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Acoustic waves in a linear time-invariant medium are generally reciprocal; however, reciprocity can
break down in a time-variant system. In this Letter, we report on an experimental demonstration of
nonreciprocity in a dynamic one-dimensional phononic crystal, where the local elastic properties are
dependent on time. The system consists of an array of repelling magnets, and the on-site elastic potentials
of the constitutive elements are modulated by an array of electromagnets. The modulation in time breaks
time-reversal symmetry and opens a directional band gap in the dispersion relation. As shown by
experimental and numerical results, nonreciprocal mechanical systems like the one presented here offer
opportunities to create phononic diodes that can serve for rectification applications.
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Phononic crystals and metamaterials control acoustic
waves through the geometry of their building blocks,
engineered with periodic impedance mismatches and/or
local resonances [1–7]. The majority of current realizations
focuses on designing metamaterials in their spatial dimen-
sions, while the material properties remain unchanged over
time. This design framework restricts the application of
metamaterials in scenarios where a material’s tunability and
adaptivity are required [8,9]. More importantly, in these
time-invariant metamaterials, reciprocity holds as a funda-
mental principle in wave propagation, requiring the trans-
mission of information or energy between any two points
in space to be symmetric for opposite propagating
directions [10].
However, nonreciprocal materials or devices, i.e., diodes,

are usually required for rectification and control of the
associated energy flow. Unlike electric diodes, mechanical
or acoustic diodes are just starting to be explored [11–18].
Achieveing nonreciprocity in mechanical systems through
intrinsic time-reversal symmetry breaking has been dem-
onstrated in strongly nonlinear networks [11,13,14], selec-
tive acoustic circulators [15], and topological mechanical
insulators [16–18]. In nonlinear systems, the nonreciprocal
behavior is a function of the nonlinear potential and may
be tuned by the wave amplitude [19,20]. Recently, theo-
retical proposals [21–24] suggested the use of external,
spatiotemporal modulation of a material’s properties as a
means to achieve nonreciprocity within the linear operating
regime.
Here we demonstrate realization of a dynamic phononic

lattice, in which the elastic properties can vary over time
with spatiotemporal modulation. This time dependence
leads to novel wave propagation behaviors such as non-
reciprocity [21–24], which is very difficult to achieve in
time-invariant systems. Though we focus on elastic waves

in amagnetically coupled lattice, the concept extends to other
types of waves such as thermal diodes [25] and photonic
systems [26]. For instance, nonreciprocal propagation in
photonic systemswas observed in coupled, modulated wave-
guides [27], where modulation leads to irreversible mode
conversion between the twowaveguides.Our systembehaves
as a mechanical diode operating at tunable frequency ranges.
Such a device may serve in acoustic circuits, like circulators,
transducers, and imaging systems to rectify mechanical or
acoustic energy flows [11].
Experimental realizations of modulation-induced non-

reciprocity in a single phononic waveguide require (i) a
dynamic lattice with controllable elastic properties, and
(ii) a dynamic modulation with speed comparable to the
wave propagation velocity. We meet these requirements by
building a mass-spring chain of repelling magnets modu-
lated by externally driven coils. The chain consists of
12 ring magnets (m ¼ 9.8 g) free to slide on a supporting
smooth cylindrical rail, as shown in Fig. 1(a). The first and
last magnets are fixed to the rail (fixed boundary con-
ditions). To dynamically modulate the chain, we introduce
electrical coils around the 8 central ring magnets (masses
3 to 10). The electrical coils are positioned coaxially with
the magnets and rest at the same center positions, x0;n, as
shown in Fig. 1(a). When a current flows through the
electrical coils, they create local magnetic fields that couple
to the ring magnets. When the ring magnets are at rest (x0;n
position), they sit at the apex of the magnetic potential
created by the coils and their coupling forces vanish. When
the ring magnets displace, they experience either restoring
or repelling forces from the coils, depending on the current
direction. The coupling between each pair of ring magnets
and coil is similar to a grounding spring. When the
grounding spring stiffness is modulated spatiotemporally,
time-reversal symmetry is broken leading to the formation
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of a nonreciprocal band gap in the dispersion diagram
[21–24], as shown in Fig. 1(b).
To characterize the mechanical parameters of our system,

we measure the repelling force between neighboring masses
as a function of their displacement (see Supplemental
Material [28]). The resulting force-displacement curve
exhibits a nonlinear force that is characteristic of dipole
repulsion, shown in Fig. 1(c). We also measure the force
between the magnets and the surrounding coils at different
applied currents in Fig. 1(d). To measure the dynamic
response of the system, we drive the 2nd mass with a
sinusoidal force of frequency fdr, and the velocity of mass 11
is monitored with a laser vibrometer (output signal). The
velocity response is measured using a lock-in amplifier as a
function of different fdr for different modulation parameters.
Because of the small vibration amplitude of the driving
signal (≤5 mm), the coupling between masses can be
approximated by a linear response in the red shaded
area of Fig. 1(c). The linearized coupling stiffness
between adjacent magnets obtained from experiments is
kc ≈ 113 N=m. Similarly, the coupling between the

electromagnets and the masses can be linearized in the
dynamic regime of interest in Fig. 1(d). We consider only the
nearest neighbor interactions between masses and mass-coil
pairs, since non-nearest neighbor interactions decay to a
negligible amount (see Supplemental Material [28]).
The spatiotemporal modulation of the system can

be achieved by applying sinusoidal alternating currents
through the coils. Each coil is subjected to a current of the
same frequency, fmod , but with a phase shift of π=2 or
−π=2 between neighbors. The equivalent grounding stiff-
ness for the nth mass thus can be modeled as

kg;n ¼ kg;dc þ kg;ac cos

�
2πfmod t ∓ πx0;n

2a

�

¼ kg;dc þ kg;ac cosð2πfmod t ∓ qmod nÞ; ð1Þ

where kg;dc is the small time-independent grounding stiff-
ness added by the on-site electromagnetic force, kg;ac is the
modulation amplitude of the grounding stiffness, x0;n is the
equilibrium position of each unit, and qmod ¼ �π=2 is

(a) (b)

(c) (d)

FIG. 1. Experimental setup for the nonreciprocal dynamic phononic lattice. (a) Top: Schematic of the experimental setup. Middle:
Discrete mechanical representation of the system with masses and springs. Bottom: Schematic illustration of the modulation concept by
changing the gounding spring stiffness (kg) in a wavelike fashion. (b) Scattering analysis: The red solid curve describes the original
dispersion relation of the unmodulated monatomic lattice. The black dashed and grey dash-dotted curves correspond to Floquet-Bloch
replicas of the original curves obtained by translation along the solid blue arrows �ðωmod ; qmod Þ ¼ �ð15 Hz; π=2Þ. Parity-breaking
crossings (circled) are where Bragg’s condition is satisfied and nonreciprocal wave scattering is anticipated. (c) Force-displacement
curve for neighboring magnetic masses, measurement (solid) and fitted curve (dashed). (d) Measured force-dispacement curves between
the ring magnet and its surrounding coil at different currents. The red shaded regions in both (c) and (d) correspond to the dynamic
operating regime of our experiments.
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the normalized wave number. Equation (1) describes a
traveling wave with wavelength λmod ¼ 4a and speed
vmod ¼ 4afmod. The modulation amplitude measured in
our experiments is kg;ac ¼ 24 N=m, which is 21% of the
coupling stiffness, kc. The constant part of the grounding
stiffness is kg;dc ¼ 2.4 N=m, which is 1 order of magnitude
smaller than the oscillatory component.
In the absence of modulation (kg;ac ¼ 0), the dispersion

relation for an incident small-amplitude plane wave
u0ðn; tÞ ¼ U0 exp½iðqn − ωtÞ� is described by Dðω; qÞ ¼
kg;dc −mω2 þ 4kcsin2ðq=2Þ ¼ 0. Modulating the lattice
harmonically with ðfmod; qmodÞ generates an additional
scattered field usðn; tÞ ¼ Us exp½iðqsn − ωstÞ� whose
mode is shifted by an amount ðωmod; qmodÞ due to spatio-
temporal periodicity: ðωs; qsÞ ¼ ðω0; q0Þ � ðωmod; qmodÞ.
The scattered field is negligible ðUs ≪ U0Þ except when
it is resonant with the incident field, i.e., when the modified
Bragg’s condition Dðωs; qsÞ ¼ Dðω0; q0Þ ¼ 0 is met [22].
Graphically, scattered modes are located at cross-
ings between the original [Dðω; qÞ ¼ 0] and shifted
[Dðωs; qsÞ ¼ 0] dispersion curves. Note that the crossings
are nonsymmetrically distributed in a way that breaks
parity of the dispersion diagram and, ultimately, reciprocity
of wave propagation. Depending on whether q0qs is
positive or negative, the scattered mode propagates either
with or against the incident wave, i.e., is either transmitted
or reflected. In both cases however, its frequency is shifted
away from the incident frequency ω0. This translates into a
one-way dip in the transmission spectrum around ω0.
We first set the modulation frequency to fmod ¼ 15 Hz,

which falls within the pass band of the monoatomic lattice.
For this modulation frequency, three crossings exist at 5,
19, and 33 Hz and nonreciprocal wave characteristics are

anticipated for neighboring driving frequencies, fdr, as
shown in Fig. 2(a). We measure the velocity of the second
to last mass in the array as a function of the driving
frequency fdr in Fig. 2(b). The velocity profiles differ when
the acoustic waves are traveling in the same (red) or
opposite (blue) direction to the modulation wave, at driving
frequencies close to fdr ¼ 19.6 Hz. We define the codirec-
tional or contradirectional bias ratio as r ¼ U−=Uþ, where
U∓ denotes the velocity response amplitude for qmod ¼∓ π=2. At fdr ¼ 19.6 Hz, the measured velocity response
profile in time shows that waves traveling in opposite
directions have different amplitudes and profiles, with a
bias of r ≈ 2.9, shown in Figs. 2(b), 2(c). The time-domain
amplitudes are lower than the amplitudes obtained from the
velocity response functions. This is due to the anharmonic
nature of the response in the modulated lattice. However,
results demonstrate that the signal transfer around fdr ¼
19.6 Hz is strongly enhanced when traveling along the
modulation direction and suppressed in the other direction,
thus exhibiting a nonreciprocal behavior.
We developed a mathematical model to capture the

dynamic characteristics of the modulated lattice. The
system can be described as

mün þ Floss þ kg;nun þ Fcoupl ¼ δ2;nA cosð2πfdrtÞ ð2Þ

for 1 ≤ n ≤ 12. Here,unðtÞ ¼ 0 at the two boundariesn ¼ 1,
12. Floss ¼ b _un þ μsignðunÞ represents dissipative forces
within the chain, with viscous damping coefficient b ¼
0.056 kg=s and Coulomb friction coefficient μ ¼ 0.012 N
(see Supplemental Material [28]). The coupling force term is
Fcoupl ¼ Pða − un þ unþ1Þ − Pða − un−1 þ unÞ, where we

(a) (b)

(c)

(d)

(e)

FIG. 2. Nonreciprocal wave propagation for fmod ¼ 15 Hz. (a) Dispersion diagram of the modulated lattice calculated by Fourier
analysis of simulated velocity fields (color map) and analytically by coupled mode theory (solid black line). (b) Measured velocity
response function. The amplitude ratio at 19.6 Hz is r ¼ 2.9. (c) Measured velocity time series at fdr ¼ 19.6 Hz. The time series for
qmod ¼ −π=2 is shown along the negative time axis for better illustration. (d) and (e) are the simulation results corresponding to (b) and
(c), respectively. The simulated amplitude ratio at 19.6 Hz is r ¼ 1.9 in panel (d).
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use the approximation PðxÞ ¼ c1=ðx − c2Þ2 with c1 ¼
0.9788 mNm2 and c2 ¼ 7.748 mm obtained from a fitting
based on Fig. 1(c). δ2;n is the Kronecker delta, which is 1
for n ¼ 2 and zero everywhere else. The forcing amplitude
A ¼ 0.21 N is obtained as a fitting parameter. At this value
of the forcing amplitude, the response of the system is
well approximated by the linearized equations of motion
(the contribution from nonlinearity is discussed in the
Supplemental Material [28]). The experimental and numeri-
cal velocity response functions for a nonmodulated lattice
agree well (see Supplemental Material [28]). When the
modulation is turned on, the velocity profiles obtained in
experiments and simulations show a similar nonreciprocal
response in Figs. 2(d) and 2(e). However, the nonreciprocal
behavior at fdr ¼ 19.6 Hz is less pronounced in simulations
than in measurements (r ≈ 1.9).
We computed dispersion curves from space-time Fourier

analysis of the velocity field and compared them with the
ones obtained with the plane-wave expansion method in
Fig. 2(a). The observed nonreciprocal wave characteristics,
at fdr ¼ 19.6 Hz, agree well with the dispersion character-
istics. The dispersion curves in Figs. 1(b) and 2(a) predict
nonreciprocal behavior also near 5 and 33 Hz. However, the
experimental velocities are too small at these frequencies to
capture the effect. Note that the analyses (numerical and
theoretical) on an infinite lossless lattice [Fig. 2(a)] pre-
dicted the same frequency range for nonreciprocal wave
propagation as the experiments [Fig. 2(b)] and simulations
[Fig. 2(d)] on a finite lossy lattice. The effects of energy
loss and finite number of units are therefore secondary to
modulation effects; see Supplemental Material [28] for
discussions of finite-size and loss effects.

In order to demonstrate the tunability of the nonrecip-
rocal frequency range in our system, we next set the
modulation frequency to fmod ¼ 40 Hz, within the band
gap of the underlying monatomic lattice. Our model
predicts nonreciprocal wave behavior for driving frequen-
cies near the crossings at 10 and 30 Hz, as shown in
Fig. 3(a). This is also captured in the measured velocity
responses in Fig. 3(b) and time domain profiles at fdr ¼
31.6 Hz in Fig. 3(c). Corresponding numerical simulations
in Figs. 3(d), 3(e) agree very well with the measurements.
The dispersion curve of the modulated lattice in

Fig. 3(a), obtained from numerical calculations, corrobo-
rates the observed nonreciprocal characteristics for
fmod ¼ 40 Hz. The dispersion curve reveals two crossings
located near 30 and 10 Hz (visible as small bright yellow
regions lying on the main dispersion branches). At these
points, the modulation-induced scattered field is strong
enough to change the overall wave field. This is evident in
the velocity response functions, as r > 1 near 10 Hz and
r < 1 near 30 Hz. For other points along the main
dispersion branch, the scattered wave is too weak compared
to the incident field to induce any noticeable nonreciprocal
effects. In contrast to the case for fmod ¼ 15 Hz, the
crossing here occurs between a positive and a negative
branch of the dispersion curve (ω0ωs < 0) and leads to the
opening of a couple of “vertical” band gaps, as shown in
Fig. 3(a). Such crossings in infinite loss-less systems are
characteristic of unstable interactions caused by supersonic
modulation velocities, where the velocity field is contin-
uously amplified by drawing energy from the modulation
[31,32]. However, our experimental system is intrinsically
lossy and finite, and remains stable in the studied regime.

(a) (b) (d)

(c) (e)

FIG. 3. Nonreciprocal wave propagation for fmod ¼ 40 Hz. (a) Dispersion diagram of the modulated lattice calculated by Fourier
analysis of simulated velocity fields (color map) and analytically by coupled mode theory (solid black line). (b) Measured velocity
response function. The amplitude ratios are r ¼ 1.8 at 9.8 Hz and r ¼ 0.4 at 31.6 Hz. (c) Measured velocity time series at
fdr ¼ 31.6 Hz. The time series for qmod ¼ −π=2 is shown along the negative time axis for better illustration. (d) and (e) Simulation
results corresponding to (b) and (c), respectively. The simulated bias ratios are r ¼ 1.6 at 9.8 Hz and r ¼ 0.7 at 31.6 Hz in panel (c).
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The presence of losses is known to quench instabilities
[33]. In our system, this translates in the presence of a sharp
peak around 30 Hz in the transmission spectrum, shown in
Figs. 3(b), 3(d).
In conclusion, our results provide an experimental

demonstration of modulation-induced nonreciprocity in a
linear phononic lattice. The operating range of our lattice is
beyond the asymptotic limits that are typically enforced in
the existing theoretical work. The experimental realization
of dynamically modulated nonreciprocal systems opens
new opportunities for sound and vibration insulation
[11,12,15], phononic logic [13,14], and energy localization
and trapping [34]. In the future, the phononic waveguide
developed in our work could be employed to study the
nonlinear dynamics of modulated lattices, a regime that has
not been explored before. The design could also be
miniaturized into micro- or nanoscale electromechanical
systems [35–37] with tunable frequencies as basic elements
for acoustic rectifying circuits.

Y.W., B. Y., and C. D. acknowledge the support from
the National Science Foundation under EFRI Grant
No. 1741565. H. C., H. N., and G. H. acknowledge support
from the National Science Foundation under EFRI Grant
No. 1641078. B. Y. acknowledges the support from the
Natural Science and Engineering Research Council of
CanadaNSERC. Y.W. and C. D. designed the experiment.
Y.W. performed the experiments. B. Y. performed analytical
and numerical modelling of the system. H. C., H. N., and G.
H. performed analytical calculations on the dispersion curves.
Y.W., B. Y., H. N., G. H., andC. D. wrote themanuscript. All
authors interpreted the results and reviewed the manuscript.

*Y. W. and B. Y. contributed equally to this work.
[1] R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J.

Llinares, and F. Meseguer, Sound attenuation by sculpture,
Nature (London) 378, 241 (1995).

[2] J. H. Page, P. Sheng, H. P. Schriemer, I. Jones, X. Jing, and
D. A. Weitz, Group velocity in strongly scattering media,
Science 271, 634 (1996).

[3] J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-
Rouhani, L. Dobrzynski, and D. Prevost, Experimental
and Theoretical Evidence for the Existence of Absolute
Acoustic Bad Gaps in Two-Dimensional Solid Phononic
Crystals, Phys. Rev. Lett. 86, 3012 (2001).

[4] S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and
P. Sheng, Focusing of Sound in a 3D Phononic Crystal,
Phys. Rev. Lett. 93, 024301 (2004).

[5] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun,
and X. Zhang, Ultrasonic metamaterials with negative
modulus, Nat. Mater. 5, 452 (2006).

[6] M. H. Lu, L. Feng, and Y. F. Chen, Phononic crystals and
acoustic metamaterials, Mater. Today 12, 34 (2009).

[7] K. H. Matlack, M. Serra-Garcia, A. Palermo, S. D. Huber,
and C. Daraio, Designing perturbative metamaterials from

discrete models: From Veselago lenses to topological
insulators, Nat. Mater. 17, 323 (2018).

[8] O. R. Bilal, A. Foehr, and C. Daraio, Reprogrammable
phononic metasurfaces, Adv. Mater. 29, 1700628 (2017).

[9] N. Bachelard, C. Ropp, M. Dubois, R. Zhao, Y. Wang,
and X. Zhang, Emergence of an enslaved phononic bandgap
in a non-equilibrium pseudo-crystal, Nat. Mater. 16, 808
(2017).

[10] H. Lamb, On reciprocal theorems in dynamics, Proc.
London Math. Soc. s1-19, 144 (1887).

[11] B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, An
acoustic rectifier, Nat. Mater. 9, 989 (2010).

[12] X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen,
Tunable Unidirectional Sound Propagation Through a
Sonic-Crystal-Based Acoustic Diode, Phys. Rev. Lett.
106, 084301 (2011).

[13] N. Boechler, G. Theocharis, and C. Daraio, Bifurcation-
based acoustic switching and rectification, Nat. Mater. 10,
665 (2011).

[14] F. Li, P. Anzel, J. Yang, P. G. Kevrekidis, and C. Daraio,
Granular acoustic switches and logic elements, Nat. Com-
mun. 5, 5311 (2014).

[15] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and
A. Alù, Sound isolation and giant linear nonreciprocity in a
compact acoustic circulator, Science 343, 516 (2014).

[16] P. Wang, L. Lu, and K. Bertoldi, Topological Phononic
Crystals with One-Way Elastic Edge Waves, Phys. Rev.
Lett. 115, 104302 (2015).

[17] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T.
Larsen, L. G. Villanueva, and S. D. Huber Observation
of a phononoic quadrupole topological insulator, Nature
(London) 555, 342 (2018).

[18] N. P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and
W. T. M. Irvine, Amorphous topological insulators con-
structed from random point sets, Nat. Phys. 14, 380 (2018).

[19] Y. Z. Wang, F. M. Li, and Y. S. Wang, Influences of active
control on elastic wave propagation in a weakly nonlinear
phononic crystal with a monoatomic lattice chain, Int. J.
Mech. Sci. 106, 357 (2016).

[20] Y. Z. Wang and Y. S. Wang, Active control of elastic wave
propagation in nonlinear phononic crystals consisting of
diatomic lattice chain, Wave Motion 78, 1 (2018).

[21] N. Swinteck, S. Matsuo, K. Runge, J. O. Vasseur, P. Lucas,
and P. A. Deymier, Bulk elastic waves with unidirectional
backscattering-immune topological states in a time-
dependent superlattice, J. Appl. Phys. 118, 063103 (2015).

[22] H. Nassar, H. Chen, A. N. Norris, M. R. Haberman, and G. L.
Huang, Non-reciprocal wave propagation in modulated
elastic metamaterials, Proc. R. Soc. A 473, 20170188 (2017).

[23] J. Vila, R. K. Pal, M. Ruzzene, and G. Trainiti, A Bloch-based
procedure for dispersion analysis of lattices with periodic
time-varying properties, J. Sound Vib. 406, 363 (2017).

[24] F. Li, C. Chong, J. Yang, P. G. Kevrekidis, and C. Daraio,
Wave transmission in time- and space-variant helicoidal
phononic crystals, Phys. Rev. E 90, 053201 (2014).

[25] D. Torrent, O. Poncelet, and J. C. Batsale, Nonreciprocal
Thermal Material by Spatiotemporal Modulation, Phys.
Rev. Lett. 120, 125501 (2018).

[26] D. L. Sounas and A. Alù, Non-reciprocal photonics based
on time modulation, Nat. Photonics 11, 774 (2017).

PHYSICAL REVIEW LETTERS 121, 194301 (2018)

194301-5



[27] H. Lira, Z. Yu, S. Fan, and M. Lipson, Electrically Driven
Nonreciprocity Induced by Interband Photonic Transition
on a Silicon Chip, Phys. Rev. Lett. 109, 033901 (2012).

[28] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.194301 for calcu-
lation of dispersion curves, contribution from nonlinearity,
and energy loss effects, which includes Refs. [29,30].

[29] M. J. Frazier and M. I. Hussein, Band structure of phononic
crystals with general damping, J. Appl. Phys. 108, 093506
(2010).

[30] D. J. Mead, Wave propagation and natural modes in periodic
systems: I.Mono-coupled systems, J. SoundVib. 40, 1 (1975).

[31] H. Nassar, H. Chen, A. N. Norris, and G. L. Huang, Non-
reciprocal flexural wave propagation in a modulated meta-
beam, Extreme Mech. Lett. 15, 97 (2017).

[32] H. Nassar, X. C. Xu, A. N. Norris, and G. L. Huang,
Modulated phononic crystals: Non-reciprocal wave propa-
gation and Willis materials, J. Mech. Phys. Solids 101, 10
(2017).

[33] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations
(John Wiley & Sons, New York, 1979).

[34] K. L. Tsakmakidis, L. Shen, S. A. Schulz, X. Zheng, J.
Upham, X. Deng, H. Altug, A. F. Vakakis, and R.W. Boyd,
Breaking Lorentz reciprocity to overcome the time-
bandwidth limit in physics and engineering, Science 356,
1260 (2017).

[35] X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, A
self-sustaining ultrahigh-frequency nanoelectromechanical
oscillator, Nat. Nanotechnol. 3, 342 (2008).

[36] A. M. van der Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-
Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia,
H. G. Craighead, and P. L. McEuen, Large-scale arrays of
single-layer graphene resonators, Nano Lett. 10, 4869
(2010).

[37] J. Cha and C. Daraio, Electrical tuning of elastic wave
propagation in nanomechanical lattices at MHz freque-
ncies, Nat. Nanotechnol., doi: 10.1038/s41565-018-0252-6
(2018).

PHYSICAL REVIEW LETTERS 121, 194301 (2018)

194301-6



 1

Supplemental Material for ‘Observation of non-reciprocal wave propagation in a dynamic 

phononic lattice’ 

Yifan Wang 1,+, Behrooz Yousefzadeh 1,+, Hui Chen 2,Hussein Nassar 2, Guoliang Huang 2, Chiara 

Daraio 1  

1 Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 

91125, USA 

2 Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 

65211, USA 

+ Y.W. and B.Y. contributed equally to this work. 

Experimental details 

Figure S1 shows a photograph of the experimental setup. The ring magnets used in our 

experiment are NdFeB Grade N42 magnets with dimensions of 12.7mm OD, 6.4 mm ID and 

12.7mm in length (K&J Magnetics, Inc.). The cylindrical rail is made of fiberglass with diameter 

4.76mm. Sleeve bearings made from PTFE with 6.4mm OD and 4.8mm ID and are installed in 

each ring magnets to fit between magnets and rail and reduce sliding friction. The ring magnets 

are placed on the rail with the same polarization facing each other, causing them to repel and 

form a regular one-dimensional lattice. By fixing the two end magnets, the mass chain reaches 

equilibrium with a uniform spacing ܽ ൌ 33.4 mm between neighbours (a is the lattice constant). 

Electrical coils (APW Company) used in this experiment have dimensions 48.3 mm OD, 27.1 mm 

ID and 17.5 mm in length, with inductance of 104 mH. To measure the force-displacement 

interaction between two ring magnets and between a magnet and a coil with flowing current, 

the magnet or coil is fixed on two testing plates of an Instron E3000 materials tester with a 

250N load cell. The magnets and/or coil are aligned coaxially and force-displacement curves are 

recorded for over 3 times and averaged to reduce noise in the data. 

To achieve dynamic modulation on the current flowing in the 8 electrical coils, we use electrical 

signals generated by two synchronized function generators A and B (Agilent 33220A). A phase 

shift of േπ/2 is set between two function generators for forward and backward modulations. 
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The electrical coils #1 and #5 (phase offset 0) are connected in parallel to function generator A, 

while coils #3 and #7 (phase offset േπ) are conneted to function generator A but with reversed 

polarization to achieve the π phase shift. Similarly, coils #2 and #6 (phase offset േπ/2) are 

connected parallel to function generator B, while #4 and #8 (phase offset േ3π/2) are 

connetcted to B with reversed polarization. The two function generators are set to the same 

frequency f୫୭ୢ and amplitude, while the phase shift is set to either π/2 or െπ/2 for backward 

and forward modulation directions. The modulation current in each coil is checked with an 

oscilloscope to ensure same amplitude and phase lag of π/2 between neighbors. Due to the 

small cross-inductance and low operation frequency, we do not observe current induced from 

cross-inductance between neighbors in these coils. 

The phononic chain is driven by a separate coil placed off-center from the first moving magnet 

which is connected to a sweeping-frequency lock-in amplifier (Stanford Research SR860). The 

velocity of the last moving magnet is measured with a laser vibrometer (Polytec CLV-2534). 

 

Figure S1 A photograph of the experimental setup. The center 8 coils are used for dynamic 

modulation and the left most coil is used for exciting the system. 
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Simulation of the velocity response curves  

The control parameters for experiments are the modulation amplitude ݇, , modulation 

frequency ݂ௗ and driving frequency ௗ݂. The forcing amplitude ܣ may also be controlled by 

changing the driving current, but it is kept constant in our experiments. Figure S2 shows the 

measured and simulated velocity response functions of the un-modulated lattice (݇, ൌ 0). 

There is generally very good agreement between measurements and simulations, except for 

the peak around 15 Hz that is not captured in measurements. This is most likely because the 

friction forces in experiments are not fully captured by the Coulomb friction model used in 

simulations. The peaks in the velocity response functions are due to the finite size of the system 

(waves reflecting from the boundaries) and may be attributed to different modes of vibration – 

see also the section ‘Spatial profile of the steady response’ in Supplemental Material. We 

observe a sharp cut-off around 33 Hz, which is lower than the cut-off value of ሺ1/ߨሻඥ݇/݉ ൌ34.3 Hz based on the dispersion relation. This is due to the presence of energy dissipation [29].  

To simulate the velocity response functions for a given set of control parameters, Equation (2) 

is solved in time until the initial transients decay. For each ௗ݂, the amplitude of motion is then 

obtained based on the Fourier transform of velocity time series over 500 driving cycles. This 

procedure reproduces the velocity amplitude measured by the lock-in amplifier. The response 

of the modulated system is not periodic due to the presence of two incommensurate 

frequencies ௗ݂ and ௗ݂ േ ݂ௗ (see, for example, Figures 2b and 2d).  

We use the velocity response function of the lattice with no modulation (݇, ൌ 0) to obtain 

the coefficients of viscous damping ܾ and Coulomb friction ߤ, as well as the forcing amplitude ܣ. 

We note that including Coulomb friction is essential for capturing the sharp decay of the 

velocity response function near the cut off. We used a smooth approximation of the sign 

function in simulations, signሺݑሶ ሻ ൎ tanh ሺݑߙሶ ሻ with ߙ ൌ 1000.  
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Non-nearest neighbor interactions 

To measure the contributions from non-nearest neighbor interactions, the longer-range 

magnet-magnet and magnet-coil force-displacement curves are measured (Figure S2). Based on 

the magnet-magnet measurement, the effective spring constant created by the 2nd nearest 

neighbor (blue box in Figure S2a) is 4 N/m, about 3.5% of the 1st nearest neighbor coupling ݇ ൌ 113 N/m, which is negligible in our analysis. The magnet-coil interaction measurement 

shows that the 2nd nearest neighbor magnet-coil coupling spring constant (blue box in Figure 

S2b) is ~1 N/m, about 4% of our modulation amplitude of ݇, ൌ 24 N/m and less than 1% of 

the coupling stiffness ݇ ൌ 113 N/m, which is negligible as second order term. Based on these 

measurements, we only consider the nearest neighbor interactions between magnets and 

electrical coils. 

 

Figure S2 Comparison between 1st and 2nd nearest neighbor interactions for (a) magnet-magnet 

repulsion and (b) magnet-coil interaction at current of 30 mA. The red and blue shaded boxes 

correspond to the operating regions of the 1st and 2nd nearest neighbors. 
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Contribution from nonlinearity 

To assess the importance of nonlinearity in the coupling force, ܨ௨, we computed the 

velocity response function for two cases: once with ܨ௨ as described for Equation (2) and 

again with a linear approximation, ܨ௨ ൎ ݇ሺ2ݑ െ ିଵݑ െ  ାଵሻ. Figure S3 compares theseݑ

simulated velocity response functions to measurements. We see that the resonant peaks shift 

to higher frequencies due to the hardening nature of the nonlinear force. We used the 

nonlinear coupling force in all the other simulations in this work because it leads to better 

agreement with measurements. The nonlinear behavior is most pronounced near the 

resonance peaks due to higher amplitudes of motion. However, it is important to note that the 

influence of nonlinearity is very weak: using a linearized coupling force results in less than 2.2% 

error in the locations of the resonant peaks in velocity response functions of Figure S3. This is 

why we could use the linear theory (e.g. dispersion curves) to predict and explain where non-

reciprocity occurs.  

 

Figure S3 Velocity response curves of the unmodulated lattice (݇, ൌ 0). The thick red curve 

(circle marker) denotes the measured response. The grey curve (diamond marker) and black 

curve (square marker) denote simulated responses using a linear and a nonlinear coupling force, 

respectively.  
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Calculation of dispersion curves  

Dispersion relations describe the (free) propagation of plane waves through a medium. We 

computed the dispersion curves of the modulated lattice using two different methods.  

The spectral energy density method [21] was used first to obtain the dispersion relation based 

on direct numerical simulation of the linearized loss-less lattice with ܰ ൌ 128. We applied an 

impulse (initial velocity) to the middle unit and computed the transient response until the 

impulse reached the boundaries. We then obtained the space-time Fourier transform of the 

velocity field. The highest contour plot of the resulting field in the frequency-wavenumber 

space gives the dispersion diagram of the lattice. This is a common method for direct 

calculation of the dispersion curve for modulated lattices in the literature [21-23]. 

In the second method, we adopted a plane wave expansion of the displacement field ݑሺݐሻ of 

the form ∑ ܷ exp ݅ሺݍ݊ െ ߱ݐሻ  with ൫ ߱ ൌ ߱  ݆߱ௗ, ݍ ൌ ݍ   ௗ൯. Upon substitution inݍ݆

the linearized motion equation of an ideal infinite lattice, namely ݉ݑሷ ሺݐሻ ൌ  െ݇,ሺݐሻݑሺݐሻ  ݇ ൫ݑାଵሺݐሻ  ሻݐିଵሺݑ െ  ሻ൯              (S1)ݐሺݑ2

it comes that 

ቌܦሺ߱ିଵ, ଵሻିݍ െ1 0െ1 ,ሺ߱ܦ ሻݍ െ10 െ1 ,ሺ߱ଵܦ ଵሻቍݍ ൭ܷିଵܷܷଵ ൱ ൌ ൭000൱              (S2) 

where the expansion of the displacement was truncated and only the terms ݆ ൌ െ1, 0, 1 were 

kept due to the smallness of ݇,/݇, and with ܦ൫ ߱, ൯ݍ ൌ ଶቀఠೕమିସ ୱ୧୬మቀೕమ ቁቁ,ಲ . The dispersion 

relation is then deduced from the zero-determinant condition ܦሺ߱ିଵ, ,ሺ߱ܦଵሻିݍ ,ሺ߱ଵܦሻݍ ଵሻݍ െ ,ሺ߱ିଵܦ ଵሻିݍ െ ,ሺ߱ଵܦ ଵሻݍ ൌ 0.              (S3) 

Note finally that the curve generated in this manner is only valid in the vicinity of the 

unperturbed dispersion curve of the non-modulated lattice given by ܦሺ߱, ሻݍ ൌ 0.  
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Energy loss effects  

Losses are present in the experimental system studied in this paper. In our model, we describe 

the losses as viscous damping and Coulomb friction (Eq. 2). The dissipation parameters are 

extracted from experiments as fitting parameters, matching the velocity response of non-

modulated systems. We numerically study the effects of energy loss in our systems in two 

different scenarios: (I) pulse propagation and (II) continuous driving of the lattice. We use the 

finite lattice of Eq. (2) with modulation frequency ݂ௗ ൌ 15 Hz for all the simulations in this 

section. Similar results are obtained for other modulation frequencies.  

(I) For pulse propagation, a Dirac impulse is applied to the first unit (as initial velocity) 

and the response at the end unit is monitored for both forward- and backward-traveling 

modulation waves. Fig. S4 shows the results of these simulations for three sets of damping and 

friction: (i) left column: no loss (ܾ ൌ ߤ ,0 ൌ 0); (ii) middle column: only viscous damping 

(ܾ ൌ ߤ ,0.056 ൌ 0); (iii) right column: damping and friction (ܾ ൌ ߤ ,0.056 ൌ 0.003). The top 

row (a) in Fig. S4 shows the impulse response of the end unit in time domain, the middle row (b) 

shows the impulse response in the frequency domain (i.e., the Fourier transform of the top 

row), and the bottom row (c) shows the response of the entire lattice in the time domain. The 

time series for backward-traveling waves are shown along the negative time axes for better 

illustration.  

The left column in Fig. S4 shows the impulse response of the end unit in the absence of energy 

loss. The non-reciprocal behavior around 5 Hz and below 20 Hz is clearly observed in the 

frequency domain (panel b). We can also observe that the time series for the forward and 

backward cases are different (panels a and c). As expected, this is consistent with analytical and 

numerical predictions of the infinite lossless lattice in Fig. 2a. As viscous damping is increased to 

the value obtained from experiments (middle column in Fig. S4), less energy is transferred to 

the end unit for both values of ݍௗ. This is observed most clearly in the time series (top and 

bottom rows), but is also visible in the frequency domain (middle row). Most importantly, the 

non-reciprocal wave propagation around 5 Hz and below 20 Hz persists. When the friction 

coefficient is increased to ߤ ൌ 0.003 (right column in Fig. S4), we observe that most of the 
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input energy is lost and little energy is transferred to the end unit. Notably, the transferred 

energy retains its non-reciprocal nature, consistent with the previous cases. If we repeat the 

above numerical analysis with the same damping and friction coefficients as in the experiments 

( , ), no energy reaches the end unit. This explains why we were not able to 

measure the impulse response of the end unit in the experimental setup.  

 

 

Figure S4 Influence of energy dissipation on the impulse response of the finite lattice for 

 (forward) and  (backward) at modulation frequency of  

Hz. Left column: no loss ( , ); (ii) middle column: only viscous damping ( , 

); (iii) right column: damping and friction ( , ). The top row (a) shows 

the impulse response of the end unit in the time domain, the middle row (b) shows the impulse 

response of the end unit in the frequency domain, the bottom row (c) shows the response of 

the entire lattice in the time domain. The time series for backward-traveling waves are shown 

along the negative time axes for better illustration. 

(II) To evaluate the effect of energy loss for continuous excitation of the lattice, we 

consider the response of the finite lossy system described by Eq. (2) at modulation frequency 

 Hz. Figure S5 shows the velocity response curves for three different values of energy 
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loss: (a) ܾ ൌ ߤ ,0.056 ൌ 0.021 (the same as in the experimental system); (b) ܾ ൌ ߤ ,0.056 ൌ 0; 

and (c) ܾ ൌ ߤ ,0.028 ൌ 0. The results are plotted in logarithmic scale to emphasize the 

differences between them. Comparing Figs. S5 a & b, we observe that friction plays an 

important role in suppressing the response at lower frequency where the velocities are small. 

This explains why the non-reciprocal behavior near 5 Hz was not detectable in experiments. We 

also observe that the non-reciprocal propagation below 20 Hz is more pronounced in Fig. S5 b 

than in Fig. S5 a because there is less energy. By further reducing the damping, we observe in 

Fig. S5 c that the response amplitudes generally increase and the non-reciprocal behavior near 

5 Hz becomes more pronounced. Of course, in the limit of zero energy loss the response 

becomes unbounded at various frequencies because of the continuous excitation.  

 

Figure S5 Velocity response curves at modulation frequency ݂ௗ ൌ 15 Hz for three different 

values of energy loss: (a) ܾ ൌ ߤ ,0.056 ൌ 0.021 (same as in Fig. 2d); (b) ܾ ൌ ߤ ,0.056 ൌ 0; and 

(c) ܾ ൌ ߤ ,0.028 ൌ 0. As energy loss is gradually decreased from (a) to (c), we observe that the 

response amplitude increases and the non-reciprocal behavior becomes more pronounced, 

especially near 5 Hz.  
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Finite-size effects 

The theoretical findings pertaining to an infinite, lossless medium were able to reliably predict 

the frequency ranges at which we measured modulation-induced non-reciprocity in a finite 

lossy medium (see Figs. 2 and 3). In this section, we focus on finite size effects in a modulated 

lattice. Specifically, we compute the bias ratio ݎ (the ratio of the forward- to backward-traveling 

waves) as a function of the number of units for the modulation frequency of 15 Hz. To decouple 

finite-size effects from other effects, we perform all the simulations in this section for an 

undamped chain, with an absorbing layer attached to the end of the lattice to avoid reflections. 

To remain consistent with the experimental setup, the first and last units in the lattice are not 

modulated. An impulse (initial velocity) is applied to the first unit, the governing equation are 

integrated in time, and the response of the last unit is transformed to the frequency domain for ݍௗ ൌ   .to obtain the bias ratio 2/ ߨט

Figure S6 shows the bias ratio, as a function of the lattice size. In each case ܰ denotes the total 

number of magnets within the lattice. The number of modulated units is ܰௗ ൌ ሺܰ െ 2ሻ/4 

because each modulated unit comprises 4 magnets. We can see three main regions of biased 

propagation (modulation-induced non-reciprocity) that persist with increasing number of units: 

around 5 Hz, around 20 Hz and above 35 Hz. We focus on the region around 20 Hz, bearing in 

mind that the biased responses around 5 Hz and 20 Hz are due to the same phenomenon. We 

ignore the region above 35 Hz because it lies within the band gap, where the amplitudes of 

motion are too small to be of practical relevance.  

Figure S6 shows a size-persistent region of biased propagation near 20 Hz, approximately 

between 17.9 Hz and 22.3 Hz. As expected, increasing the lattice size enhances the bias ratio 

and the frequency range of biased propagation. We can see that for ܰ ൌ 18 (4 modulated units) 

the biased region is already very similar to the biased region for ܰ ൌ 410 (100 modulated 

units). This frequency range is in agreement with the theoretical predictions of the infinite 

lattice shown in Fig. 2a. Note that there is a narrow-band unbiased response near 19 Hz for ܰ  18. This corresponds to the extra branch of the dispersion curve that penetrates the 

modulation-induced band gap near 20 Hz, as already depicted in Fig. 2a. This effect is not 
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present in the short lattice because of its narrow-band nature: it is well understood [30] that 

the dispersion curve of a finite lattice can be obtained by “sampling” the dispersion curve of an 

infinite lattice at discrete values of wavenumber.  

 

 

Figure S6 Ratio of the output velocities of the forward- to backward-traveling waves for 

modulation frequency ݂ௗ ൌ 15 Hz as a function of the lattice size. ܰ is the total number of 

magnets in the lattice. The quantity on the y-axis is logሺݎሻ, thus zero corresponds to reciprocal 

propagation (ݎ ൌ 1). The results for different lattice sizes are offset for better illustration. 
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ܰ ൌ 10 corresponds to the same number of units as in the experimental setup. The vertical 

dotted grey lines at 17.9 Hz and 22.3 Hz denote the frequency range for modulation-induced 

non-reciprocity near 20 Hz for the longest chain.  

 

 


