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Abstract	 -	We	 study	 frequency	 conversion	 in	 nonlinear	mechanical	 lattices,	 focusing	on	 a	
chain	of	magnets	 as	 a	model	 system.	We	 show	 that	by	 inserting	mass	defects	 at	 suitable	
locations,	we	can	introduce	localized	vibrational	modes	that	nonlinearly	couple	to	extended	
lattice	 modes.	 The	 nonlinear	 interaction	 introduces	 an	 energy	 transfer	 from	 the	 high-
frequency	 localized	modes	 to	 a	 low-frequency	 extended	mode.	 This	 system	 is	 capable	 of	
autonomously	 converting	 energy	 between	 highly	 tunable	 input	 and	 output	 frequencies,	
which	need	not	be	related	by	integer	harmonic	or	subharmonic	ratios.	It	is	also	capable	of	
obtaining	energy	from	multiple	sources	at	different	frequencies	with	a	tunable	output	phase,	
due	 to	 the	defect	 synchronization	provided	by	 the	extended	mode.	Our	 lattice	 is	a	purely	
mechanical	analog	of	an	opto-mechanical	system,	where	the	localized	modes	play	the	role	of	
the	electromagnetic	field,	and	the	extended	mode	plays	the	role	of	the	mechanical	degree	of	
freedom.		
	
Introduction	-	Frequency	converting	processes	have	applications	in	a	variety	of	problems,	for	
example,	in	obtaining	different	wavelengths	from	a	fixed-frequency	laser1,	harvesting	energy	
from	vibration	sources2	and	generating	entangled	photons3.	Typically,	frequency	conversion	
is	 accomplished	 through	 wave	 mixing4	 (which	 requires	 at	 least	 two	 input	 signals	 with	 a	
prescribed	frequency	difference),	harmonic	generation1	(which	produces	an	output	that	is	a	
multiple	of	the	input	signal)	and	subharmonic	bifurcations5	(which	produce	an	output	that	is	
an	integer	fraction	of	the	original	signal).	In	addition,	these	frequency	conversion	mechanisms	
prescribe	 the	output’s	 signal	 phase,	which	hinders	 the	process	 of	 harvesting	 energy	 from	
multiple	sources.	Combination	resonances6,	processes	that	arise	in	the	presence	of	multiple	
nonlinearly-interacting	modes,	 can	 achieve	 frequency	 down-conversion	 between	 arbitrary	
input	and	output	signals	not	related	by	a	harmonic	or	subharmonic	ratios.	The	resulting	input	
and	output	 frequencies	can	be	 tuned	by	adjusting	 the	modes’	 frequencies.	Combinational	
resonances	can	be	found,	for	example,	in	vibrating	beams7,	membranes	and	plates8.	
	
In	 this	 paper,	 we	 show	 that	 nonlinear	 lattices	 have	 the	 potential	 to	 act	 as	 frequency-
converting	devices,	due	to	the	combination	resonances	arising	from	the	nonlinear	interaction	
between	the	lattice’s	normal	modes.	Chains	of	nonlinearly	interacting	elements	have	been	
studied	 for	 decades,	 beginning	 in	 the	 FPU	 problem9,10	 .	 They	 present	 a	 wide	 variety	 of	
phenomena,	 including	 solitons11,12,	 band-gaps13,	 energy	 trapping14,	 breathers15,16,	
unidirectional	 wave	 propagation17,	 negative	 or	 extreme	 stiffness18,	 localized	 modes	 with	
tunable	profile19,	shocks	and	rarefaction	waves20.	These	phenomena	can	be	used	to	realize	
acoustic	 rectifiers17,	 logic	 gates21,	 lenses22,	 filters23,	 vibration-attenuation24	 and	 energy	
harvesting	 systems16.	 Nonlinear	 lattices	 can	 be	 implemented	 using	 a	 broad	 range	 of	
materials25,	geometries26	and	interactions27,	allowing	to	tune	the	masses,	coupling	strengths	
and	 damping	 values	 of	 the	 particles,	 to	 optimize	 the	 performance	 under	 the	 required	
operating	 conditions.	 Because	 of	 this	 tunability,	 nonlinear	metamaterials	 are	 a	 promising	
candidate	for	energy	converting	devices.		
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Figure	 1.	 (Color	 Online)	 Frequency-converting	 metamaterial	 concept.	 (a)	 Metamaterial	 design,	
consisting	of	a	chain	of	nonlinearly-interacting	magnets.	The	central	particle	of	the	chain	is	a	defect,	
which	 has	 a	 lower	mass.	 This	magnet	 acts	 as	 the	 high-frequency	 input	 to	 the	 system.	 The	 down-
converted	energy	can	be	extracted	far	away	from	the	defect.	In	our	experiments,	the	defect	is	driven	
by	a	wire	carrying	an	electrical	current	(yellow	arrow).	(b)	Cropped	image	of	the	experimental	magnet	
chain,	obtained	using	the	same	computer	vision	camera	that	is	also	used	to	track	the	magnets.	Each	
magnet	is	enclosed	in	a	3D	printed	case,	and	has	a	random	speckle	pattern	to	facilitate	its	tracking	by	
digital	image	correlation.	(c)	Extended	mode	of	vibration.	The	red	hollow	circle	is	the	defect	particle,	
while	the	blue	solid	dots	represent	the	other	particles.		(d)	Experimental	frequency	response	of	the	
extended	mode	 (blue	 dots)	 and	 Lorentzian	 fit	 (red	 solid	 line).	 (e)	 Localized	mode	of	 vibration.	 (d)	
Experimental	frequency	response	of	the	localized	mode	(blue	dots)	and	Lorentzian	fit	(red	solid	line).		
	
Experimental	system	–	Our	experimental	setup	consists	of	a	chain	of	magnets27	floating	on	
an	air	table	(Fig.	1(a)).	Each	magnet	is	embedded	in	a	3D	printed	case	that	adds	an	additional	
mass,	with	different	case	designs	resulting	in	different	particle	masses	(! = 0.45'	 for	the	
non-defect	particles,	!() = 0.197'	 for	the	first	defect	and	!() = 0.244'	 for	the	second	
defect).	The	presence	of	defects	introduces	localized	modes	around	each	defect	particle	(Fig	
1(b,c)).	When	these	modes	are	excited,	the	resulting	motion	is	exponentially	localized	around	
the	defect.	In	our	experimental	setup,	the	defects	act	as	inputs	for	the	frequency-conversion	
system.	We	excite	them	by	passing	current	through	a	small	conductive	wire	normal	to	the	
length	of	the	chain	(Fig.	1(a)).	The	wire	is	driven	harmonically	with	a	signal	generator		(Agilent	
33220A)	 amplified	 by	 an	 audio	 amplifier	 (Topping	 TP22,	 class	 D).	 An	 extended	 mode	 of	
vibration	 (Figs.	 1(c)	 and	 (d))	 interacts	 with	 the	 localized	 mode	 to	 introduce	 frequency	
conversion.	We	monitor	the	motion	of	the	magnets	using	a	computer	vision	camera	(Point	
Grey	GS3-U3-41C6C-C),	with	a	frame	rate	between	40	and	200	fps	that	allows	us	to	resolve	
all	 particles’	motion.	We	use	 the	 software	VIC-2D	 from	Correlated	 Solutions,	 to	 track	 the	
particles	and	determine	their	trajectory.		
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Experimental	results	for	the	system	with	a	single	defect	–	We	start	by	studying	a	lattice	of	
21	magnets	containing	a	singe	defect	(!() = 0.197')	in	the	middle	position	(i=11).	The	first	
and	last	magnets	are	fixed.	We	set	the	excitation	frequency	to	approximately	the	sum	of	the	
defect’s	frequency	(Fig.	1(f))	and	the	extended	mode’s	frequency	(Fig.	1(d)),	with	the	goal	of	
exciting	a	combinational	resonance	(./ + .1)	between	the	extended	and	localized	modes	6.	
We	slowly	increase	the	excitation	amplitude	until	a	threshold	is	reached	and	self-sustaining	
oscillations	develop	far	away	from	the	defect,	indicating	the	transfer	of	energy	between	the	
localized	 mode	 and	 an	 extended	 mode	 (Fig.	 2(a)).	 In	 this	 regime,	 the	 defect	 motion	 is	
modulated	 by	 the	 extended	 mode	 (Fig.	 2(b)).	 Due	 to	 the	 exponential	 localization	 of	 the	
defect’s	motion,	the	Fourier	transform	of	a	far	from	the	defect	particle’s	displacement	(Fig.	
2(c))	does	not	reveal	significant	motion	at	the	input	frequency,	and	consists	almost	exclusively	
of	 down-converted	 energy.	 The	 frequency	 conversion	 efficiency,	 defined	 as	 the	 energy	
dissipated	in	the	extended	mode	in	comparison	with	the	energy	input	into	the	system	2 =

34565
78	

34:6:
78;<:<=
,	 equals	 10.8 ± 0.9%.	 This	 efficiency	 arises	 from	 our	 particular	 system	

parameters	and	is	not	an	absolute	limit.		
	
	
	

	
	
Figure	2.	(Color	Online)	Experimental	response	of	the	system	under	harmonic	excitation.	(a)	Position	
of	the	magnets	as	a	function	of	time.	The	red	dotted	line	corresponds	to	the	defect	magnet,	which	
acts	as	the	input	to	the	frequency-converting	system.	The	green	dashed	line	is	taken	as	the	output	of	
the	system.	(b)	Fourier	transform	of	the	defect	magnet’s	position,	which	is	modulated	at	the	extended	
mode’s	frequency.	The	vertical	dotted	line	represents	the	excitation	frequency.	(c)	Fourier	transform	
of	 the	output	magnet’s	position.	 This	magnet’s	motion	happens	primarily	 at	 the	 second	extended	
mode’s	frequency.	
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Theoretical	model	–	Our	theoretical	model	describes	the	magnets	as	point	masses.	We	model	
the	 interaction	between	particles	using	an	empirical	power-law	model,	A B = CBD,	with	
C = 3.378 ∙ 10G)HI!J.K)L	and	M = −4.316	determined	experimentally	(See	Supplementary	
Information	 for	 the	 fitted	 force-displacement	 curves).	 This	 model	 does	 not	 have	 a	
straightforward	physical	justification	in	terms	of	the	material	properties	and	the	geometry	of	
the	magnets,	but	it	is	chosen	because	it	reproduces	the	experimental	force	law	with	very	high	
precision	and	low	complexity.	Using	this	force-displacement	law	we	can	write	the	equation	
of	motion	for	the	system	(the	indices	in	parentheses	indicate	that	no	summation	is	performed	
over	them):	
	
!(Q)S(Q) + T(Q)S(Q) − C BU V − W	 + SQ − SX

D

)YX3Q

+ C BU W − V	 + SX − SQ
D

Q3XYZ

= AQ [ 	 	(1)	

	
Where	!(Q)	and	T(Q)	are	the	mass	and	damping	coefficient	of	the	V-th	particle,	C	and	M	are	
the	magnetic	 force	 law	 parameters,	AQ [ 	 is	 the	 external	 driving	 force	 acting	 on	 the	 V-th	
particle	 (which	may	be	zero	 if	 the	particle	 is	not	externally	driven),	and	BU	 is	 the	distance	
between	magnets	at	rest.	When	performing	the	reduced-order	analysis,	we	will	assume	that	
BU	 is	the	same	for	all	magnets.	This	is	an	approximation,	since	magnets	that	are	not	in	the	
center	of	the	lattice	are	subject	to	asymmetric	long-range	forces.	However,	we	have	found	
this	approximation	to	yield	acceptable	results.	We	emphasize	that	our	theoretical	model	is	
not	 limited	 to	 nearest-neighbor	 interactions	 and	 takes	 into	 account	 the	 magnetic	 force	
between	all	pairs	of	magnets.	All	numerical	integration	in	this	paper	is	done	using	a	4th	order	
Runge-Kutta	algorithm	with	a	time	step	of	1	!\.	
	
Reduced	 modal	 description	 and	 frequency	 conversion	 mechanism	 –	 The	 mechanism	
responsible	for	the	frequency	conversion	in	our	lattice	becomes	much	clearer	when	we	look	
at	the	evolution	of	the	system	in	terms	of	the	normal	modes	of	the	linearized	system.	We	can	
obtain	this	description	by	approximating	the	force-displacement	relation	by	a	second	order	
Taylor	series.	When	we	do	this	approximation,	the	system	becomes:	

]QXSX + MQXSX + Q̂XSX + _QX`SXS` = AQ [ 	 	(2)	

Here,	the	indices	W	and	a	are	summed	over	all	degrees	of	freedom,	],	M	denote	the	mass	and	
damping	matrices	 defined	 conventionally,	 and	 the	 terms	^	 and	_	 are	obtained	by	 Taylor	
expansion	of	the	force	law:	
	

Q̂X =
B
BSX

C BU V − !	 + SQ − Sb D

)Yb3Q

+ C BU ! − V	 + Sb − SQ D

Q3bYZ

	 	(3)	

	

_QX` =
1
2

BH

BSXBS`
C BU V − !	 + SQ − Sb D

)Yb3Q

+ C BU ! − V	 + Sb − SQ D

Q3bYZ

	 (4)	

	
Since	]	is	symmetric	and	positive-definite	and	^	symmetric,	we	can	find	an	invertible	matrix	
c	such	that	cd]c	and	cd^c	are	both	diagonal.	For	simplicity,	we	assume	that	damping	is	
proportional	to	the	mass	matrix	and	therefore	also	diagonalizable.	In	this	basis,	the	equations	
of	motion	become:	
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cQb]QXcXZeZ + cQbMQXcXZeZ + cQb Q̂XcXZeZ + _QX`cQbcXZc̀ feZef = Ab [ 	 					(5)	

The	diagonalized	system	in	Eq.	(5)	does	not	provide	any	significant	numerical	advantage,	since	
_QX`is	highly	non-local	in	the	modal	basis	(i.e.,	modes	far	apart	interact	as	strongly	as	nearby	
modes).	However,	we	can	see	the	motivation	for	this	approach	if	we	look	at	the	experimental	
results	in	the	modal	basis	(Fig.	3(a)).	In	this	basis,	most	of	the	motion	occurs	in	the	second	
extended	mode	 and	 in	 the	 localized	mode.	 In	 fact,	 these	modes	 hold	 around	 90%	of	 the	
system’s	energy	(Fig.	3(b)).	Therefore,	we	can	restrict	our	description	to	these	two	modes	
without	incurring	a	significant	error.	This	reduced-order	description	is:	

!1e1 + T1e1 + a1 − 2ge/ S1 = Ah cos 2lmh[ 	 						(6)	

!/e/ + T/e/ + a/e/ − ge1H = 0	 						(7)	

In	 this	 description,	 e1	 and	 e/ 	 are	 the	 displacements	 of	 the	 localized	 and	 extended	 modes	
respectively,	Ah 	is	the	input	force,	mh 	is	the	input	frequency,		!1,	T1	and	a1	are	the	effective	mass,	
damping	and	stiffness	of	the	localized	defect	mode,	!/,	T/ 	and	a/ 	are	the	effective	mass,	
damping	and	stiffness	of	the	extended	mode.	The	term	g = _QX`cQ/cX1c̀ 1 = _QX`cQ1cX/c̀ 1 =
_QX`cQ1cX1c̀ / 	 denotes	 the	 quadratic	 interaction	 between	 modes.	 This	 term	 can	 be	
determined	by	performing	a	Taylor	expansion	of	the	 interaction	force,	or	by	analyzing	the	
frequency	response	of	the	local	and	extended	modes	(See	Supplementary	Information).	We	
note	 that	 the	 reduced	 equations	 of	 motion	 present	 an	 asymmetry:	 There	 is	 no	 term	
proportional	to	S/H	in	Eq.	(6)	and	there	is	no	term	proportional	to	S/S1	in	Eq.	(7).	These	terms	
do	not	appear	in	our	lattice	due	to	the	location	of	the	defect,	but	they	are	not	generally	zero	
(See	Supplementary	 Information	 for	a	study	on	the	relation	between	nonlinear	 terms	and	
defect	 location).	The	 interaction	between	modes	can	be	understood	 in	 the	 following	way:	
Due	to	nonlinearity,	the	vibration	of	the	defect	mode	pushes	against	its	neighbors,	in	a	way	
that	 is	 analogous	 to	 thermal	 expansion	 of	 a	 crystal18	 or	 the	 optical	 pressure	 in	 an	 opto-
mechanical	 system	 (Fig.	 3(c)).	 For	 small	 amplitudes,	 this	 expansion	 is	 proportional	 to	 the	
square	of	the	vibration	amplitude,	resulting	in	the	term	gS1H	in	the	extended	mode	equation.	
In	addition,	the	motion	of	the	extended	mode	modulates	the	distance	between	the	defect	
particle	and	its	neighbors	(Fig.	3(d)).	This	affects	the	localized	mode’s	effective	stiffness	and	
introduces	the	parametric	term	na1 = gS/,	analogous	to	the	modulation	of	the	optical	cavity	
wavelength	 in	an	opto-mechanical	 system.	This	 type	of	 interaction	appears	 in	a	variety	of	
systems,	such	as	phonon	modes	in	superconductors28,	and	can	result	in	stochastic	heat	engine	
opearation29.	 This	 reduced-order	 model	 can	 reproduce	 the	 experimentally-observed	
behavior	 (Figs.	 3(e)	 and	 (f))	 with	 remarkable	 accuracy.	We	 highlight	 that	 the	 only	 fitting	
parameter	used	is	the	excitation	amplitude.	The	particle	mass,	mode	quality	factor	and	inter-
particle	force	law	have	all	been	measured	experimentally.	
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Figure	3.	(Color	Online)	Reduced-order	description	of	the	frequency	conversion	process.	(a)	Projection	
of	 the	 experimental	 time	 evolution	 (Fig.	 2(a))	 in	 the	 linear	 modal	 basis.	 (b)	 Average	 energy	 as	 a	
function	of	 the	mode	number.	The	system’s	energy	 is	highly	concentrated	 in	the	second	extended	
mode	and	the	 localized	defect	mode.	(c)	Dynamic	expansion	of	the	defect	mode.	When	the	defect	
vibrates,	the	nonlinear	magnetic	interaction	results	in	a	non-zero	average	force	acting	on	the	defect’s	
neighbors.	(d)	The	motion	of	the	second	extended	mode	modulates	the	distance	between	the	defect	
particle	and	its	neighbors,	dynamically	tuning	the	defect	mode	frequency.	(e)	Detail	of	the	extended	
mode	 and	 localized	 mode	 evolution,	 measured	 experimentally.	 (f)	 Theoretical	 prediction	 for	 the	
extended	and	localized	mode	evolution,	obtained	from	a	reduced-order	model	considering	only	two	
modes	 (Eq.	 (6)	 and	 (7)).	 The	 numerical	 simulation	 in	 panel	 f	 corresponds	 to	 a	 system	with	!/ =
0.45	',	 !1 = 0.232	',	 m/ = 0.5664	op,	 m1 = 3.913	op,	 mh = 4.38	op,	 Ah = 45	qI,	 r/ =
4.518,	r1 = 66.62	and	g = 1.801	 I !H,	where	as = !s 2lms H	and	Ts = !s2lms	 rs.	
	
The	two-mode	system,	described	in	Eq.	6	and	Eq.	7,	is	a	purely-mechanical	analog	of	an	opto-
mechanical	system30-32.	The	extended	mode	plays	the	role	of	the	low-frequency	mechanical	
motion,	while	the	localized	mode	plays	the	role	of	the	high-frequency	electromagnetic	field.	
The	term	gS1H	acting	on	the	extended	mode	plays	the	role	of	the	optical	pressure,	while	the	
term	2gS/S1	 acting	on	 the	 localized	mode	 reproduces	 the	modulation	of	 the	Fabry-Perot	
resonance	by	the	mechanical	degree	of	freedom	in	an	opto-mechanical	system.	This	analogy	
can	 be	 made	 explicit	 by	 expressing	 the	 motion	 of	 the	 defect	 mode	 as	 e1 [ =
1 2 [u [ vQwx + u∗ [ vGQwx]	and	assuming	that	u [ 	changes	slowly	and	that	1 r1 ≪ 1.	
With	 these	 assumptions,	 we	 arrive	 at	 the	 following	 equation	 (a	 detailed	 derivation	 and	
comparison	with	the	full	model	are	provided	in	the	Supplementary	Information):	
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!e/ + T/e/ + a/e/ = g
u H

2
	

	
						(8)	

u + u
.U
2r1

− Vn e/ = Ah	 						(9)	

	
Here,	.U	 is	 the	 natural	 frequency	 of	 the	 localized	 mode	 and	 the	 detuning	n e/ 	 is	 the	
difference	 between	 the	 localized	 mode’s	 natural	 frequency	 and	 the	 defect’s	 excitation	
frequency,	as	a	function	of	the	extended	mode’s	position.	All	other	parameters	have	the	same	
meaning	than	they	did	 in	Eq.	 (6)	and	Eq.	 (7).	While	being	an	approximation,	this	 form	has	
numerical	advantages	by	not	containing	rapidly	changing	components	at	the	frequency	of	the	
localized	mode,	and	not	requiring	the	evaluation	of	trigonometric	functions	for	the	excitation.	
Besides	numerical	reasons,	the	description	provided	in	Eq.	(8)	and	Eq.	(9)	is	identical	to	the	
model	 of	 an	 opto-mechanical	 system30,32,33,	 for	 which	 there	 is	 extensive	 analytical	
literature32,34.	 This	 analogy	 provides	 a	 lucid	 interpretation	 of	 the	 frequency	 converting	
mechanism,	whereby	the	self-sustaining	oscillations	of	the	extended	more	are	the	result	of	a	
feedback	 mechanism	 between	 the	 extended	 mode’s	 motion	 and	 the	 localized	 mode	
amplitude.	In	this	picture,	the	localized	mode	amplitude	u	depends	on	the	extended	mode	
displacement	through	the	term	n e/ .	Equation	(9)	imposes	a	retardation	between	u	and	e/ 	
and,	as	a	consequence,	the	term	g u H	has	a	quadrature	component	(shifted	90	degrees	from	
e/([))	that	results	in	negative	damping31.	When	this	negative	damping	exceeds	the	value	of	
T/,	the	system	develops	self-sustaining	oscillations,	which	saturate	at	a	finite	value	due	to	
non-linearity31.		
	
Multiple-defect	synchronized	frequency	conversion	–	Systems	containing	multiple	defects	
can	 present	 synchronized	 frequency	 conversion,	 where	 the	motion	 of	multiple	 defects	 is	
determined	 by	 the	 same	 extended	mode,	 thereby	 synchronizing	 the	 defect’s	modulation	
envelopes	 and	 resulting	 in	 the	 conversion	of	 energy	 from	multiple	 input	 frequencies	 to	 a	
single	 output	 frequency.	 The	 use	 of	 an	 extended	mode	 to	 synchronize	multiple	 resonant	
elements	appears	in	the	context	of	Josephson	junction	arrays35,	and	here	we	use	it	to	extract	
energy	from	multiple	sources	of	mechanical	vibrations.	Our	experimental	system	consists	of	
20	magnets,	with	defect	particles	in	positions	7	(0.244')	and	14	(0.197').	The	initial	and	final	
particles	are	fixed.	As	in	the	case	with	a	single	defect,	we	set	an	excitation	frequency	for	each	
defect	equal	to	the	defect’s	frequency	plus	an	extended	mode’s	frequency.	This	time	we	use	
the	third	extended	mode	instead	of	the	second,	because	it	presents	two	regions	of	maximum	
strain	at	 the	 two	defect’s	positons.	As	we	did	 in	 the	 single	defect	 case,	we	 increase	both	
defect’s	excitation	amplitudes	simultaneously,	until	we	observe	self-sustaining	oscillations	far	
from	the	defect.	Figure	4a	shows	the	trajectories	of	the	magnets	in	the	self-sustaining	regime.	
We	calculate	the	energy	transfer	between	both	defects	and	the	extended	mode,	by	utilizing	
the	empirical	force-displacement	relation	and	the	defect’s	trajectories,	and	we	observe	that	
both	defects	are	contributing	energy	to	the	extended	mode	with	a	power	(c =< AS/ >=<
gS1HS/ >)	of	16.9 ± 1.5	~�	and	25.8 ± 4.0	~�	respectively,	indicating	successful	extraction	
of	energy	from	multiple	sources.	The	frequency	conversion	efficiency	is	20.5 ± 10.4%.	As	in	
the	previous	case,	the	motion	of	the	defects	presents	sidebands	indicating	a	modulation	by	
the	extended	mode	(Fig.	4(b)).	Far	from	the	defect,	the	motion	takes	place	exclusively	at	the	
extended	mode’s	frequency,	as	required	for	successful	frequency	conversion	operation.	
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Figure	4.	(Color	Online)	Synchronized	frequency	conversion.	(a)	Position	of	the	magnets	as	a	function	
of	 time.	The	yellow	dotted	 line	 (particle	7)	and	the	red	dotted-dashed	 line	 (particle	14)	are	defect	
magnets	 that	 act	 as	 the	 high-frequency	 inputs	 of	 the	 system.	 The	 green	 dashed	 line	 is	 the	 low	
frequency	 output.	 (b)	 Fourier	 transform	 of	 the	 defects’	 positions,	 which	 are	 modulated	 at	 the	
extended	mode’s	frequency.	The	vertical	dotted	line	represents	the	excitation	frequency.	(c)	Fourier	
transform	 of	 the	 output	 magnet’s	 position.	 This	 magnet’s	 motion	 happens	 primarily	 at	 the	 third	
extended	mode’s	frequency.	
	
As	 in	 the	 case	 with	 a	 single	 defect,	 expressing	 the	magnet’s	 trajectories	 in	 terms	 of	 the	
lattice’s	linear	normal	modes	reveals	that	the	motion	(Fig.	5(a))	and	the	energy	(Fig.	5(b))	are	
primarily	concentrated	in	an	extended	mode	(Fig.	5(c),	left)	and	in	the	two	localized	modes,	
the	profiles	of	which	are	depicted	in	Fig.	5(c).	This	energy	concentration	allows	us	to	formulate	
a	 reduced-order	 description	 following	 the	 same	procedure	 as	 in	 the	 system	with	 a	 single	
defect.	The	resulting	system	of	equations	has	the	form:	
	

!1)S1) + T1)S1) + a1) − 2g)S/ S1) = Ah) cos 2lmhH[ 	 					(10)	

!1HS1H + T1HS1H + a1H − 2gHS/ S1H = AhH cos 2lmhH[ 	 					(11)	

!/S/ + T/S/ + a/S/ − g)S1)H − gHS1HH = 0	 			(12)	

	
The	model	in	Eqs.	(10)-(12)	is	capable	of	qualitatively	predicting	the	evolution	of	the	modes	
(Fig.	5(d)	and	5(e)),	but	under-estimates	the	output	amplitude	relative	to	the	experiments.	
We	attribute	this	difference	to	uncertainty	in	the	system’s	resonance	frequencies	and	quality	
factors.	This	is	suggested	by	the	difference	between	theory	and	experiment	in	the	extended	
mode’s	 frequencies	 (See	 Supplementary	 Information)	 and	 in	 the	 phase	 of	 the	 localized	
mode’s	vibration.	
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Figure	5.	(Color	Online)	Reduced-order	description	of	the	synchronized	frequency	conversion.	(a)	Time	
evolution	of	the	magnets	in	terms	of	the	linear	eigenmode	basis.	(b)	Energy	distribution	in	each	normal	
mode.	The	energy	is	concentrated	in	the	third	extended	mode	and	in	the	two	localized	defect	modes.	
(c)	Mode	profiles	of	the	three	most	relevant	eigenmodes.	(d)	Experimental	time	evolution	of	the	third	
extended	mode	e/ 	and	the	two	localized	modes	e1)	and	e1H	as	a	function	of	time.	(e)	Theoretical	
prediction	for	the	time	evolution	of	the	eigenmodes.	The	theoretical	predictions	have	been	obtained	
using	a	3-DOF	reduced	order	model.	The	numerical	parameters	used	in	panel	(e)	are:	!/ = 0.45	',	
!1) = 0.2318	',	!1H = 0.2915	',	m/ = 0.7494	op,	m1) = 3.404	op,	m1H = 3.063	op,	mh) = 4.1	op,	
mhH = 3.81	op,	 Ah) = AhH = 42	qI,	 r/ = 12.27,	 r1) = 39.3,	 r1H = 60.27,	 g) = −2.4293I !H,	
gH = 2.5761	 I !H.	
	
Output	phase	tunability	–	 In	our	lattice,	the	output	signal’s	phase	is	not	prescribed	by	the	
inputs	and	can	be	dynamically	tuned	while	the	system	is	operating.	This	offers	an	opportunity	
to	 synchronize	 multiple	 devices,	 create	 passive	 and	 tunable	 phased	 arrays	 or	 transfer	
information	 by	 modulating	 the	 output	 signal’s	 phase.	 We	 theoretically	 demonstrate	 this	
output	phase	tunability	in	Fig.	6(a)-(c).	The	phase	modulation	is	accomplished	by	perturbing	

the	last	particle	following	a	Gaussian	profile	given	by	SZ [ = CÄv
G ÅÇÅÉ 7

7Ñ7 	(Fig.	6(a)),	where	
CÄ	denotes	the	maximum	perturbation	amplitude,	[U	is	the	moment	where	the	perturbation	
is	 applied	 and	Ö	 represents	 the	width	 of	 the	 perturbation.	We	 choose	 a	Gaussian	 profile	
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because	it	is	highly	localized	in	both	time	and	frequency	domains.	Applying	this	perturbation	
results	in	a	change	in	the	output	signal	phase,	that	persists	long	after	the	perturbation	has	
vanished.	 Figure	 6(b)	 shows	 the	 extended	 mode’s	 displacement	 1790	 seconds	 after	 a	
perturbation,	 for	 different	 perturbation	 amplitudes.	 In	 this	 calculation,	 the	 perturbation	
width	Ö = 30\	 is	much	smaller	than	the	wait	time,	ensuring	that	no	effect	remains	by	the	
time	 the	 results	 are	 obtained.	 Two	 remarkable	 observations	 shall	 be	made	 regarding	 the	
phase	tunability	shown	in	Fig.	6(c):	Firstly,	this	tunability	covers	the	whole	range	(0° − 360°).	
Secondly,	 the	 perturbation-induced	 phase	 shift	 persists	 for	 a	 period	 of	 time	 that	 is	much	
longer	than	any	of	the	system’s	time	constants,	since	the	phase	does	not	change	significantly	
if	 we	 wait	 an	 additional	 1000\	 until	 [ = 2790\.	 In	 the	 experimental	 system,	 this	 phase	
stability	would	be	limited	by	the	presence	of	external	noise	sources	and	Brownian	motion.	
	

	
Figure	6.	(Color	Online)	Theoretical	investigation	of	phase	and	frequency	tunability.	(a)	Phase	tuning	
scheme.	 The	 output	 signal’s	 phase	 is	 tuned	 by	moving	 the	 last	 particle	 (SZ)	 following	 a	 Gaussian	
profile.	 (b)	 Extended	 mode	 signal	 2790	 seconds	 after	 the	 phase-shifting	 perturbation	 has	 been	
effected.	The	lines	correspond	to	perturbations	with	CU	equal	to	0	mm	(blue,	solid),	6.2562	mm	(red,	
dotted)	 and	 6.5917	 mm	 (yellow,	 dashed).	 (c)	 Output	 phase	 as	 a	 function	 of	 the	 maximum	
displacement	of	the	phase-adjusting	perturbation.	The	blue	solid	line	is	measured	1790	seconds	after	
the	perturbation,	while	 the	 circles	 are	measured	1000	 seconds	 after	 the	 first	measurement,	 2790	
seconds	 after	 the	 perturbation’s	 peak.	 Panels	b	 and	 c	 have	 been	 obtained	 by	 integrating	 the	 full	
equation	 of	 motion	 (Eq.	 (1))	 with	 BU = 16.3	!!,	 !Q,Qà)) = 0.45	',	 !)) = 0.197	',	 TQ,Qà)) =
306.83	 qI\ !,	 T)) = 42.62	 qI\ !,	 AQ,Qà)) = 0I,	A)) = Ah sin 2lmQ[,	 Ah = 48.45	qI	 and	 mh =
4.38	op.	The	force-law	parameters	are	as	described	in	the	theoretical	model	section.		(d)	Frequency	
down-conversion	ratio	(top)	and	input	and	output	frequencies	(bottom)	as	a	function	of	the	mass	ratio	
between	the	defect	and	extended	modes.	These	plots	have	been	obtained	by	keeping	the	extended	
mode’s	mass	constant	and	modifying	the	defect’s	mass.	(e)	Frequency	down-conversion	ratio	(top)	
and	input	and	output	frequencies	(bottom)	as	a	function	of	the	extended	mode	mass,	while	keeping	
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the	modal	mass	ratio	!/ !1	constant.	In	this	section,	all	parameters	except	the	masses	are	identical	
to	those	in	Fig.	3(f).	
	
Tunability	–	A	 remarkable	 feature	of	our	 frequency-converting	system	 is	 the	possibility	of	
tuning	the	input	and	output	frequencies	over	a	broad	range,	both	during	the	design	phase	
and	dynamically	once	the	system	has	already	been	built.	Figure	(6)	theoretically	explores	the	
relationship	 between	 the	 input	 and	 output	 frequencies	 and	 the	 modal	 masses.	 We	 first	
explore	the	effect	of	the	mass	ratio	by	altering	the	mass	of	the	defect	mode	without	altering	
that	of	the	extended	mode	(Fig.	6(a)).	This	results	in	a	change	in	the	optimal	input	frequency	
without	a	significant	effect	on	the	output	frequency.	We	then	proceed	to	alter	the	masses	of	
the	 localized	 and	 extended	 mode	 simultaneously	 (Fig.	 6(b)).	 This	 affects	 both	 input	 and	
output	frequencies,	while	maintaining	the	down-conversion	ratio	constant.	In	the	conversion	
ratio	calculation,	we	identify	the	optimal	input	frequency	by	sweeping	the	input	between	the	
resonance	 frequency	of	 the	 localized	mode	 and	 the	 resonance	 frequency	of	 the	 localized	
mode	 plus	 twice	 the	 resonance	 frequency	 of	 the	 extended	 mode,	 and	 finding	 the	 input	
frequency	that	results	in	the	highest	energy	transfer.	In	addition	to	the	particle’s	mass,	there	
are	many	unexplored	avenues	for	tuning	the	frequency	conversion	ratio.	Examples	include	
the	static	compression	applied	on	the	chain,	the	magnets’	strength	and	geometry	and	the	
application	of	an	external	magnetic	fields36.	In	addition,	modern	3D	printed	materials	allow	
us	 to	 engineer	 nonlinear	 inter-particle	 interactions37	 beyond	 these	 offered	 by	 magnetic	
systems.	
	
Conclusions	and	outlook	–	We	have	demonstrated	that	 lattices	composed	of	magnetically	
interacting	particles	with	defects	are	capable	of	converting	energy	from	high	frequencies	to	
lower	 frequencies,	 which	 need	 not	 be	 linked	 by	 harmonic/subharmonic	 relations.	 This	 is	
possible	through	the	nonlinear	coupling	between	extended	and	localized	normal	modes.	Such	
frequency-converting	lattice,	analogous	to	opto-mechanical	systems,	is	highly	tunable	in	both	
frequency	and	phase,	and	can	extract	energy	from	multiple	signals	at	different	frequencies	to	
generate	 a	 single-component	 output.	 This	 work	 may	 motivate	 the	 design	 of	 innovative	
nonlinear	metamaterials	and	devices	with	tunable	energy	conversion	capabilities.	
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Force-displacement	relation	
	
We	experimentally	determine	the	parameters	for	the	interaction	force	by	measuring	
the	force-displacement	relation	and	fitting	it	using	a	power	law	function	of	the	form	
! = #$% .	 The	measurements	 and	 fitted	 curve	 are	 plotted	 in	 Fig.	 S1.	 Through	 this	
procedure,	 we	 obtain	 values	 of	# = 3.378 ± 0.751	/012.345	 and	 6 = −4.316 ±
	0.0460.	
	

	
FIG	 S1:	 Magnetic	 force-displacement	 relation.	 The	 blue	 circles	 are	 the	 experimental	
measurements	and	the	red	line	represents	the	power-law	fit.	

Derivation	of	the	optomechanical	equations	of	motion	
	
Here	 we	 show	 that	 the	 equations	 governing	 the	 reduced-order	 dynamics	 of	 the	
frequency	 converting	 lattice	 (Eq.	 6-7	 in	 the	main	 paper)	 can	 be	 approximated	 by	
those	 describing	 an	 optomechanical	 system,	 under	 realistic	 assumptions.	 The	
equations	that	we	want	to	approximate	are:	

1:;: + =:;: + >: − 2@;A ;: = !B cos FG 	 Eq.	S1	

1A;A + =A;A + >A;A − @;:H = 0	 Eq.	S2	

We	start	our	approximation	by	expressing	the	displacement	of	the	localized	mode	as	
a	 harmonic	 function,	 with	 a	 slowly-changing	 amplitude	 and	 phase	 given	 by	 the	
complex	function	I G :	

;: =
1
2
I G JKLM + IJNKLM 	 Eq.	S3	

	
This	allows	us	to	rewrite	Eq.	S1	as:		
	

1:
OP

OMP
	4
H
I G JKLM + I G JNKLM + QRLSR

TR

O
OM

4
H
	 I G JKLM + I G JNKLM + Eq.	S4	



>: − 2@;A
4
H
[I G JKLM + I G JNKLM] = 4

H
[!WJKLM + !WJNKLM]	

	
For	equation	S4	to	hold,	terms	multiplied	by	JKLM	must	be	identical	on	both	sides	of	
the	equation	(Taking	terms	multiplied	by	JNKLM	would	yield	an	 identical	condition.	
This	identity	results	in:	
	

1:
XH

XGH
	 I G JKLM +

1:FW:
Y:

X
XG
	 I G JKLM + >: − 2@;A I G JKLM = !WJKLM	 Eq.	S5	

	
By	evaluating	the	derivative	and	both	sides	by	JKLM	we	obtain:	
	

1:	 −FHI G + 2ZFI G + I G +
1:FW:
Y:

	 ZFI G + I G

+ >: − 2@$A I G = !W	
	

Eq.	S6	

	
Now	we	make	our	 first	assumption:	That	 the	 localized	mode	amplitude	and	phase	
are	slowly	changing.	This	allows	us	to	neglect	the	second	derivative	of	I	 in	Eq.	S6,	
resulting	in:	
	

1:	 −FHI G + 2ZFI G +
1:FW:
Y:

	 ZFI G + I G + >: − 2@$A I G = !B 	 Eq.	S7	

Which	can	be	regrouped	as:	
	

	
FW:
Y:

+ 2ZF I G +
>: − 2@;A

1:
− FH +

FW:
Y:

ZF I G =
!B
1:
	 Eq.	S8	

	
Since	Y:	 is	a	 large	value	(40-60	in	our	experimental	setup)	and	FW:	 is	of	the	same	
order	than	F,	we	can	neglect	the	contribution	of	FW: Y:	in	the	right	hand	side.	This	
results	in:	
	

I G +
−Z
2F

>: − 2@;A
1:

− FH +
FW:
2Y:

I G =
!B

2F1:
	 Eq.	S9	

	
We	note	that	the	term	 >: − 2@$A 1:	is	the	square	of	the	localized	mode’s	angular	
frequency,	as	a	function	of	the	displacement	of	the	extended	mode.	We	call	this	term	

FW: $A
H
	to	distinguish	it	from	the	natural	frequency	of	the	localized	mode	when	

the	 extended	 mode	 is	 at	 rest	 ($A = 0),	 which	 we	 termed	 FW: .	 By	 defining	 the	
detuning	 [ $A = FW: $A − F	 as	 the	 difference	 between	 the	 natural	 frequency	
FW: $A 	and	the	excitation	frequency,	we	obtain:	
	



I G +
−Z

2(FW: ;A − [ ;A )
FW: ;A

H
− FW: ;A − [ ;A

H

+
FW:
2Y:

I G =
!B

2F1:
	

Eq.	S10	

	
Expanding	the	squares	in	the	left	hand	side	of	Equation	10,	we	obtain:	
	

I G +
Z([ ;A − 2FW: ;A )[ ;A

2(FW: ;A − [ ;A )
+
FW:
2Y:

I G =
!B

2F1:
	 Eq.	S11	

	
Since	[ ≪ FW: $A 	 we	 can	 neglect	 the	 additive	 term	[ $A 	 in	 the	 numerator	 and	
denominator:	

I G +
Z(−2FW: ;A )[ ;A

2(FW: ;A )
+
FW:
2Y:

I G =
!B

2F1:
	 Eq.	S12	

	
Which	can	be	simplified	to	the	equation	for	a	classical	optomechancial	system:	

I G +
FW:
2Y:

− Z[ ;A I G =
!B

2F1:
	 Eq.	S13	

	
We	now	examine	 the	equation	 for	 the	extended	mode,	by	replacing	;: G 	 (Eq.	S3)	
into	Eq.	S2.	:	
	

1A;A + =A;A + >A;A −
@
4
IHJKHLM + IJNKHLM + 2II = 0	 Eq.	S14	

	
By	 neglecting	 the	 rapidly	 varying	 degrees	 of	 freedom	 at	 2ω,	 we	 arrive	 at	 the	
equation:	
	

1A;A + =A;A + >A;A −
@
2
I H = 0	 Eq.	S15	

Equations	S13	and	S15	correspond	 to	 the	optomechanical	model	presented	 in	 the	
main	paper.	
	

	
	
	
	



Tuning	the	nonlinear	parameters	by	modifying	the	defect’s	
location	
	
We	can	tune	the	nonlinear	parameters	in	our	reduced-order	model	by	changing	the	
defect	 location.	The	most	 general	 equation	of	motion	 for	 the	 system,	 truncated	 to	
contain	only	second-order	terms,	is	given	by:	
	

1:;: + =:;: + >:;: − _:;:H − 2@A;:;A − @:;AH = !B cos FG 	 Eq.	S16	

1A;A + =A;A + >A;A − _A;AH − 2@:;:;A − @A;:H = 0	 Eq.	S17	

	
Figure	S2	presents	the	nonlinear	parameters	as	a	function	of	the	defect	location.	The	
selected	 defect	 locations	 maximize	 the	 @A 	 coupling,	 while	 ensuring	 that	 all	 other	
nonlinear	parameters	are	small.	The	point	of	maximal	@A 	corresponds	to	the	region	
where	the	mode’s	strain	`K = $Ka4 − $K 	is	maximal,	resulting	in	the	highest	change	in	
the	defect-neighbor	distance	during	the	motion	of	the	extended	mode.	
	

	
FIG	 S2:	Nonlinear	 parameters	 as	 a	 function	 of	 the	 defect	 location.	 (a)	 Here,	 the	 extended	
mode	is	the	second	extended	mode	of	the	lattice,	corresponding	to	the	single-defect	system	
in	 the	 main	 paper.	 (b)	 The	 extended	 mode	 is	 the	 third	 extended	 mode	 of	 the	 lattice,	
corresponding	to	the	two-defects	system	in	the	main	paper.	In	both	panels,	the	dotted	line	
represents	the	experimental	light	defect	location.	In	panel	b,	the	dashed	line	represents	the	
heavy	defect	location.	

	
	



Comparison	between	full,	reduced	and	optomechanical	system	
	
Here	we	present	a	comparison	between	the	system’s	evolution	predicted	by	the	full	
model	(Eq.	XX	in	the	main	paper),	the	two-mode	reduced	order	model	(Eq.	1	in	the	
main	paper)	and	the	optomechanical	model	(Eq.	6	and	Eq.	7	in	the	main	paper).			
	

	
FIG	 S3:	 Comparison	 of	 full	 and	 reduced	 models.	 a	 Time	 evolution	 of	 the	 localized	 and	
extended	 modes	 calculated	 using	 the	 full	 system	 simulation.	 The	 modal	 description	 has	
been	obtained	by	projecting	 the	 trajectories	 into	 the	modal	basis.	b	Modal	 time	evolution	
calculated	 using	 the	 two-mode	 reduced	 order	 model.	 c	Modal	 time	 evolution	 calculated	
using	the	optomechanical	model.	The	G = 0	point	has	been	selected	independently	 in	each	
simulation,	in	order	to	present	a	consistent	phase.	
	
We	 observe	 that	 the	 three	models	 produce	 similar	 predictions.	 This	 allows	 us	 to	
conclude	that	a	reduced-order	modelling	approach	provides	a	good	approximation,	
and	that	our	nonlinear	lattice	accurately	mimics	the	dynamics	of	an	optomechanical	
system.	

Determination	of	the	natural	frequencies	in	the	two-defect	system		
	
Here	we	discuss	the	determination	of	the	resonance	frequencies	and	quality	factors	
for	 the	 third	 extended	 mode	 and	 the	 two	 localized	 modes,	 used	 in	 the	 section	
Multiple-defect	syncronized	frequency	conversion	of	the	main	paper.	The	frequency	is	
determined	 by	 exciting	 the	modes	 using	 a	 variable	 frequency	 signal.	We	monitor	
each	 particle’s	motion	 and	 project	 it	 into	 the	 theoretically-predicted	modal	 basis.	
The	amplitude	is	determined	by	calculating	the	RMS	value	of	the	modal	coordinate	
after	subtracting	the	average.	We	then	fit	the	frequency	response	using	a	Lorentzian	
function	to	obtain	the	mode’s	frequency	and	quality	factor.	
	



	
FIG	 S4:	 Fitting	 of	 the	 two-defect	 system	 parameters.	 a	 Frequency	 response	 of	 the	 third	
extended	 mode.	 b	 Frequency	 response	 of	 the	 first	 localized	 mode	 (Centered	 around	 the	
defect	 with	 mass	 1b4 = 0.197	d.	 c	 Frequency	 response	 of	 the	 second	 localized	 mode	
(Centered	around	the	defect	with	mass	1b4 = 0.244	d	
	
	

Extended	mode	
Frequency	 0.7494 ± 0.0197	ef	
Quality	factor	 12.27 ± 6.24	

First	Localized	mode	
Frequency	 3.404 ± 0.004	ef	
Quality	factor	 39.30 ± 3.35	

Second	localized	mode	
Frequency	 3.063 ± 0.004	ef	
Quality	factor	 60.27 ± 10.34	

	
Table	1:	Two-defect	system	model	parameters.	

Determination	of	the	nonlinear	constant	from	the	frequency	
response		
	
In	all	of	our	paper’s	simulations,	the	nonlinear	parameter	@	has	been	determined	by	
performing	 a	 Taylor	 expansion	 of	 the	 magnetic	 force-displacement	 relation	
presented	in	Fig.	S1.	In	some	circumstances	(For	example,	in	microscopic	systems)	it	
may	 not	 be	 possible	 to	 accurately	 measure	 the	 interaction	 potential.	 Here	 we	
calculate	the	nonlinear	parameter	@	from	the	frequency	response	curves	(Fig.	S5a),	
by	 simultaneously	 monitoring	 the	 displacement	 of	 the	 extended	 mode	 (Fig.	 S5b)	
during	the	frequency	response	characterization.	
	
The	equation	of	motion	for	the	extended	mode	is	given	by:	
	

1A;A + =A;A + >A;A − @;:H = 0	
	 Eq.	S18	

For	excitation	amplitudes	below	the	self-oscillation	threshold,	;:	follows	a	harmonic	
motion	with	constant	amplitude.	Under	these	conditions,	;A 	cannot	follow	the	rapid	
changes	 of	 ;:H	 and	 reacts	 only	 to	 its	 average	 value.	 Since	 the	 displacement	 of	 ;A 	
during	the	frequency	response	measurement	is	quasistatic,	we	can	neglect	the	terms	
1A;A 	and	=A;A .	This	results	in	the	equation:	
	



< ;A >=
@
>A

< ;:H >	

	
Eq.	S19	

Figure	S5c	presents	the	extended	mode	displacement	as	a	function	of	the	localized	
mode	amplitude.	By	 fitting	 this	 relation	using	a	quadratic	polynomial,	we	obtain	a	
nonlinear	 coefficient	 @ = 1.79 ± 0.56	 0 1H	 which	 compares	 extremely	 well	 with	
the	 value	 	 @ = 1.81 ± 0.42	 0 1H	 obtained	 from	 the	 experimental	 force-
displacement	relation.	
	

	
	

FIG	S5:	Experimental	determination	of	the	nonlinear	parameter	@.	a	Frequency	response	of	
the	 localized	 mode.	 b	 Displacement	 of	 the	 extended	 mode	 as	 a	 function	 of	 the	 localized	
mode	 excitation	 frequency,	 measured	 simultaneously	 with	 panel	 a.	 c	 Experimental	
relationship	 between	 localized	 mode	 amplitude	 and	 extended	 mode	 static	 displacement	
(Crosses),	and	polynomial	fit	(Red	line).	

	
	


