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Experimental realization of on-chip topological 
nanoelectromechanical metamaterials
Jinwoong Cha1,2, Kun Woo Kim3 & Chiara Daraio2*

Guiding waves through a stable physical channel is essential for 
reliable information transport. However, energy transport in 
high-frequency mechanical systems, such as in signal-processing 
applications1, is particularly sensitive to defects and sharp turns 
because of back-scattering and losses2. Topological phenomena 
in condensed matter systems have shown immunity to defects 
and unidirectional energy propagation3. Topological mechanical 
metamaterials translate these properties into classical systems for 
efficient phononic energy transport. Acoustic and mechanical 
topological metamaterials have so far been realized only in large-
scale systems, such as arrays of pendulums4, gyroscopic lattices5,6, 
structured plates7,8 and arrays of rods, cans and other structures 
acting as acoustic scatterers9–12. To fulfil their potential in device 
applications, mechanical topological systems need to be scaled to 
the on-chip level for high-frequency transport13–15. Here we report 

the experimental realization of topological nanoelectromechanical 
metamaterials, consisting of two-dimensional arrays of free-
standing silicon nitride nanomembranes that operate at high 
frequencies (10–20 megahertz). We experimentally demonstrate 
the presence of edge states, and characterize their localization and 
Dirac-cone-like frequency dispersion. Our topological waveguides 
are also robust to waveguide distortions and pseudospin-dependent 
transport. The on-chip integrated acoustic components realized 
here could be used in unidirectional waveguides and compact delay 
lines for high-frequency signal-processing applications.

Nanoelectromechanical systems16,17 can be employed to build 
on-chip topological acoustic devices, thanks to their ability to trans-
duce electrical signals into mechanical motion, which is essential in 
applications. Moreover, nonlinear dynamic phenomena are easily 
accessible in nanoelectromechanical devices. For example, previous 

1Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland. 2Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA. 3Korea Institute for 
Advanced Study, Seoul, South Korea. *e-mail: daraio@caltech.edu

b c d

e

10

12

14

16

18

20

Fr
eq

ue
nc

y 
(M

H
z)

K
M

Distance, w (μm)

dxy dx2–y2 px py

dxy dx2–y2px py

px py

dxy dx2–y2

Fr
eq

ue
nc

y
(M

H
z)

M Γ K M M Γ

Γ

K M M Γ K M
Wavevector Wavevector Wavevector

5.6
13.5

14.0

14.5

15.0

15.5

16.0

16.5

5.8 6 6.2 6.4

a

r
w

a

Fig. 1 | Unit cell geometry and topological phase transitions. a, Schematic 
of a two-dimensional NEMM. The grey area represents the SiN nanomembrane 
suspended over a highly doped n-type silicon substrate. The black dots, 
forming a honeycomb lattice, represent etch holes. The light-blue hexagons 
represent the unetched thermal oxide, acting as fixed boundaries. The unit 
cell geometry (black solid hexagon) is shown in the right inset, with 
relevant parameters. An example flexural mode is shown in the left inset. 
The topological phases are controlled by changing the centre-to-hole 
distance w. r denotes the radius of the etching path from the etch holes.  

b–d, Frequency dispersion curves along a boundary of the irreducible 
Brillouin zone MΓKM, for w = 5.5 μm (b), 6.0 μm (c) and 6.5 μm (d);  
r = 4.9 μm. The red- and green-shaded regions correspond to topological 
and non-topological bandgaps, respectively. e, Eigenfrequencies above and 
below the topological bandgap at the Γ point, as a function of w. Blue (red) 
dots denote the eigenfrequencies for flexural modes px and py (dxy and 

−dx y2 2). The flexural mode shapes are presented for w = 5.5 μm (left), 
6.0 μm (middle) and 6.5 μm (right).
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studies of systems with few degrees of freedom have demonstrated 
quantum-analogous phenomena, like cooling and amplification18, and 
Rabi oscillation19,20. One-dimensional nanoelectromechanical lattices 
are a different class of nanoelectromechanical devices used to study lat-
tice dynamics, for example, in waveguiding21–23 and energy focusing24. 
Recently, one-dimensional nanoelectromechanical lattices made of SiN 
nanomembranes have demonstrated active manipulation of phononic 
dispersion, leveraging electrostatic softening effects and nonlinearity23.

To design our topological nanoelectromechanical metamaterial 
(NEMM), we implemented the well known extended honeycomb lat-
tice scheme25. The approach emulates electronic topological insulators 
for bosonic excitations in metamaterials. The extended honeycomb 
lattice contains six sites in a unit cell, satisfying C6 crystalline symme-
try25. This is an effective design strategy for device applications because 
of its geometrical simplicity. This lattice exploits Brillouin-zone folding 
to demonstrate a double-Dirac cone at the Γ point of the Brillouin zone. 
This zone-folding method has recently been used in various topological 
elastic8,15, acoustic9,11 and photonic25,26 systems, by introducing the 
concept of pseudospins that satisfy Kramers theorem3. Brillouin-zone 
folding allows us to realize a pseudotime-reversal-symmetry-invariant 
system, where an anti-unitary, pseudotime-reversal operator UT (where 

= −U U IT T
† ) is defined from the crystalline symmetry (C6) of the  

lattice25. Despite the practicality of the structure, the consequent  

topological edge states are robust only against defects that preserve local 
C6 symmetry, which is an inevitable drawback of crystalline-symmetry- 
based designs.

We realize these topological properties in our NEMM by periodi-
cally arranging etch holes, of diameter 500 nm, in an extended honey-
comb lattice (Fig. 1a). The etch holes enable a buffered oxide etchant 
to partially remove the sacrificial thermal oxide layer and release the 
SiN suspended membranes (Extended Data Fig. 1). We engineer the 
topological phases of the lattice by changing the distance between etch 
holes, w (Fig. 1a). Our NEMM consequently forms a flexural phononic 
crystal, consisting of a periodic array of free-standing SiN nanomem-
branes. The average thickness of the nanomembranes is about 79 nm. 
The average vacuum gap distance between the SiN layer and the highly 
doped silicon substrate is about 147 nm. These values are estimated 
considering the partial etching rate of the SiN in the buffered oxide 
etchant (about 0.3 nm min−1).

We perform finite element simulations using COMSOL Multiphysics 
(https://www.comsol.com/), to numerically compute frequency disper-
sion curves for a unit cell with a lattice parameter a = 18 μm (Extended 
Data Fig. 2). We vary the distance between two neighbouring holes, w, 
from 5.5 μm to 6.5 μm (Fig. 1b, e). For a unit cell with w = 6.0 μm = a/3, 
a double Dirac cone is present around 14.55 MHz at the Γ point of the 
Brillouin zone (Fig. 1c). The frequency dispersion curves typically start 
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Fig. 2 | Characterization of topological edge states. a, Scanning electron 
microscope (SEM) image of a straight topological edge waveguide. The 
two different topological phases are fasle-colour-shaded in blue (non-
trivial) and red (trivial). Flexural membrane motions are excited by 
simultaneously applying a constant and alternating voltages (VDC = 2 V,  
VAC = 20 mV) to the excitation electrode via a bias tee. Scale bar, 100 μm. 
b–d, SEM images of an edge region (b; the yellow-shaded strip C–D in a)  
a trivial lattice with w = 5.5 μm (c; the red-shaded area in a) and a non-
trivial lattice with w = 6.5 μm (d; the blue-shaded area in a). Scale bars, 
10 μm. The red and blue dots in b denote the lattice points for w = 5.5 μm  
and w = 6.5 μm, respectively. The red (c) and blue (d) hexagons represent  

the unit cells for w = 5.5 μm and w = 6.5 μm, respectively. e, f, Experimental  
(e) and numerical (f) frequency dispersion curves along the edge 
waveguide (C–D in a). Yellow and light-blue dots in the edge-state 
dispersion in f represent propagating waves for two opposite pseudospins. 
Time evolutions of the mode shapes at points 1, 2, 3 and 4 are provided in 
Supplementary Videos 1–4. g, Frequency responses for 19 different sites 
along the yellow dashed line A–B in a (middle panel). The left and right 
panels represent frequency responses at sites A and B, respectively. The 
red- and green-shaded regions represent the bandgaps. h, Flexural modes 
for points A and B in the dispersion shown in f. The width of the strip is 
18 μm, identical to the lattice parameter a.

2 3 0  |  N A t U r e  |  V O L  5 6 4  |  1 3  D e C e M B e r  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

https://www.comsol.com/


Letter reSeArCH

from around 12 MHz, because of the presence of clamped boundaries. 
The frequency dispersion curves for w = 5.5 μm and 6.5 μm show the 
emergence of approximately 1.8-MHz-wide band gaps at the Γ point, 
ranging from 14 MHz to 15.8 MHz. The lattice with w = 5.5 μm exhibits 
two additional bandgaps below and above the centre bandgap around 
15 MHz (Fig. 1b), while the lattice with w = 6.5 μm (Fig. 1d) does not. 
The four vibrational modes, px, py, dxy and −dx y2 2 , at the Γ point are 
degenerate at the Dirac point for the lattice with w = 6 μm (Fig. 1c, e). 
The four degenerate modes are split into two separate degenerate 
modes, for w < 6 μm and w > 6 μm (Fig. 1e), opening a bandgap. The 
band inversion between the dipole vibrational modes (px, py) and the 
quadrupole ones (dxy, −dx y2 2) appears at the Γ point for w > 6 μm, 
which supports the topological non-triviality of the lattice. To confirm 
the presence of the pseudospins, we derive a Hamiltonian matrix for 
pseudospin states p± = px ± ipy and = ±± −d d idx y xy2 2  around the Γ 
point (Methods). We apply the k·p perturbation method (see Methods) 
to the wave equation for a thin plate, D∇4W = −ρh(∂2W/∂t2), and 
show the similarity with the Bernevig–Hughes–Zhang model for CdTe/
HgTe/CdTe quantum wells27.

To investigate the topological properties of our NEMMs experimen-
tally, we fabricate a straight topological edge waveguide (Fig. 2a, b), 
formed at the interface of the topologically trivial (w = 5.5 μm, Fig. 2c) 
and non-trivial (w = 6.5 μm, Fig. 2d) lattices. Topological edge states 
do not exist at free boundaries of our systems, owing to the lack of C6 
symmetry. The number of unit cells of each phase is approximately 200,  

so that the edge waveguide has 20 supercells with 18-μm one-dimensional  
lattice spacing. To characterize the edge states, we excite the flexural 
motion of the membranes by applying a dynamic electrostatic force,  
F ∝ (VDC + VAC)2, to the excitation electrode. Here, VDC and VAC are 
the constant and alternating voltages, which are simultaneously applied 
between the excitation electrode and the grounded substrate (Fig. 2a). 
We perform measurements using a home-built Michelson interfer-
ometer with a balanced homodyne detection scheme (Methods).  
To obtain the dispersion curves of the edge states, we measure the fre-
quency responses of 20 sites along the edge waveguide, by spatially 
scanning the measurement points (yellow strip, Fig. 2a) with 18-μm 
steps (Extended Data Fig. 3). The Dirac-like edge-state frequency  
dispersion curves, isolated from the bulk dispersion, are present in 
the frequency range 14.1–15.8 MHz, showing good agreement with  
the numerical dispersion curves (Fig. 2f). We also observe a defect 
mode at the crossing point of the edge-state dispersion curves (Fig. 2e). 
This stems from a point-defect mode at the boundary near the excita-
tion region (Extended data Fig. 4a). The broken C6 symmetry at the 
interface (Fig. 2b) induces a small bandgap in the middle of the edge-
state dispersions (Fig. 2e, f). Despite the presence of the bandgap, the 
defect mode is allowed to transmit non-negligible energy to the end of 
the waveguide owing to the long decay length of the evanescent mode 
(Extended data Fig. 4b).

We also characterize the localization of the edge states, by scanning 
the measurement point across the waveguide (yellow dashed line A–B 
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Fig. 3 | Waveguide robustness against imperfections. a, Optical 
microscope image of a zigzag topological edge waveguide. The blue- and 
yellow-shaded regions represent topologically trivial and non-trivial 
lattices, respectively. Time-domain responses are measured along the edge 
waveguide from points A to F. Points B, C, D and E denote the corners. 
The flexural membrane motions are excited by simultaneously applying a 
constant and a chirped voltage signal with frequencies ranging from  
12.8 MHz to 15.8 MHz. The applied voltages are VDC = 15 V and VP = 30 mV,  
where VP is the amplitude of the chirped signal. Scale bar, 100 μm. b, The 
colour scale represents the amplitudes from wavelet analyses at different 

positions of the edge waveguide. The frequencies ranging from fa to fb 
and from fc to fd represent propagating edge states. c, e, Spatiotemporal 
responses along the edge waveguide in a space–time domain. Pulses with 
centre frequencies of 13.85 MHz (c) and 14.75 MHz (e) and a bandwidth 
of 0.3 MHz are considered. d, f, Time-domain responses for pulses with 
centre frequencies of 13.85 MHz (d) and 14.75 MHz (f) at the 20th (blue), 
40th (red), 60th (yellow) and 80th (purple) unit cells along the edge 
waveguide, which are highlighted with yellow-dashed lines in c and e. The 
red (black) arrow indicates the reflected pulse from the input (output) 
boundary.
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in Fig. 2a), also with 18-μm steps. The edge states are strongly local-
ized (Fig. 2h) within ±36 μm from the interface (Fig. 2g). Beyond this 
range, the frequency responses (Fig. 2g) start to show clear bandgaps, 
with frequency ranges and widths similar to the numerical dispersion 
relations shown in Fig. 1b and d. The trivial lattice presents three band-
gaps (Fig. 2g, left) and the non-trivial lattice shows only one topological 
bandgap (Fig. 2g, right), as predicted by the numerical frequency dis-
persion (Fig. 1b–d). The frequency responses show evidence of differ-
ent topological phases in the two lattices, with w = 5.5 μm and 6.5 μm, 
confirming that the waveguiding effect is topological.

One remarkable feature of topological edge modes is their robustness 
to waveguide imperfections, such as sharp corners. To study this, we fab-
ricate a long, distorted edge waveguide that includes four corners with 
two 60° and two 120° angles (Fig. 3a). This waveguide consists of 134 
unit cells. We perform steady-state measurements (Methods) and con-
firm the presence of the topological edge states (Extended Data Fig. 5a). 
The bandgap of the trivial phase is observed in the range 13.7–15.1 MHz  
and that for the non-trivial phase in the range 13.7–14.8 MHz.  
To confirm immunity to back-scattering, we measure transient 
responses of propagating pulses over 84 unit cells along the edge wave-
guide (points A to F in Fig. 3a). We excite chirped signals with frequen-
cies ranging from 12.8 MHz to 15.8 MHz (Methods). The propagating 
pulses that correspond to the edge states (frequencies of 13.7–14.1 
MHz and 14.5–14.9 MHz) exhibit small-amplitude decays despite the 
presence of the corners (Fig. 3b). To closely examine the propagating 
pulses, we select two pulses whose centre frequencies (13.85 MHz in 
Fig. 3c and 14.75 MHz in Fig. 3e) lie in the lower and upper edge states 
with respect to the small bandgap around 14.3 MHz. The propagation 
speeds extracted from the data are 69.1 m s−1 (for the 13.85-MHz pulse) 
and 78.6 m s−1 (for the 14.75-MHz pulse). We note that the waves 
propagate along the entire length of the edge waveguide without visible 
leakage in the bulk from the excitation point (Fig. 3c, e) and with little 

backscattering from the corners (Fig. 3c–f). This confirms that the 
energy transport is very stable and strongly confined at the interface. 
The low backscattering and signal decay may be attributable to scat-
tering of the parasitic bulk modes (which coexist with the edge modes) 
as well as to partial pseudospin-mode conversion due to imperfect C6 
symmetry at the corners. The ability to introduce sharp corners (as in 
B, C, D and E) allows longer waveguides (for example, in delay lines) 
to be designed within the same device size.

Another crucial aspect of topological insulators is unidirectional 
propagation for distinct pseudospin modes. To characterize this, we fab-
ricate another NEMM with a spin-splitter configuration consisting of 
four domain walls that has been employed in several previous studies11,12  
(Fig. 4a, b). Such geometry allows us to use a simpler pseudospin selec-
tive excitation. We send voltage pulses to the excitation electrode and 
measure transient responses of the propagating pulses (Methods). We 
scan 13 sites (7 sites from the input channel and 6 sites from each output 
channel) near the crossing point of the channels (Fig. 4b). Note that the 
steady-state frequency responses at the end of the three output ports 
(Fig. 4a) exhibit almost identical edge-state responses owing to bound-
ary scattering (Extended Data Fig. 6b–d). The pulse we investigate has a 
15.1-MHz centre frequency and 0.5-MHz bandwidth, which is enough 
to cover the broad frequency ranges of edge states. In this configuration, 
the propagating direction of a pseudospin state depends on the spatial 
configuration of the two topological phases, w = 5.5 μm and 6.5 μm 
(Fig. 4a). The pseudospin states are filtered to have a single dominant 
state in the input port (yellow arrow in Fig. 4a). After the signal passes 
the input channel, the filtered spin state mainly propagates to output 
port 1 and 3 (yellow arrows in Fig. 4a) as shown in Fig. 4c, d, g and h.  
The edge state leading to port 2 supports pseudospin modes that 
are opposite to the input modes in the propagation direction (cyan 
arrow, Fig. 4a). As such, we would expect no signal to reach port 2. 
However, we observe a small, but visible energy propagation (Fig. 4e, f).  
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Scale bar, 30 μm. c, e, g, Envelopes of propagating pulses (15.2-MHz 
centre frequency, 0.5-MHz bandwidth) in the space–time domain. The 
position represents the measurement points along the edge waveguides.  
c, Input to output port 1; e, input to output port 2; and g, input to output 
port 3. The crossing points are indicated by white arrows. d, f, h, Time-
domain responses of the propagating pulses at position 1, input side (blue) 
and position 13, output side (red). d, Output port 1; f, output port 2; and  
h, output port 3.
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This unexpected penetration might arise from the partial conversion 
of pseudospin modes at the centre crossing point, where the C6 sym-
metry is broken. Nonetheless, the results confirm that the propagation 
direction depends on the type of pseudospin. The use of spin-selective 
excitation and detection methods will enable the realization of compact, 
mechanical unidirectional components.

Here we have demonstrated scalable and reliable on-chip devices 
that support two-dimensional topological phenomena. These phenom-
ena can be employed for stable and compact ultrasound and radio- 
frequency signal processing. With advanced nanofabrication tech-
niques, more sophisticated structures can be realized to design other 
types of topological device, based on perturbative metamaterials design 
methods, for example7,28. Moreover, frequency tunability in nanoelec-
tromechanical resonators via electrostatic forces29,30 will be of use in 
electrically tunable devices23 and actively reconfigurable topological 
channels31.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0764-0.
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MEthodS
Sample fabrication. The fabrication process begins with a pattern transfer by elec-
tron beam lithography and development of a PMMA resist in a MIBK:IPA = 1:3 
solution. The excitation electrodes, made of a Au (45 nm)/Cr (5 nm) layer, are 
deposited on a 100-nm-LPCVD (low-pressure chemical vapour deposition) silicon 
nitride (SiNx)/140-nm thermal SiO2/525-μm highly doped Si wafer, followed by 
a lift-off process in acetone. A second electron beam lithography step, with ZEP 
520A electron-beam resist, is then performed to create the pattern of etch holes 
(with diameter 500 nm) arranged in the extended honeycomb lattices (Fig. 1a and 
Extended Data Fig. 1). We use an ICP-reactive ion etch, to drill the holes on the 
SiNx layer. After we finish the etching of the holes, we immerse the samples in a 
buffered oxide etchant solution for about 45–46 min, to partially etch the thermal 
SiO2 underneath the SiNx device layer. The etching duration determines the diam-
eter of the etching circles, r (Extended Data Fig. 1). Detailed fabrication methods 
can be found in ref. 23. Different samples were fabricated for the measurements in 
Figs. 2 and 3, with slightly different etching times. These differences in fabrication 
lead to a small change in the operating frequencies.
Experiments. The flexural motions of the membranes are measured using a home-
built optical interferometer (HeNe laser, wavelength 633 nm) with a balanced 
homodyne method. The measurements are performed at room temperature and 
a vacuum pressure of p < 10−6 mbar. The optical path length difference between 
the reference and the sample arms is stabilized by actuating a reference mirror. 
This mirror is mounted on a piezoelectric actuator that is controlled by a pro-
portional integral derivative (PID) controller. The motion of the membranes is 
electrostatically excited by simultaneously applying a constant and a time-varying 
voltage through a bias tee (Mini-circuits, ZFBT-6GW+). The intensity of the inter-
fered light from the reference mirror and the sample is measured using a balanced 
photodetector, which is connected to a high-frequency lock-in amplifier (Zurich 
instruments, UHFLI). The measurement position, monitored via a complemen-
tary metal–oxide–semiconductor (CMOS) camera, can be controlled by moving 
a vacuum chamber mounted on a motorized XY linear stage.

For the dispersion curve measurements in Fig. 2 and in the Extended Data 
Fig. 5, we measure (at steady-state) frequency responses of 10–20 MHz of 20 
scanned sites along the edge waveguide. The scanning step is the one-dimensional 
lattice spacing, a = 18 μm. The lock-in amplifier (Zurich instruments, UHFLI) 
allows us to measure the amplitude responses and the phase differences between 
the measured signal and the excitation source. To plot the frequency dispersion, 
we perform fast Fourier transformation of the amplitude × sin(phase) data. The 
amplitude-only data and the phase-considered data are shown in Extended Data 
Fig. 3a and b.

For transient measurements in Figs. 3 and 4, we send a chirped signal (AWG 
module in UHFLI) and measure the signal with an oscilloscope (Tektronix, 
DPO3034). As the signal is invisible for a low-excitation amplitude, we first filter 
the radio-frequency output signals from the photodetector with a passive band-pass 
filter (6–22 MHz bandwidth) and an average of 512 datasets in the time-domain. 
For robustness measurements (Fig. 3), we send a pulse containing frequency con-
tent ranging from 12.8 MHz to 15.8 MHz, by applying VDC = 15 V and VP = 30 mV  
to the excitation electrode. We then perform post-signal processing to extract  
signals of interest, by applying a Burtterworth filter for different centre frequen-
cies with 0.3-MHz bandwidth. For pseudospin-dependent transport measure-
ments, we use a pulse (14–16 MHz) and applied VDC = 15 V and VP = 22.5 mV. 
We apply a Burtterworth filter with 15.2-MHz centre frequency and 0.5-MHz  
bandwidth.
Numerical simulations. We perform finite-element simulations to calculate the 
phononic frequency dispersion curves using COMSOL multiphysics. We employ 
the pre-stressed eigenfrequency analysis module in membrane mechanics. We also 
consider geometric nonlinearity, to reflect the effects of residual stresses. The phys-
ical properties of SiNx used in the simulations are density 3,000 kg m−3, Young’s 
modulus 290 GPa, Poisson ratio 0.27 and isotropic in-place residual stress 50 MPa. 
The lattice parameter, a, is chosen to be 18 μm. We calculate frequency dispersion 
curves for various unit cell geometries with different w ranging from 5.5 μm to 
6.5 μm. The centre hexagon and the six corners of each unit cell are fixed, owing 
to the presence of unetched SiO2 (light-grey regions in the SEM images in  
Fig. 2b–d). The radii of the etched circles are set to r = 4.9 μm (Fig. 1 and Extended 
Data Fig. 2). We apply Bloch periodic conditions to the six sides of a unit cell, 

+ = ⋅r R r q Ru u i( ) ( )exp( ) , via Floquet periodicity in COMSOL. Here, u(r) is a 
periodic displacement function, r is a position within a unit cell, R is a lattice 
translation vector, and q is a wavevector. We calculate the dispersion curves along 
the boundary of the irreducible Brillouin zone ΔMΓK in Fig. 1c.

We also numerically calculate the frequency dispersion curves of the edge states 
to validate the topological behaviours. As we are interested in one-dimensional  

dispersion along the interface, we build a strip-like super cell with 18-μm periodicity.  
Each topological phase (w = 6.0 ± 0.5 μm) spans about ±160 μm from the interface 
in the direction perpendicular to the interface. We calculate the frequency disper-
sion by applying one-dimensional Bloch periodic conditions.
k·p perturbation method and Bernevig–Hughes–Zhang model. The equation 
of motion for a plate of thickness h is

ρ∇ = −
∂
∂

D W h W
t

4
2

2

Here, D = Eh3/[12(1 − ν2)] is the bending stiffness, ρ is density, h is the plate 
thickness and W is the plate displacement in the z direction. By inserting 
a Bloch function Wn,q(r) = ei(q·r − ωt)Yn,q(r) to the plate equation, we obtain 
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, . Here, r is a position within a unit cell, q is a wavevector, 
n is a band index, ωn,q is an eigenfrequency and Yn,q(r) is a periodic displacement 
function. The operator H is given by
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The equation of motion that describes a plate vibration includes a square of the 
Laplacian operator ∇4, so the higher-order wavevector terms arise, accordingly. 
Here, we consider the q-dependent terms, H′(q), as a small perturbation, as we are 
only interested in the behaviours near the Γ point (q = 0) of the Brillouin zone. 
This perturbation term is equivalent to the k·p term in the k·p perturbation theory 
in quantum mechanics.

To obtain a Hamiltonian matrix on the pseudospin subspace, expressed 
in the basis 

+ + − −
Y Y Y Y{ , , , }p d p d,0 ,0 ,0 ,0 . We define the pseudospin states as 

= ± /
±
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 and = ± /

± −
Y Y iY( ) 2d d d,0 ,0 ,0x y xy2 2

. The Bloch states, 
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−
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, are the eigenstates of the operator at the Γ point. 

We neglect the cubic and quartic wavevector terms. The matrix elements can be 
calculated from
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where the indices n and m denote the pseudospin states. Neglecting the 
off-block-diagonal elements as they contribute as a higher-order perturbation, 
the matrix is expressed as
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Here, the asterisk denotes the complex conjugate. The eigenvalues of H0 are 
ω ω ω= =p p p

2 2 2
x y

 and ω ω ω= =
−d d d

2 2 2
x y xy2 2

. This matrix shows a similar form to the  
Hamiltonian matrix from Bernevig–Hughes–Zhang model27 that describes the 
quantum spin Hall effect in two-dimensional systems. This result confirms that 
the system can support two different pseudospins.

Data availability
The data that support the findings of this study are available from the correspond-
ing author upon reasonable request. 
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Extended Data Fig. 1 | Fabrication. a, Etch holes are periodically 
arranged in an extended honeycomb lattice. a is a lattice parameter and  
w is the distance between two neighbouring etch holes. The bottom picture 
shows the cross-sectional view. b, After a sample is immersed in a buffered 
oxide etchant, the thermal SiO2 is radially etched from the etch holes. The 

etching paths are illustrated by the brown circles with radius r. The overlap 
between two membranes affects the coupling strength, by controlling the 
distance w. c, Optical microscope image of a partially etched samples. The 
yellow circles represent free-standing SiNx membranes and the darker/
purple region is SiNx/SiO2. Scale bar, 18 μm.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 2 | Unit cell structures for the different topological 
phases. a–c, Unit cell geometries for w = 5.5 μm (a), w = 6.0 μm (b) and 
w = 6.5 μm (c). Here, r = 4.9 μm is the etching distance from the centre 

of the etch holes. The central hexagon and the six corners represent the 
regions of unetched thermal SiO2. These are modelled as fixed boundaries 
in finite element simulations.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 3 | Experimental characterization of the straight 
topological edge waveguide. a, Frequency responses (amplitude only) 
obtained from a spatial scan of 20 sites of the straight edge waveguide. 
The scanning period is 18 μm. The intensity decay around 15 MHz 

represents a defect mode. b, Amplitude × sin(phase) responses obtained 
from the spatial scan. c, Frequency dispersion obtained from Fourier 
transformation of the data shown in b.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 4 | Characteristics of the defect mode. a, Optical 
microscope image of the excitation region and the defective unit including 
the gold electrode. b, Experimental data for the amplitude decay of the 

defect mode. The red squares denote the experimental data and the black 
solid line represents a fitting function. Here, the fitting parameters a and b 
are 1.408 mV and 114.1292 μm.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 5 | Characteristics of the distorted waveguide. 
a, Frequency dispersion curve along the edge waveguide. b, Frequency 
responses of the bulk of the non-trivial phase (left), the output of the  
edge waveguide (middle), and the bulk of the trivial phase (right).  
c, A spatiotemporal response of unfiltered propagating pulses with 
broadband frequencies ranging from 12.8 MHz to 15.8 MHz.  

d–k, Filtered spatiotemporal responses of the propagating pulses with 
different centre frequencies. The bandwidth of the pulses is 0.3 MHz. The 
centre frequencies are 13.48 MHz (d), 13.68 MHz (e), 13.85 MHz (f),  
14.1 MHz (g), 14.35 MHz (h), 14.75 MHz (i), 14. 975 MHz (j) and  
15.23 MHz (k).

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 6 | Frequency responses of the NEMM with the 
pseudospin filter configuration. a–e, Frequency responses of the bulk of 
the non-trivial phase (w = 6.5 μm; a), output 1 (b), output 2 (c), output 3 (d)  

and the bulk of the trivial phase (w = 5.5 μm; e), shown in Fig. 4a. The 
light-red and light-blue regions represent the bandgaps of the non-trivial 
and trivial phases, respectively.

© 2018 Springer Nature Limited. All rights reserved.
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