

regardless of the initial matrix orientation, 

the tile distributions for continuing or 

diverting remain the same, resulting 

in a continuous or discontinuous line 

of matrix (Figure 5C). Given the input 

parameter of the coordination number, 

which tells us which tile types we have available, we can 

then calculate the probability of the matrix continuing to 

determine the average length of matrix lines. We use Bayes 

theorem,

P(R∩ tiling plane)=

[
∑i

1

P(tiling plane|tile typei) ∗ P(tile typei)

]j

;

(Equation 1) 

where i is the number of tile types and j is the number of 

tiles. By placing a threshold at a percentage of less than 1% 

Please cite this article in press as: Fox et al., Controllable interlocking from irregularity in two-phase composites, Matter (2025), https://doi.org/ 

10.1016/j.matt.2025.102201

6 Matter 8, 102201, October 1, 2025 

Article
ll



likelihood, we can plot the expected length of straight 

lines of matrix for each coordination type, and we can see 

that the probability increases non-linearly with coordination 

number (Figure 5D). Low coordinations have statistically 

shorter lines of continuously aligned matrix, resulting in 

complex geometries that interlock, while higher coordinations 

have statistically longer lines, with 6X showing only 

continuous lines, resulting in collective sliding behavior 

(Figure 5D).

To further understand what gives rise to interlocking 

behavior and how particles engage with neighboring particles, 

we also quantify the average number of neighboring particles 

per particle. Using the Euler characteristic,49 we determine the 

number of particles and the number of edges (which corre

spond to neighbors). The Euler characteristic is defined for a 

2D graph as

V − E + F = 1; (Equation 2) 

where V is the number of tiles greater than 2X; E is the number of 

edges, defined as

E =
RcV

2
; (Equation 3) 

where Rc is the corrected coordination number, found by 

removing any 2X tiles, which only contribute to the length of 

the edges but not to the number of edges; and F is the number 

of particles. F can therefore be rewritten as

F = 1 − V

(

1 −
Rc

2

)

: (Equation 4) 

Figure 5. Statistical characterization of matrix and particles 

(A) Continuous tiles for 60◦ example matrix plane according to coordination number. 

(B) Discontinuous tiles for 60◦ example matrix plane according to coordination number. 

(C) Example of continuous and discontinuous tiling planes. 

(D) Probability of continuous tiling as a function of number of tiles for various coordination numbers. 

(E) Examples of counts of neighboring particles per particle. 

(F) Neighboring particles per particle as a function of corrected coordination number; solid black line denotes upper limit. 

(G) Example of convex (red) particle and concave (green) and geometries. 

(H) Average neighboring particles per particle as a function of maximum continuous tiling; dashed black line denotes concavity threshold, and solid black line 

denotes upper limit.
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We then determine the average number of neighboring parti

cles per particle, N (Figure 5E):

N =
E

F
: (Equation 5) 

From the Euler characteristic (Equation 2), the maximum 

average number of neighbors per particle cannot exceed six, 

and as the corrected coordination number increases above 3X, 

the maximum number of neighbors per particle decreases until 

we reach a limit of three neighbors at 6X (Figure 5F). This follows 

the trend we observed where the maximum amount of structural 

engagement occurs at intermediate coordinations. At these co

ordinations, we have both interlocking particles engaging with a 

nearly maximum number of neighbors, as well as collectively 

sliding particles, which easily move in large groups. At these in

termediate coordinations, the average particle size also main

tains a concave shape, which allows for more kinematic con

straints (greater interlocking), formed by more than three 

triangles (Figure 5G). These kinematic constraints then allow 

the particles to easily distribute the loading to their neighboring 

particles across the structure.

To find the upper bounds of the design space, we plot together 

the maximum continuous tilings and the corresponding neigh

bors per particle, and we include our tested samples as well 

as additional samples that were only statistically analyzed 

(Figure 5H). To achieve the greatest degree of interlocking, lower 

coordinations are desirable, while the lowest degree of interlock

ing is achieved at 6X, when all particles collectively slide along 

continuous matrix lines. However, as previously discussed, the 

greatest amount of structural engagement occurs at intermedi

ate coordinations, when there is a trade-off between the simulta

neous activation of the interlocking and collective sliding mech

anisms. It should be noted that the upper limit defined here is for 

the homogeneous case where samples are formed by nearly 

100% of their coordination number tile type for integer coordina

tions or 50% above and 50% below for non-integer coordina

tions (Figure 1E). It is therefore possible to increase the contin

uous tiling length by forming the same coordination number 

with other tile compositions that have greater numbers of high 

coordination tiles, although these may not be feasible to 

generate using the hexa-VGA.

Conclusions

We present a class of two-phase composites composed of tes

sellations of stiff particles connected by a soft matrix. Drawing 

inspiration from the excellent mechanical performance of inter

locking structures observed in many natural materials, our com

posites feature particle interlocking in response to loading. 

Going one step beyond the biological materials, we control the 

degree of interlocking using irregularity of particle size, geome

try, and arrangement. We generate the composites through a 

hexa-VGA, which stochastically connects a network of nodes 

on a hexagonal grid according to coordination number. We 

then use the generated hexa-VGA network as the matrix phase, 

while the reinforcing particles are formed by the areas enclosed 

by the matrix. Lower coordinations feature highly polydisperse 

particles, which interlock as a result of their irregular geometries 

and non-periodic tessellations. Higher coordinations feature 

more monodisperse particles, which collectively slide as a result 

of their more uniform geometries and tessellations. Finally, we 

show and statistically quantify how to control the trade-off be

tween these interlocking and sliding mechanisms, with the acti

vation of a particular mechanism and the amount of structural 

engagement controlled by coordination number alone. These 

findings offer an exciting new research direction, especially for 

3D extensions of these 2D findings on controllable interlocking, 

for new materials with spatially tailorable stiffness, strength, 

ductility, and toughness.

METHODS

Sample generation and fabrication

The hexa-VGA code used to generate the samples is written in 

Python and may be found at the following link: https://github. 

com/basbaskoko/hexaVGA.

The hexa-VGA generates (irregular) networks by beginning 

with an equilateral triangular network placed on a hexagonal 

grid. Lists of unique lines in the network are first defined by their 

endpoints and then initiated with a status of ‘‘neither.’’ An arbi

trary endpoint (a node) is randomly selected, from which X (out 

of 6) lines are assigned the status ‘‘positive,’’ while the rest are 

given the status ‘‘negative.’’ This number X is defined as the co

ordination number, and we define it on a set of tiles formed by the 

hexagonal grid. Once a line has been assigned a status, that sta

tus cannot change. After all lines beginning at an endpoint have 

been assigned a status, that endpoint is removed from the set of 

‘‘free’’ endpoints. If any of the neighboring 6 endpoints are free 

endpoints, one of them is chosen to have its lines assigned a sta

tus. If none of the neighboring endpoints are free endpoints, a 

random free endpoint is selected, and this process continues un

til no free endpoints remain and all lines have been assigned a 

status, resulting in a network of interconnected nodes.

To fabricate our composite samples from the hexa-VGA 

output network, we first use the network information to create 

an STL file for the soft matrix, which is made from TangoBlack 

PolyJet resin, and then take its negative to form the stiff reinforc

ing particles, which is made from VeroWhite PolyJet resin. We 

conducted simple tension tests to obtain the constitutive 

stress-strain properties of both resins (Figure S1), and the me

chanical properties of the two phases fall within those reported 

in the literature.50–52 Due to printer resolution constraints, we 

choose a matrix width of 100 μm and a minimum particle width 

of 1 mm.

It is also important to consider the effect of the sample geom

etry, given that the fabricated samples have a square shape, 

while the tiles that tessellate it are hexagonal and therefore 

cannot perfectly fill the square space, resulting in a smaller 

average edge particle size. However, the number of total tiles 

is significantly higher than the number of edge tiles, which repre

sent just 18% of the total tile population.

Cylindrical contact compression testing

We use an Instron E3000 with a 5 kN load cell (Instron, USA) to 

apply compression loading. Samples of 2.5 × 2.5 × 1 cm are 

loaded with a cylindrical contact of 1 cm diameter. Testing is 
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conducted for displacements up to 3 mm, which is just prior to 

fracture. Three different samples are tested for each coordina

tion to ensure consistency across samples.

DIC

To conduct 2D DIC on the samples, we apply a layer of matte 

white paint and then matte black speckles with a diameter of 

0.1–0.3 mm to the front face of the samples. During loading, 

we use a Nikon D750 DSLR camera (Nikon, Japan) with a 

120 mm lens to take images at a rate of 1 frame per second. 

We use VIC 2D (Correlated Solutions, USA) to conduct the DIC 

analysis, using a step size of 2 and a subset size of 29, and obtain 

the Lagrangian strain fields in the x direction and y direction.
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