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Interlocked and polycatenated material systems, consisting of discrete, nonconvex particles linked to
their nearest neighbors, such as chainmail fabrics, have been shown to undergo a jamming transition that
increases their rigidity under boundary compression. This rigidity transition is associated with an increase
in contact number between particles. In architected materials, rigidity is described by theories such as the
Maxwell criterion. In this Letter, we propose a rigidity theory for a type of interlocked material system: the
torus knot tessellation. Torus knot tessellations are structured fabrics composed of particles shaped as torus
knots. In these fabrics, we theoretically demonstrate that in-plane rigidity is governed by a modified
Maxwell criterion, while out-of-plane rigidity is governed by a crease line criterion. These theories provide
a framework for the design of rigidity of these fabrics.
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The design of material structure has emerged as a
powerful strategy for controlling the mechanical response
of engineered systems, offering far greater flexibility than
traditional synthesis of composites and foams [1,2]. This
design paradigm enables the creation of architected mate-
rials with tailored and extraordinary properties, such as
negative Poisson’s ratio [3,4], reversible deformation [5],
ultralight yet ultrastiff response [6,7], multimodal defor-
mations [8—10], and logic ability [11,12]. Structured fabrics
with interlocked particles, like chainmail, have historically
been used in wearable protective armor [13—15]. Recently,
these materials have been shown to support a jamming
transition that converts them from flexible fabrics to rigid
layers upon the application of external pressure [16]. Some
of the unique characteristics of chainmail fabrics arise from
the discrete nature of their components: nonconvex granu-
lar particles that are topologically interlocked with one
another.

Conventional granular matter, such as sand or grain piles,
consists of densely packed, disordered particles that can
jam under applied external pressure [17-20]. The behavior
of these materials is governed by the particles’ geometry
[21,22], surface roughness [23,24], moisture content
[25,26], etc. The mechanical stability of granular matter
is determined by compressive contacts between adjacent
elements, which transmit stresses along preferential path-
ways known as “force chains” [27,28].
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In interlocked granular matter, the particles are arranged
in ordered lattices and interlocked together, supporting both
compressive and tensile interactions that maintain the
integrity of the entire structure [29]. Interlocked fabrics
have found applications in soft robotics [30,31] and
biomedical devices [32,33], owing to their flexibility and
tunable stiffness. The jamming transition observed in
interlocked granular matter depends on the interparticle
connectivity (i.e., how particles are topologically inter-
locked). This connectivity influences how force chains
propagate through particle contacts, thereby affecting the
overall mechanical properties [20].

Here, we aim to propose a rigidity theory that uses
connectivity to assess whether a structure can be forced out
of shape without elastic deformation for single-layer fabrics
of interlocked granular matter. We focus on chainmail
fabrics consisting of particles derived from torus knots,
tessellated into a 2D fabric, termed torus knot tessellation
(TKT). We chose torus knot-shaped particles to have direct
control of the connectivity between nearest neighbor
particles. We introduce a general design method for
creating fabrics from interlocked torus knot particles and
analyze the particles’ connectivity using a point-bar model.
We then derive rigidity criteria to predict rigidity of in-
plane deformation and out-of-plane folding. Our findings
reveal that TKT fabrics with varying connectivity exhibit
remarkably different reactions to external forces. Finally,
we demonstrate how to apply these theories to design the
rigidity of these fabrics.

The fundamental building blocks of TKT are torus knot
particles [Fig. 1(a)]. A torus knot is a mathematical curve
with zero thickness that coils around the surface of a torus.
To transform this curve into a particle, we assign a circular
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cross section to it. Mathematically, a torus knot can be
described as

x = [R + rcos(gt)] cos(pt)

¥ = [R -+ reos(qn)] sin(pr) (1)
7 = rsin(qr)

Here, ¢ is the parameter governing the formation of the
curve and ranges from O to 2z, R and r determine the
dimensions of the torus knot,p defines the topology and is
set to 1 throughout the study, and g determines the number
of “petals” of the torus knot (i.e., loop features surrounding
the original torus). For instance, in Fig. 1(a), a torus knot
particle is generated around a torus with ¢ = 3. More
generally, the orientations and lengths of the petals can be
adjusted by modifying the original formula, as detailed in
Supplemental Material (SM) [34], Sec. 1.

A torus knot particle can be represented by a point-bar
diagram [Fig. 1(b), where hollow blue points represent the
particles’ centers, and solid orange points represent the
ends of the particles’ petals]. Adjacent particles can be
further interlocked into fabrics [Figs. 1(c) and 1(d)]. Note
that in connecting the torus knot particles, all the particles
remain in the same plane instead of rotating alternately with
each other like the traditional chain structure. The proposed
design pipeline enables us to define numerous TKTs (see
SM [34], Sec. 2).

Because of the discrete nature of these fabrics, any fabric
deformation can be decomposed into two parts: the
deformation allowed by interparticle clearance (clearance
deformation) and the deformation allowed by the mecha-
nism from the specific structure (structural deformation).
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FIG. 1. Schematic diagram to represent the design of a TKT.
(a) A rod coils around a base torus (blue) for one revolution and
forms a torus knot particle (red). (b) Top view of the torus knot
particles and their point-bar representations. (c) Particles can be
interlocked by hooking at the connections. (d) A TKT fabric is
generated by repeating the connection process, following a 2D
tessellation. A representative periodic cell is isolated in red dashed
line. Note that an effective periodic cell may span multiple
geometrical unit cells, as in Ref. [35]. (e) Digital photo (false
color used for clarity) of a 3D printed TKT fabric. Scale bar, 1 cm.

To determine the effect of connectivity on the rigidity of
these fabrics, it is crucial to limit clearance deformation, as
it is irrelevant to the structures of the fabrics. Thus, in
designing, we ensure as minimal clearance as possible (the
clearance is smaller than 5% of the particle wire thickness,
which is much smaller than the scale of the particle). We
also assume perfectly smooth surfaces to avoid the factor of
surface conditions. With these constraints, the connections
between particles function similarly to ball hinges: trans-
lational movements are limited within the range of the
clearance, while rotational movements are not limited.
Thus, we model the connection in Fig. 1(c) as a single
orange point. Note that beyond TKTs, the above assump-
tions can be applied to some other interlocked structures as
well; see SM [34], Sec. 9.

We compare in-plane rigidity of two distinct TKTs
[bilink and trilink, Figs. 2(a) and 2(c); see SM [34]
Fig. 48 for structural details]. We apply uniform compres-
sion to deform the fabrics until elastic deformation occurs.
Their experimental responses are compared in Figs. 2(b)
and 2(d), respectively. We observe that trilink only has a
small clearance deformation, while bilink has a much larger
structural deformation beyond clearance deformation. As a
quantitative comparison of their difference, the area shrink-
age (I') of the trilink is much less than that of the bilink. We
compare these experimental results with numerical simu-
lations (Fig. S6) obtained with the level-set discrete
element method [36-38], finding good agreement. The
implementation details of the level-set discrete element
method can be found in SM [34], Sec. 5.

The difference of rigidity in these two fabrics arises from
the particles’ rigid body interactions. In truss or lattice
frameworks, Maxwell’s criterion is usually effective for
determining rigidity by counting degrees of freedom
(DOFs) in the system [39,40]. Grubler’s criterion further
extends the object to a system composed of arbitrary rigid
bodies [41] at the cost of losing geometry information (e.g.,
shapes of rigid bodies, interlocking patterns, periodicity).
To conserve geometric information in our TKT fabrics, we
adapt Maxwell’s criterion for predicting rigidity. We draw
an analogy between TKTs and 2D truss systems in the
context of Maxwell’s criterion. Truss systems consist of
joints and bars. According to Maxwell’s criterion, the
rigidity of these systems depends on the number of total
DOFs, which can be evaluated by counting the number of
joints (j) and bars () in the entire system. Each joint has
two DOFs (x and y translations) and each bar introduces a
geometric constraint on two joints that forbids axial bar
deformation. In addition, the three overall rigid-body DOFs
should be excluded. The resulting Maxwell criterion
formula [42] is M =2j —b — 3. For M > 0, the system
has extra DOFs and behaves in-plane flexible. Conversely,
for M <0, the system is in-plane rigid.

We expand this analysis to our TKT fabrics. In their
point-bar diagrams [Figs. 1(b)-1(d)], each point (both blue
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FIG. 2. In-plane response of TKT fabrics. (a),(c) Three-petal
particles tessellated with different connectivity. In (a), groups of
three neighboring particles are interlocked (termed “trilink”),
whereas in (c), interlocking occurs between pairs of particles
(termed “bilink™). Their respective periodic cells are represented
in hexagonal dashed lines. (b),(d) Digital photos (in false color)
of the two fabrics responding to uniform in-plane compression. I'
represents the ratio of area shrinkage after deformation. Scale
bars, 1 cm. (e) Eight TKT fabrics are selected based on a diversity
of petal number, petal orientation and interlocking topology (See
SM [34], Sec. 4 for details). Experimental and numerical results
are obtained and used to divide them into a rigid group (circular
markers) and a flexible group (triangular markers). The counting
values of these TKTs are listed in the order (j, g, b M). (f) Each
TKT cell is counted and mapped to a colored point in a 2D phase
diagram. The modified Maxwell’s criterion is verified through
our observation that the rigid group is distributed above the
M., = 0 plane, while the flexible group is distributed below the
plane. (g) The two profiles of average contact number (Z) versus
compressive strain. The minimum contact number (Z*) is
indicated by dashed lines.

and orange) has two translational DOFs, akin to the truss.
However, we identify two differences in TKTs: (i) every
blue point has an additional rotational DOF, counting the
orientation of each rigid bodys; (ii) each bar contributes two
constraints, since in a rigid body both axial and transverse
deformations in the bars are forbidden. Therefore, the
modified Maxwell criterion gives M =2j+g—2b—3
[Eq. (2)], where ¢ indicates the number of particles. This
criterion has not considered geometrical information like
periodicity.

For TKTs with periodic patterns, the rigidity criterion
can be further simplified. First, we make the naive
assumption that each periodic cell has identical distortion.

Thus, the point movements are the same across all cells.
Consequently, the DOFs of the entire structure are effec-
tively those in a single cell, counted as 2j..;; + Geel-
Similarly, the strains in bars are consistent across all cells,
resulting in a total constraint number b,.,;. For overall
DOFs, we reduce three rigid-body DOFs. Another four
DOFs must be added for the following reason: to tile a 2D
space with periodic cells, we need to specify two lattice
vectors, each of which requires two parameters (length and
direction). Therefore, the modified Maxwell’s criterion for
periodic TKT fabrics is

M = 2jcen + Geetl — 2been + 1 (2)

If M > 0, the system is in-plane flexible. Conversely,
if M. <0, the system is in-plane rigid.

As an example, we explain the results in Figs. 2(b) and
2(d). The trilink cell has j. = 2, geen = 1, beenn = 3, and
M. = 0, leading to a rigid behavior. As a comparison, the
bilink cell has j..; = 5, geen = 2, beenp = 6, resulting in an
My = 1. Therefore, the structure exhibits flexibility.
These predictions are consistent with our experiments
and simulations. To test the criterion’s generality, we tested
in-plane rigidity on eight TKT fabrics [Fig. 2(e) and SM
[34], Sec. 6]. A phase diagram differentiating rigidity and
flexibility is plotted accordingly [Fig. 2(f)]. This phase
diagram clearly shows the effectiveness of the proposed
rigidity criterion.

Note that this criterion can also be derived from a more
mathematically rigorous method that involves setting up a
matrix of geometric constraints and solving for zero-energy
modes [43]. When the matrix has dependent rows (meaning
dependent geometric constraints) or gives nonperiodic
solution in null space (i.e., aperiodic zero-energy modes),
the Maxwell criterion may break down, as detailed in SM
[34], Sec. S3.

We note that the in-plane rigidity criterion is consistent
with the contact number argument provided in previous
works [16,29]. In Fig. 2(g), we plot the average contact
number (Z) of each particle against compressive strain. The
minimum contact number (Z*) is defined as the value of Z
when the structures start to jam, which can be calculated by
counting the number of connection pairs around a particle
(3 for trilink and 1.5 for bilink). As Z reaches Z*, trilink
cannot be further compressed in the plane and shows out-
of-plane buckling, while bilink continues to distort in the
plane as it has DOFs that allow further contraction.

We then study the relation between out-of-plane rigidity
and tessellation patterns. To maintain consistency of
tessellation patterns, we focus on TKT fabrics with
M.y <0, as they do not produce in-plane structural
deformation. Let us consider, as an example, the two
TKT fabrics in Figs. 3(a) and 3(d) (named four-petal
and six-petal, respectively). Experimentally, we test their
folding rigidity by partially suspending the fabrics from the
edge of a plane. In Fig. 3(b), the four-petal folds, whereas
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FIG. 3. Folding rigidity and force chain analysis of TKT
fabrics. Distinct folding behaviors are observed in (a) four-petal
and (d) six-petal. When partially suspended from the edge of a
plane, (b) four-petal folds, (e) while six-petal does not fold. The
corresponding point-bar representations are shown in (c) and (f).
We focus on two arrays of particles (highlighted by purple and
green regions). The connections between the arrays are marked
by circles, and the red dashed line connecting them represents
either a straight crease line or a geometric constraint in a zigzag
pattern. (g) Three-petal, a TKT with three crease lines. The fabric
folds along three crease lines, forming a kink at their conjunction.
(h) Visualized force chain networks of the three-petal when a pair
of tension forces is applied along the central axis. The color map
represents the force magnitude, normalized to the range between
0 and 1. The fabric is rotated 30° to change the direction of crease
lines. (i) The plot of force concentration ratio (FCR) against 6.
Each point represents one test result of angle 6 and its corre-
sponding FCR. The lines are the fitted trends of FCR when 6
increases. Scale bars, 2 cm.

the six-petal remains rigid, as seen in Fig. 3(e). To
intuitively explain this difference, we focus on two adjacent
arrays along the folding direction [Figs. 3(c) and 3(f)]. The
folding rigidity depends on whether these two arrays can
rotate relative to one another, a factor directly related to the
connectivity between them. In Fig. 3(c), the connections
are aligned into a crease line.

This allows these points to effectively function as a hinge
or a crease. In Fig. 3(f), the connections form a zigzag
pattern, which functions as a geometric constraint that
prohibits folding.

To demonstrate the effectiveness of this crease-line
criterion, we conduct folding tests on other TKT fabrics

as well (see SM [34], Sec. 7 for details). The nontrivial
directed folding behavior of a fabric (named three-petal) is
shown in Fig. 3(g). This result shows that in TKTs folding
directions tend to align with one of the crease lines.

The effectiveness of the crease-line criterion reflects how
interlocking topology affects force chain propagation. Like
conventional granular matter, when external forces are
applied, a network of force chains forms within the TKT
through contacts between neighboring particles. During
folding tests of certain TKT fabrics [e.g., Fig. 3(e)], the
hanging part of TKT fabrics does not drape because the
support forces are transmitted here through force chains.
This force chain network arises from the topological
interlocking of TKTs and should be observable in planar
tension tests where particles engage with each other.
Figure 3(h) visualizes the force chains on the three-petal
fabric with different orientations, which show the tendency
to spread parallel to the crease lines. This is because a
particle array along a crease line is not geometrically
constrained by the neighboring parallel arrays.

To quantitatively study the relation between the force
chain spreading and the crease line orientation, we define a
force concentration ratio (FCR) as

ZiFiyi
ZiFia (3)

Here, i sums over all the petals in the TKT fabric and y; is
the vertical distance from the i th petal to the central axis.
The term Y, F;y;/ >, F; represents the weighted average
distance of the force chain network, and a is the petal length
as the normalization factor. An FCR value close to 1
indicates force concentration near the point of application,
whereas a value close to O signifies a strong force
dispersion across the structure.

We keep the tensile force in the horizontal direction and
change the orientation of the fabrics. We choose, 6 the
angle between the horizontal axis and the crease line, as the
measure of fabric orientation. Figure 3(i) displays the FCR
values against the orientation of the fabrics. For the three-
petal and the four-petal, which have well-defined crease
lines, the FCR is highest when the tension aligns with the
crease line (@ =0). As 0 increases, the FCR drops,
indicating the effect of force chain spreading. For the
six-petal, which lacks a crease line, € is defined as the
rotation angle from an arbitrary direction. The FCR nearly
keeps unchanged in this case because of its lack of a crease
line as a force chain guide. This result highlights the
potential of leveraging interlocking topology and crease
lines in TKT fabrics to achieve force chain programming.

We exemplify two methods to adjust the TKT’s rigidity:
(i) we can change the DOFs by locally controlling the
connections between particles, thereby switching the
in-plane rigidity; (ii) we can change the position of crease
lines through the reorientation of TKT fabrics, thus tuning
the folding rigidity.

FCR=1/
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FIG. 4. Designing the rigidity of TKT fabrics. (a) Point-bar
representation of a TKT fabric. The blue regions are to be
constrained to switch this fabric into a rigid one. (b) The fabric
is flexible when a pair of pointwise force is applied. (c) When the
specified constraints are applied, the fabric becomes in-plane rigid.
(d) The point-bar representation of a TKT fabric that has two
perpendicular crease lines in red. (e) The initial orientation gives a
flexible folding behavior, while (f) a 45° rotation reorients the
crease lines and makes the fabric rigid.

We first construct an in-plane flexible TKT fabric
[Fig. 4(b)]. We aim to make this fabric rigid by constraining
a certain number of connections. This number is given by
the modified Maxwell’s criterion, M = 11 in this case. In
consideration of symmetry, we specify 12 connections in
Fig. 4(a). Each constraint combines two discrete particles
into a whole, reducing the DOFs by 1. The resulting fabric
becomes rigid, as shown in Fig. 4(c).

For designing the folding rigidity, we start with the fabric
in Fig. 4(d), where the two perpendicular crease lines exist.
When folding along one of the lines, as in Fig. 4(e), the
fabric is flexible. Then, we reorient the fabric to misalign
the crease lines and the folding direction. The fabric
behaves rigidly in this new direction [Fig. 4(f)]. This
intriguing anisotropy of folding properties enables a fast
and simple design approach of folding rigidity.

In summary, our research has led to the creation and
demonstration of a new category of interlocked granular
matter, characterized by torus knot tessellation (TKT). In
this approach, particles shaped as torus knots are inter-
locked following specific tessellation patterns. The various
choices of tessellation patterns and particle shapes allow
great variability in fabric design possibilities.

We propose rigidity criteria for both in-plane deforma-
tion and out-of-plane folding behaviors in these fabrics. By
comparing TKT fabrics with a 2D truss, a modified
Maxwell criterion is derived for nonperiodic deformations.
We further simplify our criterion with the periodic
assumption, which successfully predicts in-plane rigidity
of the TKT fabrics. For folding rigidity, we unveil a crease-
line criterion and investigate the corresponding force chain
network. The generality of both criteria is verified through

experiments and simulations. Finally, we demonstrate how
these criteria can be applied to design the structure’s
rigidity. The design framework and findings presented in
this study are applicable to fields such as soft robotics,
biomedical devices, and aerospace architectures, enabling
the creation of shape morphing surfaces, conformable
exoskeletons, and deployable structures.
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